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ABSTRACT
Recent research efforts have demonstrated the great poten-
tial of building cost-effective media streaming systems on
top of peer-to-peer (P2P) networks. A P2P media stream-
ing architecture can reach a large streaming capacity that
is difficult to achieve in conventional server-based streaming
services. Hybrid streaming systems that combine the use
of dedicated streaming servers and P2P networks were pro-
posed to build on the advantages of both paradigms. How-
ever, the dynamics of such systems and the impact of var-
ious factors on system behavior are not totally clear. In
this paper, we present an analytical framework to quan-
titatively study the features of a hybrid media streaming
model. Based on this framework, we derive an equation to
describe the capacity growth of a single-file streaming sys-
tem. We then extend the analysis to multi-file scenarios.
We also show how the system achieves optimal allocation
of server bandwidth among different media objects. The
unpredictable departure/failure of peers is a critical factor
that affects the performance of P2P systems. We utilize the
concept of peer lifespan to model peer failures. The origi-
nal capacity growth equation is enhanced with coefficients
generated from peer lifespans that follow an exponential dis-
tribution. We also propose a failure model under arbitrarily
distributed peer lifespan. Results from large-scale simula-
tions support our analysis.
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1. INTRODUCTION
Multimedia streaming over the Internet has become a re-

ality with the development of media compression methods,
high-throughput storage systems, and broadband network-
ing technology. Attractive applications such as entertain-
ment video-on-demand, digital libraries, and on-line news
services built on top of real-time media streaming architec-
tures are now publicly available. However, there are still
many challenges towards building cost-effective, robust and
scalable multimedia streaming systems [33] due to the strin-
gent bandwidth, packet loss and delay requirements for me-
dia streaming.

A majority of media streaming systems follow a server-
client design. The server deployed by service providers acts
as the streaming entity and client devices controlled by the
users act as passive receivers of media streams. In a large
streaming system where user requests arrive at a high rate,
a server has to support a large number of concurrent stream-
ing sessions. Multiple servers or proxies can be deployed to
increase total system capacity. In this design, media content
is replicated on these proxies and clients receive streaming
data from the closest proxy. There are two advantages of us-
ing proxies: (i) user requests are handled by all proxies with
a combined capacity greater than the capacity provided by
the single-server architecture; (ii) better QoS (in terms of
latency and packet loss) in streaming due to the shortened
packet delivery path. Such systems are sometimes called
Content Distribution Networks (CDNs) [3].

The cost of maintaining a CDN is extremely high consid-
ering the massive CPU power, storage space and bandwidth
needed. As the service becomes more popular, more servers
have to be deployed. One approach to solve the above prob-
lem is motivated by the emerging concept of peer-to-peer
(P2P) computing [17, 27, 8]. In a P2P system, there is
no centralized entity controlling the behavior of peers. In-
stead, each peer contributes its share of resources and coop-
erates with other peers according to some predefined rules



for communications. In the context of media streaming, a
well-organized community of clients can significantly lower
the service load of CDN servers by taking over some of the
streaming tasks. The basic idea is to let clients that have
acquired a media object act as streaming servers for sub-
sequent requests to that object. One of the key features
of a P2P streaming system is that its total capacity grows
when the content it manages becomes more popular [35].
This is the most important difference between P2P and the
server/client paradigms. To some extent, a P2P architec-
ture can be viewed as an extreme case of a CDN: data are
replicated on a large number of client nodes.

Hybrid media streaming systems that combine central-
ized servers and peer-to-peer networks have been proposed
in [34] and [15, 14]. As compared to a P2P-only architec-
ture, the hybrid streaming system can disseminate media
content faster and responds quicker to requests. System per-
formance in media streaming services is mainly bottlenecked
by bandwidth [20]. Some operations such as directory man-
agement and searching that consume less bandwidth can be
processed at a centralized server for efficiency reasons. Fur-
thermore, peers are heterogeneous in the duration of their
commitment to the community [29]: each peer could leave
or fail at any time. In order to minimize the effects of this
come-and-go behavior, servers can act as backup resource
providers even when the P2P network has enough capac-
ity. Servers are qualified to play this role because of their
robustness.

The focus of this paper is to study the features of a hy-
brid media streaming architecture by mathematical analy-
sis. We are primarily interested in the pattern of system
capacity growth and the effects of various factors on that
growth. The system capacity is defined as the total stream-
ing bandwidth available from both servers as well as peers.
Conclusions drawn from such analysis improve our under-
standing of system dynamics and provide guidelines for the
design and realization of media delivery services based on
hybrid architectures. In this paper, we propose a generic
media streaming model that utilizes both a CDN and P2P
network. The model differs from those found in [34] and
[15] in that it is applicable to a more general environment
and is more amenable to quantitative analysis of system per-
formance. Using a deterministic discrete-time analysis ap-
proach, we derive the growth equation for system capacity.
This equation is used to analyze the time threshold at which
the system capacity is sufficient to handle the total load. We
extend the results from a single-file system to a multi-file sys-
tem. We also show that our streaming architecture achieves
near-optimal performance in terms of the time needed for
a complete load hand-over from servers to peers. Further-
more, peer failures are factored into the analytical model.
We study peer failures by associating a ‘lifespan’ with each
peer and analyzing the system performance under different
lifespan distributions. We also present two enhancements of
the analysis. In the first, we analyze a media streaming sys-
tem in which a peer can start serving a file to others before
completely receiving it. We show that this overlapping of re-
ceiving and serving can significantly accelerate the capacity
growth and reduce the server-peer transition time. In the
second enhancement, we study a general multi-file stream-
ing system in which files may have different lengths and
bit rates. We describe how the optimal transition time can
be computed numerically. In addition, we evaluate several

performance metrics by extensive simulations, the results of
which confirm the validity of our analysis. We shall also see
that most of our analysis apply directly to pure-P2P media
systems without servers.

This paper continues with Section 2 by comparing our
research with related work. Then we introduce the stream-
ing model in Section 3. We start our analysis by studying
single-file systems without failures in Section 4. Then we ex-
tend to multi-file systems (Section 5) and systems with peer
failures (Section 6). Two extensions of the main results are
presented in Section 7. Section 8 presents the simulation
results. We conclude the paper with Section 9.

2. RELATED WORK
A review on Internet video streaming can be found in [33].

The key research areas of video streaming are identified and
methodologies are discussed. Research on P2P computing
was greatly motivated by the success of Gnutella1 and Nap-
ster2. The general philosophy and current research efforts
of P2P computing are introduced in [17] and [8]. Pastry
[27], Chord [30], and CAN [25] are the most popular P2P
searching/routing protocols. P2P applications built on top
of these protocols are presented in [28] and [9]. Other topics
of P2P research include system design [26], traffic measure-
ment [29], and usage of coupons/incentives [16, 13].

In the context of peer-to-peer media streaming, both the
CoopNet project [20] and the ZIGZAG prototype [31] ex-
plore how media streams should be delivered to many clients
under the situation of flash crowd. Both projects concen-
trate on how to efficiently maintain a multicast tree in an
environment where user behavior is unpredictable. CoopNet
utilizes the method of Multiple Description Coding (MDC)
to deal with the in-session departure/failure of streaming
peers. Our system model differs from these efforts in the
sense that we focus on the delivery of on-demand media
instead of live media. Commercial content delivery services
such as Allcast3 and C-Star4 are close in spirit to on-demand
P2P media streaming. In [35], an algorithm that assigns
media segments to different supplying peers and an admis-
sion protocol for requests are introduced. [18] emphasizes
streaming protocol design. In their work, an RTP-like pro-
tocol with the features of rate control and packet synchro-
nization is developed.

Research on hybrid media streaming architecture shown in
[34] is directly related to our work. A similar P2P streaming
architecture can be found in [15] and [14], in which efficient
algorithms for dissemination of media content and econom-
ical analysis of P2P streaming services are presented. They
show that, with small initial investment and the use of in-
centives, a large-scale and profitable media streaming service
can be built.

Several recent efforts emphasize performance analysis of
P2P networks. In [36], a branching model and a Markov
chain model are used to study the system dynamics of a Bit-
Torrent5-like file sharing network in its transient and steady
states, respectively. They find that the capacity of such
systems grows exponentially in transient and stabilizes at

1http://www.gnutella.com
2http://www.napster.com
3http://www.allcast.com
4http://www.centerspan.com
5http://www.bittorrent.com



steady state. The above work is extended in [23] where
a fluid model is exploited to quantify system capacity at
steady state so that explicit expressions of performance met-
ric are obtained (vs. numerical results obtained in [36]).
Furthermore, other features of the BitTorrent network such
as downloading efficiency and incentives are discussed. In
[24], downloading speed in similar systems are analyzed with
consideration of network topology and peer heterogeneity.
Our work differs from the above efforts in the following as-
pects:

1. We deal with P2P media streaming rather than file
downloading. We study system capacity and transi-
tion time using a discrete-time analytical method;

2. We accomplish a quantitative analysis of the perfor-
mance of a multi-file system and prove optimality in
terms of the transition time of the system model. Ours
is the only work that accomplishes this, to the best of
our knowledge;

3. We explore the impact of peer failure under different
failure models. Among them, the matrix model is not
found in any other P2P research.

Among the above contributions, items 1 and 3 can be readily
used to study pure-P2P streaming systems (i.e., those with-
out servers). Our study greatly improves the analytical re-
search on a hybrid streaming system presented in [34] as the
latter only considers single-file system without failures. Fi-
nally, we extend the conference version of this paper [32] by
relaxing several assumptions such that the analysis applies
to more general cases of system operation. For instance,
we study system performance under the effects of arbitrary
distributions of peer lifespan (Section 6.2), shortened inter-
session delays (Section 7.1), and variable streaming length
and bitrate of media objects (Section 7.2).

3. SYSTEM MODEL, ASSUMPTIONS, AND
NOTATIONS

Our analysis is based on the media streaming infrastruc-
ture shown in Figure 1B. The model is similar to the hybrid
structure proposed in [34] and [15] with some modifications.
The main entities of the system are:

• Directory Server. The role of the directory server
is to maintain an index of media location (i.e. what
peers hold copies of the media). It is also responsible
for processing queries.6

• Server.7 A server holds a copy of all media files and
is responsible for streaming when the requested me-
dia cannot be served through the P2P network. Each
server has a fixed bandwidth. We assume a zero down-
time for the servers.

• Peer (client). The set of user machines participating
in the streaming system are known as peers. A peer
asking for a media object is called a requesting peer and
a peer that has acquired any media object(s) is called

6If we replace the directory server with non-centralized object
lookup solutions (e.g. Pastry), our analysis still works as we focus
on system throughput rather than lookup latency.
7In this paper, the terms ‘streaming server’, ‘CDN server’ and
‘server’ are used interchangeably.

a qualified peer. Upon joining the system, each peer
announces its maximum bandwidth and storage con-
tribution. We assume honesty of peers in the contri-
bution of their reported resources. In our model, peers
admit any requests forwarded to them when they have
available bandwidth. We do not specify the maximum
number of streaming sessions a peer can support. The
reason is that most peers have limited bandwidth [29]
and can only support less than one session in prac-
tice. We divide peers into a number of classes based
on their bandwidth contributions. The average band-
width contribution of peers in all classes is α.

• Media content. The target resource a client re-
quests. We can view this as a collection of media files.
To simplify the analysis, we assume that all streams
are Constant Bit Rate (CBR) media streams.

Figure 1B shows all entities in the hybrid streaming archi-
tecture and how they interact. For the sake of comparison,
Figure 1A shows a CDN-based streaming architecture. Note
that the main difference between the CDN architecture and
the hybrid architecture is that client machines can be data
senders in the latter. We understand that streaming pro-
tocols and softwares are essential parts of any streaming
architecture but they are beyond the scope of this paper.

In our model, the system operates as follows. When a
peer requests a media object, it first sends out a query to
the directory server. The directory server searches its local
database and returns a list of available qualified peers and
CDN servers to the requesting peer. We first choose CDN
servers with available bandwidth as data senders. If all CDN
servers are busy, the requesting peer chooses from the list of
qualified peers a subset that satisfies the bandwidth and QoS
requirements and the streaming starts.8 The peers that act
as data senders are called supplying peers. When the stream-
ing is finished, the requesting peer becomes a qualified peer.
If there is not enough bandwidth from both the servers and
qualified peers, the request is rejected immediately (without
waiting).

We model the arrival of streaming requests as a Poisson
process with a time-invariant rate λ. We are interested in a
system where the streaming capacity of the servers is small
compared to the total capacity needed to handle all requests.
In other words, servers act as ‘seeds’ for the media content
and we expect that the streaming load will eventually be
shifted to peers.

3.1 Assumptions
The system analysis is performed in a top-down manner.

We start from a simple model with assumptions on the fac-
tors we are interested in and then enhance the results de-
rived from the simple model by relaxing these assumptions.

8The mechanism of selecting the subset of peers to stream the me-
dia object is orthogonal to the analysis presented in this paper.
We note that there are a number of ways to perform the selection.
A simple mechanism is to choose suppliers that are topologically
close to the receiver based on IP addresses. This can be done
by clustering peers in the system using their IP addresses [14].
As another mechanism, the receiver could leverage Internet mea-
surement infrastructures such as IDMaps [11] to measure rela-
tive distances between each potential supplier and itself. A third
selection mechanism infers characteristics of the network paths
connecting the potential suppliers. These characteristics are then
used to select the best subset of suppliers [15].
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Figure 1: A comparison between CDN and hybrid media streaming architectures. Dotted lines show the
directions of the streaming.

In the initial analysis, we make the following assumptions:

1. The system contains only one media file. In Section 5,
the analysis is extended to multi-file systems;

2. Peers never fail. Peer failure is addressed in Section 6;

3. Requests are uniformly distributed among the peer
population;

4. The bottleneck link for a streaming session can only
be the upload link capacity of the data sender (CDN
server or supplying peer); and

5. Each participating peer has infinite storage contribu-
tion. We shall see in Section 8 that only a small storage
contribution is actually needed from each peer, which
makes this a harmless assumption.

3.2 Metrics and Notations for Analysis
The total number of qualified peers and their bandwidth

contributions are direct measures of system capacity. Our
analysis focuses on these two metrics. Previous work [34] on
hybrid streaming systems has shown that the streaming load
can be fully taken over by peers after some time. This can
be illustrated by Figure 2 where the tentative system band-
width is plotted. As more and more peers become qualified
peers, we have reason to believe that the system capacity
grows over time (not necessarily linear growth as shown in
Figure 2). Suppose the total capacity required to handle all
requests is R, then at a certain point in time, the system
capacity outgrows R. This time point is called server-peer
transition time (denoted as k0). Knowing k0, we can modify
the protocol to let the requesting peers obtain bandwidth
from qualified peers first and use servers as backup sources
of bandwidth after transition. For service providers, k0 can
be used, for example, to indicate when server resources can
be reallocated to stream other media objects, or to deter-
mine the length of their contracts with resource vendors.

With the knowledge of k0, we can modify our protocol by
retiring the servers after k0. This is illustrated by Figure 3
where tentative server bandwidth usage under such change
of protocol is plotted. At time zero, all server bandwidth is
free. Servers become fully loaded after a short initial stage
due to massive demand. The system has to reject some
requests until the servers generate enough loyal qualified
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Figure 2: Proposed peer bandwidth growth and
transition point in the hybrid streaming architec-
ture.

peers. After that, servers no longer accept streaming re-
quests. Thus, they are increasingly alleviated from stream-
ing tasks until the system reaches a stage where only peers
are needed for streaming (Peer-only stage). Note that the
server bandwidth usage is greater than zero until the Peer-
only stage begins at k0

′. This is due to the outstanding
streaming sessions that are being served by the servers after
k0.
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Figure 3: Bandwidth usage of CDN servers in the
hybrid streaming architecture with retirement of
servers at k0.

Another metric we consider is reject rate. The reject rate
at time x is defined as the ratio of total number of rejected
requests to the total number of requests within a time inter-
val [x−∆x,x+∆x]. Here we see that reject rate depends on



the window size 2∆x. So there is no unique value for it at
any point in time. Intuitively, reject rate decreases as system
capacity increases. With the knowledge of system capacity,
we can derive the expected reject rate. In our experimental
study (Section 8), we use zero reject rate as an indication of
the system’s accomplishing server-peer transition.

Symbols used in the analysis are listed in Table 1.

Table 1: Notations and Symbols.
Symbol Definition
L Length of one streaming session
k Discrete time index, each has a length of L
N Total server bandwidth
M Total number of peers
λ Request rate to the system, in requests

per unit time
k0 Server-Peer transition time, in number of

streaming periods
T0 Server-Peer transition time, in number of

time units
P (k) Number of qualified peers at interval k
C(k) Total system capacity (i.e. bandwidth) at

interval k
F Total number of media files
b Bandwidth required to stream a file
α Average peer bandwidth contribution
z Number of peer classes
hi Percentage of peers in the i–th class
ci Bandwidth contribution per peer of the

i–th class

4. MAIN RESULT: SINGLE-FILE SYSTEM
WITHOUT FAILURE

In this section, we focus our analysis on a system con-
taining only one media file without considering peer fail-
ures. A salient feature of the media streaming application
is that all streaming sessions of the same media object last
for L time units. This feature can be leveraged to analyze
(qualified) peer population in a discrete-time manner. Sup-
pose, within the k-th time interval (Figure 4), the system
initiates n streaming sessions S1, S2, . . . , Sn. Then we are
certain that the n requesting peers in these sessions will be-
come qualified peers in the (k+1)–th interval as all sessions
will terminate by the end of the next interval. To project
the total number of qualified peers from period k to period
k + 1, we need to know how many sessions are initiated
during period k.
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Figure 4: Streaming sessions within a time interval
of length L.

First of all, the average peer bandwidth contribution of

all classes can be obtained by α =
Pz

i=1 hi ci. Due to as-
sumption 5 in Section 3.1, this simplification does not affect
our analysis on system bandwidth.

Before the server-peer transition time k0, the bandwidth
of both servers and qualified peers is fully utilized as de-
mands are overwhelming. Therefore, the number of new
qualified peers produced between two consecutive time in-
tervals k and k + 1 can be expressed as:

P (k + 1) − P (k) =
N

b
+ P (k)

α

b
, 0 ≤ k ≤ k0. (1)

The two terms on the right-hand side of the above equation
are the number of new qualified peers generated by servers
and that of the qualified peers generated by previously qual-
ified peers, respectively. Eq.(1) can be rewritten as

P (k + 1) +
N

α
=

„

P (k) +
N

α

«

“

1 +
α

b

”

.

Solving the above geometric progression with P (0) = 0, we
get

P (k) =
N

α

»

“

1 +
α

b

”k

− 1

–

. (2)

We name the term α
b

as the capacity growth factor of the
system. The total system capacity (in terms of bandwidth)
at interval k is thus given by:

C(k) = N + αP (k) = N
“

1 +
α

b

”k

, k ≤ k0. (3)

From the discussions in Section 3, we know that the total
system capacity at k0 is equal to the capacity required to
serve all requests. The total capacity needed to satisfy all
requests in L time units is λLb. Therefore, we have the
following equation to solve k0:

N
“

1 +
α

b

”k0

= λLb. (4)

In the above equation, N, α, λ, L, b are known constants,
therefore we get k0 as

k0 = log(1+ α
b
)

„

λLb

N

«

=
lg(λLb) − lgN

lg(1 + α
b
)

. (5)

From Eq.(2), we also see that P (k0) = N
α

(λLb
N

− 1) peers
are needed in addition to the servers so that total system
bandwidth is able to handle all subsequent requests. Note
that the unit for k0 is time intervals rather than natural
time units and it is only accurate to its integer part. For
example, a k0 value of 10.4 indicates the transition will be
accomplished some time between the 10th and 11th stream-
ing period.

The above analysis (refer to Eq.(3)) shows an exponential
growth pattern of system capacity, which is similar to the
results of a recent study on P2P file sharing applications
[36]. The expansion of our streaming system resembles the
population growth of a biological species [21]. The latter
is generally studied by the number of offsprings produced
in generation(s). Our analysis is inspired by this idea: re-
questing peers can be regarded as the offspring of supplying
peers and/or servers. 9 The discrete-time analysis approach
is also used in [34] and similar results (with numerical solu-
tion for k0) are found. We improve their analysis by giving
a closed-form expression for the server-peer transition time.
9From now on, we sometimes use the word ‘generation’ to denote
a streaming period with length L.



Remark 4.1. In practice, the capacity growth factor α
b

is small (typically less than 1.0), because the average band-
width contribution from a peer (α) is less than the bandwidth
required to stream the media object (b). As a result, k0 is
almost linearly related to α

b
since

k0 =
lg(λLb) − lgN

lg(1 + α
b
)

≈
lg(λLb) − lgN

α
b

.

This shows that k0 is more sensitive to α
b

than to λ and N .
The effect of L on k0 is also similar to that of λ and b. Note
that there is a super-linear relationship between L and the
absolute transition time (denoted as T0). T0 is measured in
natural time units rather than generations and is given by
T0 = Lk0. In Section 7.2, we shall see more discussions on
T0.

Remark 4.2. The value of k0 obtained by solving Eq.(4)
is the time at which the total system capacity can satisfy
all subsequent requests. Strict server-peer transition occurs
when the peer capacity alone is sufficient to serve all re-
quests. Let us denote the strict transition time as K0. After
time k0, system capacity grows linearly with rate λLb rather

than exponentially. Therefore, we have N
`

1 + α
b

´k0 −N +
λLb(K0 − k0) = λLb and

K0 = k0 +
N

λLb
=

lg(λLb) − lgN

lg(1 + α
b
)

+
N

λLb
.

As server capacity is small compared to the requested load,
the difference between k0 and K0 is trivial. We focus our
discussions on k0 in the remainder of this paper.

4.0.1 Dynamics of reject rate
As mentioned earlier, there is no unique way to quantify

the reject rate as it depends on the size of time window (∆x)
we use. Let us first discuss the scenario when window size
is much smaller than L. An observation under such circum-
stances is: in early streaming periods, the majority (if not
all) of streaming sessions start at the very beginning of that
period. This is due to the heavy load put to the system:
bandwidth is quickly utilized and all subsequent requests
in that period will be rejected. As a result, the reject rate
is close to zero at the beginning and reaches almost 100%
until the end of the current streaming period. The above
pattern repeats itself in every streaming period. However,
within each cycle, the time when the reject rate is low be-
comes longer as system capacity grows. At period k0, the
reject rate for the whole streaming period will be low. In
other words, k0 can be viewed as the time after which no
more fluctuations of reject rate can be observed. One thing
to point out is that the fluctuations of reject rate can be
smoothed out if we choose larger window sizes.

We also study the method to estimate reject rate at any
time k. See Appendix B for details.

5. MULTI-FILE SYSTEM
In the previous section, we derived explicit expressions for

the system capacity C(k) and the server-peer transition time
k0 for a single-file system. In deriving these expressions, we
used Eq.(1) to capture the increase in number of qualified
peers in two consecutive time intervals. However, we cannot
directly use Eq.(1) to study the dynamics of a multi-file sys-
tem because of the interactions among peers holding and/or

requesting more than one file. To clarify, consider a peer
that has received a file f1 in the past, i.e., it is considered a
qualified peer for f1. If that peer requests and receives an-
other file f2, it should not be counted as a qualified peer for
both files because it may not have enough streaming capac-
ity to serve both files at the same time. Intuitively, the rate
of increase of the number of qualified peers will be smaller
in a multi-file system than in a single-file system. Another
problem is: when the growth of file-specific capacity are not
well synchronized, we could also have long transition time.
In this section, we analyze a multi-file system in which all
files have the same length L and the same bit rate b. We
first consider a simplified multi-file system model, for which
we derive the optimal (i.e., shortest) server-peer transition
time k0 for the system and the conditions to achieve this
optimal value. We then study a general multi-file system
by analyzing the impact of the assumptions made in the
simplified model.

In the simplified multi-file system, we divide the whole
system into F virtual subsystems, each of which deals with
only one file. Each individual subsystem is assigned a fixed
share Nf of the total server bandwidth N . In other words,
we divide the server capacity into F private channels. Nat-
urally, each subsystem has its own request rate λf . Imme-
diately, we have

F
X

f=1

Nf = N, and
F

X

f=1

λf = λ. (6)

We further assume that the one-file subsystems are inde-
pendent, i.e. a peer that has acquired file f will request
no other files and remains a qualified peer of subsystem f
forever. The whole system can then be viewed as F inde-
pendent subsystems sharing the total server bandwidth N .
The simple model differs from the original model by two
factors: private channeling of the server bandwidth to indi-
vidual files, and lack of interactions among subsystems. We
discuss the effects of these factors in Section 5.1 and Section
5.2, respectively.

It is easy to see that the growth of each subsystem ca-
pacity follows Eq.(1) with N replaced by Nf and λ by λf .
Therefore, the server-peer transition time for any single-file
subsystem (denoted as k0,f ) can be obtained from Eq.(5) as
follows:

k0,f =
lg(λfLb) − lgNf

lg(1 + α
b
)

. (7)

Eq.(7) shows that the server-peer transition time in each
subsystem depends only on the bandwidth allocation (Nf )
and the per-file request rate (λf ). Now we need to derive the
system-level server-peer transition time k0 from those of the
subsystems. We can easily see that different allocations of
server bandwidth may result in different server-peer transi-
tion times. Instead of deriving general expressions for k0 as a
function of Nf , we concentrate on the bandwidth allocations
that lead to the optimal k0. The problem of finding such al-
location(s) can be formally stated as: for each media file f ,
how much server bandwidth is to be assigned (Nf ) given the
request rate of that file (λf ) such that the system-level tran-
sition time (k0) is minimized. One important observation is
that the system-level transition time is the maximum value
among those of all subsystems. This is because the whole
system reaches the transition point only when all subsys-
tems reach theirs. The problem can be further interpreted



as an optimization subject to the constraints represented by
Equations (6) and (7), with the objective function

minimize max
1≤f≤F

{k0,f} .

It is well-known [6] that the solution for the above optimiza-
tion is obtained when all k0,f are the same, i.e.,

k0 = k0,1 = k0,2 = · · · = k0,F .

Applying Eq.(7) to the above solution, we get

λ1Lb

N1
=
λ2Lb

N2
= · · · =

λFLb

NF
=

PF
i=1 λiLb

PF
i=1Ni

=
Lbλ

N
.

Hence for any file f , the optimal choice of Nf is

Nf =
λf

λ
N, f = 1, 2, . . . , F. (8)

In other words, the share of server bandwidth assigned to
each single-file subsystem has to be proportional to the re-
quest rate of that file to achieve optimal k0 at the system
level. Now we can derive k0 from Eq.(7) and Eq.(8):

k0 =
lg(λLb) − lgN

lg(1 + α
b
)

. (9)

Note that the above equation is the same as Eq.(5). From
Eq.(9) we can also get the number of qualified peers for file
f at time k0:

Pf (k0) =
Nf

α

„

λfLb

Nf
− 1

«

=
λfLb

α
−
Nf

α
, (10)

which is independent of M , and the same for fixed Nf , λf .

5.1 Optimality of the Original System Model.
The above result is important since it shows that the sim-

ple model is optimal in terms of server-peer transition time
when the bandwidth allocation follows Eq.(8). Let us go
back to the original system model. In this model, no private
channels are assigned to individual files. Instead, requests
come at random and can be admitted to any server chan-
nel that is available. We call this statistical multiplexing of
server capacity. This makes Nf a random variable instead
of a constant as in the modified model. For any file f , we
model the request arrivals as a Poisson process with rate λf .
The following theorem shows that the original system model
is stochastically optimal.

Theorem 5.1. In a multi-file hybrid streaming system that
performs statistical multiplexing of server capacity, the ex-
pectation of the server bandwidth utilized in streaming file f

is E[Nf ] =
λf

λ
N , which is the same as the optimal band-

width allocation given by Eq.(8).

Proof. The server bandwidth can be viewed as N
b

chan-
nels, each of which can serve a streaming session. The F
file-specific request streams can be viewed as a single Pois-
son stream with a fixed rate λ =

PF
f=1 λf . Channel holding

time for all requests is a constant L and requests do not stay
in a waiting queue. With all these conditions, it follows that
the CDN servers in our streaming system can be mapped to
an Erlang loss system with N

b
service lines, arrival rate of λ,

and service rate 1
L

[7].
In the aggregate stream, the probability that a single re-

quest is to file f is
λf

λ
. According to well-established results

in queuing theory ([7], page 84), the probability of rejection
(blocking) is the same for all file-specific streams in such sys-
tems. Therefore, for any non-blocked request, the probabil-

ity that it is to file f is still
λf

λ
. Consider any N

b
consecutive

non-blocked requests in the aggregate stream, the number
of requests to file f can be denoted as a random variable Xf ,

which follows a binomial distribution B( N
b
,

λf

λ
). Therefore,

the bandwidth consumed by file f is Nf = bXf . It follows
that

E[Nf ] = bE[Xf ] = b
N

b

λf

λ
=
λf

λ
N.

From Theorem 5.1, we see that since E[Nf ] gets the op-
timal bandwidth given by Eq.(8), the server-peer transi-
tion time for the statistical multiplexing system will ap-
proximately achieve the optimal k0 value in Eq.(9). The
above proof requires familiarity with Erlang systems, a self-
contained proof based on probability density functions of ex-
ponential distributions can be found in Appendix A. Note
that Theorem 5.1 still holds true when we allow requests to
wait in a queue, no matter what the queue size is. Here we
skip the proof as it is not the model we use in this paper.

Theorem 5.1 only shows the expectation of Nf without
considering the effects of the variance of Nf on k0. We
can use standard statistical tools to estimate k0 with the
consideration of such variances. First of all, the variance of
Nf is

σ2 = b2
N

b

λf

λ

„

1 −
λf

λ

«

=
bNλf

λ

„

1 −
λf

λ

«

.

We now can analyze Nf using confidence intervals. 10 If the
random variable Nf falls into an 95% interval, say, Nf ∈
(E[Nf ] − 0.05σ, E[Nf ] + 0.05σ), we get

Nf ≥ E[Nf ] − 0.05σ =
λf

λ
N − 0.05σ.

By Eq.(7), we thus have

k0 ≤
lg(λfLb) − lg(

λf

λ
N − 0.05σ)

lg(1 + α
b
)

.

This result gives an upper bound for k0 taking the variance
of randomly distributed Nf into consideration. Since the
effects of σ on k0 are diluted by the log function, k0 is not
sensitive to the variance of Nf . As long as σ is relatively

large (i.e.,
bNλf

λ
is not so small), k0 is very close to our result

in Eq.(7). Otherwise, any small deviation will be out of the
95% confidence interval and the analysis fails.

5.2 Dependence Among Subsystems
In the analysis of a multi-file system, we assume that dif-

ferent subsystems grow independently. However, interac-
tions exist among these virtual subsystems in the original
model. As described earlier in this section, the problem
comes from those peers that access more than one media
object. In computing the server-peer transition time, we
focus on the growth of system capacity in terms of band-
width. Every time a peer obtains a certain media file from

10Since N is relatively large, we could also use the F -distribution
to estimate Nf . However, the estimates from the F -distribution
may not be as tight as those obtained using confidence intervals.



the CDN servers or supplying peers, it will be included as a
qualified peer in the virtual subsystem related to that file.
This is equivalent to counting the same peer multiple times
on the whole-system level. It is difficult to quantify such
interactions among media files. In this section, we give an
upper bound of the level of these interactions. The following
analysis shows that k0 is only slightly larger than the value
given by Eq.(5).

We assume that the probability of requesting any file f is
the same for all peers. That is, any request to file f comes
uniformly from all M potential clients, i.e., there is no ten-
dency that a peer already holding file A has a better chance
to ask for file B. Let us go back to the analysis of multi-file
systems, reconsider Eq.(1), and take the peer interactions
into account, we have:

Pf (k + 1) = Pf (k) + βk,f

„

Nf

b
+ Pf (k)

α

b

«

, (11)

where βk,f (0 < βk,f ≤ 1) is a coefficient for the ‘valid’ pro-
liferation in the subsystem of file f . This means that βk,f is
the probability that peers in this subsystem hold only file f
during time interval k. We call such peers as valid peers of
file f . If a peer holds other media file(s) when it acquires file
f , it is called an invalid peer of media f . Suppose at time
k, Pf (k) is the number of valid peers. By the assumption
of uniformly-distributed requests, the probability of getting
a request from a peer that holds another file g is at most
Pg(k)

M
. Since g could be any of the F − 1 files other than f ,

the total probability of having an invalid peer (denoted by
δk,f ) is

δk,f ≤
X

g 6=f

Pg(k)

M
,

which captures the portion of peers that should not be counted
as contributors in the subsystem of file f . At any time up
to k0, Eq.(10) gives an upper bound for the number of valid
peers in any subsystem g, and we have

X

g 6=f

Pg(k) ≤
F

X

g=1

λfLb

α
−
λfN

αλ

„

λfLb

N
− 1

«

≤
λLb

α
−
N

α
,

which is independent of the total peer population M . Thus,
δk,f ≤ λLb−N

Mα
. Now, the probability of having valid peers

for file f is βk,f = 1 − δk,f ≥ 1 − λLb−N
Mα

. Note that if the
pool size of peers is large enough, i.e., the request rate is
small compared to M , we have βk,f ≥ 1− λLb−N

Mα
≈ 1. From

Eq.(11), we get

Pf (k + 1) ≥ Pf (k) +

„

1 −
λLb−N

Mα

« „

Nf

b
+ Pf (k)

α

b

«

.

Following the same procedures as in the derivation of Eq.(9)
and Eq.(10) and setting β = 1 − λLb−N

Mα
, we obtain

Pf (k) ≥
Nf

α

»

`

1 +
αβ

b

´k
− 1

–

,

which immediately leads to

k0 ≤
lg(λLb) − lgN

lg(1 + αβ
b

)
.

6. IMPACT OF PEER FAILURE

P2P systems are intrinsically dynamic [29]. A major dif-
ference between a peer and a server is that a peer’s commit-
ment to the community is not guaranteed: it may leave the
network at any time. In this section, we study the effects of
peer failure on the capacity growth of our media streaming
system. Peer failure in our analysis means that a peer leaves
the system permanently [2]. We start by presenting a sim-
ple peer failure model that is based on experimental studies
performed by other researchers. Then we present a general
peer failure model that considers an arbitrary distribution
for peer lifespan.

6.1 Simple Model for Peer Failure
In this failure model, we assume that at the end of each

streaming period (i.e., generation), the number of surviving
qualified peers is proportional to the number of surviving
qualified peers at the beginning of that streaming period.
The proportionality factor is called the survival rate and is
denoted by γ (γ < 1). We discuss how to determine γ later
in this section.

At generation k + 1, the number of inherited qualified
peers from generation k is γP (k). Consider the case for the
single-file system, Eq.(1) becomes

P (k + 1) = γP (k) +
N

b
+ γP (k)

α

b
, 0 ≤ k ≤ k0. (12)

Rewriting the above equation, we have

P (k + 1) +
N

bθ
=

„

P (k) +
N

bθ

«

γ
“

1 +
α

b

”

,

where θ is the new capacity growth factor and θ = γ(1 +
α
b
) − 1 6= 0.

Then Eq.(2) and Eq.(5) become

P (k) =
N

bθ

»

γk
“

1 +
α

b

”k

− 1

–

=
N

b
·
γk(1 + α

b
)k − 1

γ(1 + α
b
) − 1

(13)

and

k0 =
lg

“

b(γ−1)+γα
αγ

`

λLb
N

− 1
´

+ 1
”

lg γ(1 + α
b
)

, (14)

respectively. Note that Eq.(2) and Eq.(5) are special cases
of Eq.(13) and Eq.(14) when γ = 1. To guarantee positive
growth of the system capacity, we must have θ > 0 and
therefore γ > b

α+b
.

Once we have Eq.(14), we can follow the same analysis
as in Section 5 to derive the upper bound for multi-file sys-

tems and get λ1Lb
N1

= λ2Lb
N2

= · · · = λF Lb
NF

=
PF

i=1
λiLb

P

F
i=1

Ni
=

Lb
PF

i=1
λi

N
= Lbλ

N
. That is, we have the optimal choice of

Nf as Nf =
λf

λ
N (f = 1, 2, . . . , F ), which is the same as

in Eq.(8). Thus, we get the same equation as Eq.(14) for
the system-level transition time of a multi-file system with
peer failures. Once we have the above equations, the other
results in Section 5 can be derived accordingly.

Remark 6.1. Since γ < 1, from Eq.(14), we have

k0 =
lg

“

b(γ−1)+γα
αγ

· λLb
N

− b(1−γ)
αγ

”

lg γ(1 + α
b
)

<
lg

“

b(γ−1)+γα
αγ

· λLb
N

”

lg γ(1 + α
b
)

.



If γ is close to 1, then

lg λLb
N

lg(1 + α
b
)
≤ k0 ≤

lg
“

b(γ−1)+γα
αγ

· λLb
N

”

lg γ(1 + α
b
)

≈
lg λLb

N
+ b(γ−1)

αγ

lg(1 + α
b
) + lg γ

,

The dominant part is
lg λLb

N

lg(1+ α
b

)
, hence k0 is not very sensitive

to γ. Therefore, we can still use
lg λLb

N

lg(1+ α
b

)
to estimate k0.

Remark 6.2. In practice, γ can be factored into to α
b
, as

β in Section 5.2. In [34], this idea was used to analyze a
single-file system.

6.1.1 Computing the survival rate γ
To determine the survival rate γ, we associate with each

qualified peer a random variable X to model its lifespan.
Assuming peers fail independently, then the survival rate γ
can be interpreted as the conditional probability:

γ = Pr{X ≥ T + L | X > T}, (15)

where T is the starting time of any streaming period k.
Generally, it is difficult to solve Eq.(12) using Eq.(15) when
the peer lifespan follows an arbitrary statistical distribution.
The reason is that the above probability for any individual
peer depends on its age T . If we consider all living peers at
streaming period k as a whole, γ is determined by the age
structure of all P (k) peers. In other words, γ is a variable
that is related to k. Two large-scale measurement stud-
ies analyzed the lifespan of peers ([29] and [5]). According
to [29], the lifespan of peers approximately follows an ex-
ponential distribution. Since the exponential distribution
is memoryless, the probability for any peer to live beyond
time T +t given it is alive at time T is e−tq, where 1/q is the
average lifespan of all peers. Thus, in our case, γ = e−Lq.

The measurement study in [5] indicates that a long-tail
Pareto distribution is a better fit for the lifespan data col-
lected from more than 500,000 peers. Since Pareto distri-
bution is not memoryless, computing γ from Eq.(15) is not
easy. However, it is shown in [10] that long-tail distribu-
tions can accurately be approximated by a weighted sum
of a small number of exponential distributions over a finite
time interval. The maximum peer lifespan can be assumed
to be a sufficiently large (e.g., 100 days) but finite value for
all practical purposes. Therefore, we can approximate the
distribution of the peer lifespan as

Pm
i=1 wie

−µit where the
parameters m,wi and µi are estimated using the recursive
algorithm described in [10]. Using this approximate distri-
bution for peer lifespan in Eq.(15), the survival rate is given
by: γ =

Pm
i=1 wie

−µiL.

6.2 General Model for Peer Failure
The previous section presented a peer failure model for

two commonly conceived distributions for peer lifespan. Al-
though these two distributions are corroborated by exten-
sive measurement studies, they are system and environment
specific. Therefore, they may not be applicable to other
P2P systems, or their accuracy may degrade under differ-
ent conditions. In this section, we develop a more general
peer failure model that is not restricted to particular peer
lifespan distributions.

With a general lifespan distribution, we lose the nice fea-
ture of representing the survival probability within any time
interval as a constant. What we can do is to divide the

continuous peer age (i.e., the length of time since a peer
becomes online) into discrete age classes and associate a
survival probability p with each age class. In our analysis,
we use age classes with length L. Without loss of generality,
we ignore peers with age more than m, and m < k0. We
denote the survival probability from age k to age k+1 as pk.
Suppose we obtain the probability density function of peer
lifespan f(x) from measurement studies. Based on Eq.(15),
we have

pk =

R ∞

k+1
f(x)dx

R ∞

k
f(x)dx

.

The overall survival rate γ at time k is thus determined by
the age structure of all P (k) qualified peers, i.e.,

γ = [x0, x1, . . . , xm][p0, p1, . . . , pm]T ,

where xi is the percentage of peers of age i among the P (k)
qualified peers.

Following the same strategy as in Section 4, we develop a
model to project the number of qualified peers from time k
to k + 1. Define nx k as the number of peers with age x at
generation k, where x ≥ 0, and k ≥ 0 are integers. We have
the following relations between different age groups in the
single-file system:

N

b
+
α

b

m
X

x=0

nx k = n0 k+1, k = 0, 1, . . . , k0 − 1,

pxnx k = nx+1 k+1, x = 0, 1, . . . ,m− 1, k = 0, 1, . . . , k0.

The first relation shows that the number of qualified peers
of age 0 at time k + 1 is the sum of those generated by
servers and by peers of all other age classes. The second
relation shows that the peers of age x+ 1 at time k + 1 are
those of age x at time k and survived through time period k
with probability px. Employing matrix notation, the system
capacity can be expressed as

~B + A~nk = ~nk+1, (16)

where

~B =

2

6

6

6

4

N
b
0
...
0

3

7

7

7

5

, ~nk =

2

6

6

6

4

n0 k

n1 k

...
nm k

3

7

7

7

5

, ~nk+1 =

2

6

6

6

4

n0 k+1

n1 k+1

...
nm k+1

3

7

7

7

5

,

and

A =

2

6

6

6

6

6

6

4

α

b

α

b
· · ·

α

b

α

b
p0 0 · · · 0 0
0 p1 · · · 0 0
...

...
. . .

...
...

0 0 · · · pm−1 0

3

7

7

7

7

7

7

5

.

Note that the above formula has a similar form as Eq.(1).
Set p(k) = p0p1 · · · pk (k ≥ 0) and p(−1) = 1. We also
define the following column vector

~v =
N

−b+ α
Pm

k=0 p(k−1)

ˆ

1, p(0), p(1), . . . , p(m−1)

˜T
.

We explain more about this vector later. For vector ~v, it
can be verified that A~v − ~v = ~B. Plugging it into Eq.(16),
we obtain

~nk+1 + ~v = A (~nk + ~v) , ~n0 = ~0 . (17)



Solving the above equation, we get:

~nk = (Ak − I)~v, k = 1, 2, . . . , k0, (18)

where I is the (m+ 1) × (m+ 1) identity matrix. This can
be viewed as a matrix counterpart of Eq.(2). We now can
see that the purpose of introducing vector ~v is to get the
nice form shown in Eq.(17) such that ~nk can be solved as
an exponential function of k.

Now let us discuss under what conditions the system ca-
pacity grows positively. For convenience, we let ψ = −1 +
α

b

Pm
k=0 p(k−1), which immediately gives

~v =
N

bψ

ˆ

1, p(0), p(1), . . . , p(m−1)

˜T
. (19)

Obviously, the elements in ~v should all be positive to achieve
positive capacity growth. Therefore, we must have ψ > 0.
We may also see that, to guarantee positive growth, the
largest eigenvalue of A should be greater than 1. According
to the Perron-Frobenius theorem in linear algebra [12], since
the matrix A is nonnegative and irreducible, it has at least
one positive eigenvalue and the largest such eigenvalue is
greater than or equal to the modulus of any of its complex
roots. Furthermore, according to Descartes’ rule of signs,
there is only one such real eigenvalue.

To find the server-peer transition time k0 (assuming the
above conditions hold such that the capacity grows posi-
tively), we need to solve

N

b
+
α

b

m
X

x=0

nx k0
= λL,

or equivalently, solve

N

b
+
α

b
(Ak0 − I)~v = λL.

Divide both sides by
N

b
, and recall Eq.(19), we obtain

1 +
1

ψ

α

b
(Ak0 − I)

ˆ

1, p(0), p(1), . . . , p(m−1)

˜T
=
λbL

N
. (20)

Since the system grows exponentially, the left-hand side
of Eq.(20) is proportional to the increased population of the
system, it is an increasing function of k0, and we will have
a unique k0 satisfying Eq.(20). Unfortunately, we could not
find a simple explicit expression for k0. Instead, we can
calculate k0 numerically. Moreover, since the right-hand
side depends on the ratio of the bandwidth and the request
rate rather than their absolute values, the solution of k0 will
depend only on this ratio. Hence, if we generalize the single-
file solution to multi-file systems, where each media object
has it own request rate λf , we will have the same result as
in Eq.(8), i.e. the optimal bandwidth is proportional to the
request rate.

7. OTHER EXTENSIONS

7.1 Acceleration of Capacity Growth
In the previous sections, we assume that a peer can only

serve others after it finishes receiving the entire stream. In
practice, it is feasible to allow peers to start serving others
after receiving the first few blocks of the media file. For-
mally, we set a delay d (d ≤ L) after which a requesting
peer in a streaming session can serve as a supplying peer in

a new session. In this section, we study how the inter-session
delay d affects system performance.

A
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Figure 5: Streaming sessions initiated in a genera-
tion when d = L/3.

For simplicity, we only consider the situation of d = L/n
where n is a positive integer. When n is not an integer, we
can estimate k0 using the two neighboring integers of n. Re-
visiting the arguments used to generate Eq.(1) in Section 4,
an important observation is: within one streaming period,
a newly started session will have the chance to start n − 1
rounds of new sessions. Figure 5 shows an example of n = 3
and we use cluster A to represent the chunk of sessions initi-
ated at the beginning of a streaming period. The requesting
peer in a session in cluster A could be a supplying peer in
a new session that starts in the beginning of time interval
[L
3
, 2L

3
] (cluster B). The requesting peer of a cluster B ses-

sion can in turn be a supplying peer in a session in cluster
C. On average, one session in cluster A can give rise to α

b

sessions in cluster B and α
b
· α

b
= α2

b2
sessions in cluster C.

Knowing this, the number of sessions initiated in the period

shown in Figure 5 is |A|+ |B|+ |C| = |A|(1+ α
b

+ α2

b2
) where

|A|, |B|, |C| are the numbers of sessions in cluster A, B,
and C, respectively. Generalizing this idea, Eq.(1) can be
written as:

P (k + 1) − P (k) =

„

N

b
+ P (k)

α

b

«

Φn ,

Φn = 1 +
α

b
+
α2

b2
+ · · · +

αn−1

bn−1
.

with 0 ≤ k ≤ k0, and P (0) = 0. Similar to the derivation of
Eq.(2), we obtain

P (k) =
N

α

»

“

1 +
α

b
Φn

”k

− 1

–

.

The server-peer transition time becomes

k0 = log(1+ α
b

Φn)

„

λLb

N

«

=
lg(λLb) − lgN

lg(1 + α
b
Φn)

. (21)

Comparing this with Eq.(5), we see that the improvement
is significant because the system capacity growth factor in-
creases to 1 + α

b
Φn while other factors remain unchanged.

A smaller delay d leads to a smaller k0 value. However,
this does not mean it is always better to choose a smaller d
(i.e., a larger n) value. Since we have α

b
< 1 in practice, k0

converges rapidly as n increases: it is well-known that for

Φn =
1−( α

b
)n

1− α
b

, we have limn→∞ Φn = b
b−α

. It follows that

we get

lim
n→∞

k0 =
lg(λLb) − lgN

lg(1 + α
b−α

)
.

From the point of view of streaming protocol design, an ex-
cessively short delay is also infeasible: there will inevitably
be some delays in setting up the network connections, and
some buffer time is needed for maintaining QoS in any stream-
ing sessions.



7.2 General Multi-file System
In the analysis of multi-file systems (Section 5), we assume

that all media files require the same bandwidth b and have
the same length L. Our analysis can be generalized to media
files with different bandwidth requirements and streaming
lengths. Assume that a media file f requires bandwidth bf ,
and streaming length Lf . Then the proliferation of each
subsystem capacity follows Eq.(1) with N replaced by Nf

and b by bf . Therefore, the server-peer transition time for
any single-file subsystem (k0,f ) can be obtained from Eq.(5)
as:

k0,f =
lg(λfLf bf ) − lgNf

lg(1 + α
bf

)
. (22)

Note that the time unit for every subsystem is its streaming
length Lf , so that the objective function of the optimization
problem becomes:

minimize max
1≤f≤F

{Lfk0,f} . (23)

If we allow k0,f to have continuous solutions, the solution
of the above optimization problem is achieved when Lfk0,f

are equal to each other for each f . Recall that T0 is the
optimal transition time counted as natural time units, we
have T0 = k0,fLf , ∀f , which is the same as

T0 =
lg(λ1L1b1) − lgN1

lg(1 + α
b1

)
L1 =

lg(λ2L2b2) − lgN2

lg(1 + α
b2

)
L2

= · · · =
lg(λFLF bF ) − lgNF

lg(1 + α
bF

)
LF

where N1, N2, · · · , NF are the unknowns. With the condi-
tion

PF
f=1Nf = N , we could solve N1, N2, · · · , NF by iter-

ation methods. That is, we first solve T0 by representing Nf

through T0 and plugging it into the sum condition. Since

Nf = λfLf bf
“

bf

bf +α

”T0/Lf

, we have

F
X

f=1

λfLf bf

„

bf
bf + α

«T0/Lf

= N.

The left-hand side of the above equation monotonically de-
creases about T0. This means the equation has a unique
root. There are many quick iteration techniques to solve
T0 such as the bisection method, Newton’s method, and the
secant method, details of which can be found in general nu-
merical analysis texts such as [4]. Note our original system
model is not optimal under such conditions therefore we
have to assign private channels to files based on the solution
of the above equation to achieve the shortest T0.

Remark 7.1. The above analysis can be further general-
ized to the scenario where each media file attracts a different
group of peers with different bandwidth contributions (i.e.,
the quantity α in Eq.(22) is replaced by a file-specific item
αf ). Under such changes, T0 can still be solved by the same
iteration methods. Furthremore, this generalization can also
be applied to analysis in Section 6.2.

8. EXPERIMENTAL RESULTS
We study the dynamics of the proposed hybrid media

streaming system by extensive simulations. We implement

our media streaming simulator using the Tool Command
Language (TCL)11.

8.1 System parameters
Unless specified otherwise, the example system contains a

pool of 200,000 peers (M = 200, 000) and 100 media objects
(F = 100). The playback bit rate for all video objects is
b = 800Kbps and length is one hour (L = 3, 600, basic time
unit is second). Bandwidth contribution of peers is: 5%
of the peers with 800Kbps, 10% with 400Kbps, 55% with
200Kbps, and 30% with 100Kbps, which translates into an
α
b

value of 0.275. System receives requests at a rate (λ) of
1 request per second. Total server bandwidth is 480Mbps.
This is roughly the bandwidth of 10 T3 lines and covers 600
concurrent streaming sessions in our case.

8.2 Dynamics of Single-File Systems
In Figure 6, various metrics of the simulated system are

plotted. After a short initial stage, server bandwidth us-
age (Figure 6a) is close to the maximum value all the time.
We plot reject rates resulted from two window sizes, 8000
seconds and 1000 seconds, in Figure 6c. For the one with
smaller window size, reject rate fluctuates between zero and
one. These fluctuations almost disappear in the experiment
using windows of size 8000. For both experiments, the re-
ject rate stays at zero after 8.06 hours. According to Section
4.0.1, the time point 8.06 can be regarded as the k0 value
for this experiment as no fluctuations occur afterwards. We
also test windows with other sizes but the same k0 value is
observed. In Figure 6c we also plot reject rate calculated by
the Erlang B formula and our experimental data are very
close to the theoretical values.

The growth of system capacity is illustrated by the change
of total number of qualified peers (Figure 6b) and band-
width contributions of these peers (Figure 6d). Both peer
number and peer bandwidth show geometric growth at the
first 8 hours and linear growth afterwards. One thing to
point out is that the curves for system capacity growth are
not smooth. They tend to appear as step functions of time,
as illustrated by the small graph in Figure 6. The height of
steps increases as time goes by, thus an exponential growth
is achieved. From Figure 6d we can also see that the system
capacity reaches the requested bandwidth at about the 8th
hour, which confirms our conclusion about transition time
drawn from reject rate data. Peer bandwidth usage first in-
creases and then stabilizes (after transition point) at exactly
the same level with the requested bandwidth.

8.2.1 Model validation
To verify the validity of our analytical model, k0 values ob-

tained from simulations are compared with theoretical val-
ues derived from our analysis (Table 2). Each observed value
is the mean of four experiments. Although the difference
between theoretical value and simulation result is small in
all cases, we also see that the observed values tend to be
greater than the theoretical ones. The reasons for this are:
(i) the time we report in Table 2 are in natural time units
(hour). In practice, there are delays between the release and
re-occupation of bandwidth so the actual streaming length
is longer than L; (ii) as system capacity is not a smooth
function of time, the fractional part of k0 given by Eq.(5) is

11http://tcl.sourceforge.net
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Figure 6: Performance of a typical hybrid media streaming system. a. Bandwidth usage of CDN servers; b.
Number of qualified peers; c. System reject rate; d. Peer capacity.

Table 2: Theoretical and experimental values of k0

under different scenarios
Parameters Transition Time

α/b λ(reqs/s) Calculated (h) Observed (h)

0.125 1 15.2 16.11
0.275 1 7.38 8.14
0.5 1 4.41 5.11

0.275 10 16.8 17.27
0.275 2 10.23 11.08
0.275 0.5 4.52 5.06

not accurate. We should take its ceiling integer in interpret-
ing the theoretical value of k0; (iii) Only integer number of
new qualified peers will be generated each cycle thus some
bandwidth will not be utilized.

8.2.2 Effects of peer bandwidth contribution and re-
quest rate

The impact of parameters α
b

and λ on performance is also
investigated. Figure 7a and 7b show the reject rate and total
peer bandwidth under different choices of α while all other
parameters remain unchanged. The legends in Figure 7a and
Figure 7b indicate the α

b
values of individual simulations.

A six-fold increase of α
b

(from 0.125 to 0.75) significantly
shortened the server-peer transition time from 16.0 hours to
4.0 hours. This shows that k0 is almost linearly related to
α
b

(recall Remark 4.1).
A similar set of experiments are designed to study the im-

pact of system request rate (λ) on k0. The results for four
request rates, 0.5, 1.0, 2.0, and 4.0 requests per second, are
shown in Figures 7c and 7d. The value of k0 observed in-
creases as the request rate increases. However, the change of
k0 due to the change of λ is less dramatic than that caused
by the change of α

b
. When λ increases 20 times to 10 re-

quests/second, a k0 of 17.27 hours was obtained (data not
plotted). The effects of streaming length (L) and bitrate (b)

are similar to those of request rate (data not shown).

8.3 Performance of Multi-file Systems
As specified in Section 5, the theoretical value of the

server-peer transition time k0 in a multi-file environment
is the same for a single-file system. Figure 8 shows how
the system performs under different F values. First of all,
we can see that the results for experiments with total file
number 1 and 100 are almost identical. In this set of experi-
ments, the observed k0 value does not change until the total
number of files goes beyond 120. Note that the number of
media files is 100 for all the simulations whose results are
presented in Table 2.

However, k0 is found to be greater than the ideal value
when F further increases (Fig 8a). According to Section 5,
two factors could account for the long transition time in a
multi-file system: (i) peers that acquired multiple files, and
(ii) lack of synchronization in the growth of per-file capacity.
We investigate the effects of the first factor in the same set
of experiments by recording the storage usage of qualified
peers. In Table 3, the number of qualified peers at transition
time is listed by their storage consumption. For example,
there are 11268 peers holding one media file (valid peer) and
31 peers holding two files for the simulation with 250 files.
The β values in the last column are ratios of the number of
valid peers to all qualified peers, which can be viewed as the
lower bound of βk,f in Eq.(11). All β values shown are very
close to 1.0. Another conclusion we may draw from Table 3
is that the space contribution of peers can be made minimal
without affecting system performance.

Now it is clear that factor (ii) above accounts for the de-
graded performance. According to Section 5.1, when F is

large,
bNλf

λ
is small and k0 deviates from theoretical value.

In other words, the average number of sessions allocated to
each file ( N

Fb
) cannot be too small. Another way to interpret

this is: when N
Fb

is too small (e.g. F = 500 in Fig 8), there
is no guarantee that each file can occupy at least one server
channel. Hence, the files take turns in using the server band-
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Figure 7: System performance under different capacity growth factors (a, b) and request rates (c, d). a,c:
Smoothed system reject rate; b,d: Peer bandwidth.

Table 3: Storage usage of peers at transition time
# of media files stored

Experiment k0 (h) 1 2 3 4 β

F = 1 8 10895 0 0 0 1.000
F = 50 8 10791 21 0 0 0.998
F = 100 8 10678 21 0 0 0.998
F = 250 9 11268 31 0 0 0.997
F = 500 11 13808 89 0 0 0.994
F = 1000 13 14896 196 1 0 0.987

width and transition is delayed. For the above experiments,
we see that N

Fb
has to be at least 5 for the system to get

near-optimal transition time.

8.3.1 Impact of access patterns
All previous experiments were based on a uniform access

model where the access rates of all files are the same. How-
ever, requests are more likely to skew toward a subset of the
media objects [1] and this helps our system achieve earlier
transition. We test the effects of various file access patterns
on the system performance. In Fig 9, two skewed access
models are studied: the b/c model where c% of the requests
are made to b% of the media objects [19], and the famous
Zipf model. Specifically, we test the b/c model with two sets
of parameters (20/80 and 10/90) and one Zipf model with
power 1.0. 12. The total number of media is 2000 for all
four experiments. According to Figure 9, systems with the
skewed access patterns accomplish server-peer transition sig-
nificantly earlier than that with the uniform model. Among
them, the most skewed one (the 10/90 model) achieves the
smallest k0. The Zipf model reached the transition point
later than both 20/80 and 10/90 models. Our interpreta-
tion for this is: under a skewed access pattern, most files are
infrequently accessed. When the frequently-accessed files
finish transition, the system reject reaches zero since the

12A list of references on Zipf’s Law can be found in
http://linkage.rockefeller.edu/wli/zipf

servers are able to handle requests to the less popular files.

8.4 Systems with Peer Failures
The introduction of finite peer lifespans significantly re-

duces the speed of system proliferation (Figure 10). We ex-
periment with three simulations with different average peer
lifespan – eight, six and four hours. In all tests, peer lifespan
is exponentially distributed. A system with no peer failures
(i.e. infinite peer lifespan) is used as control. As the average
lifespan of peers increases, the reject rate drops more dra-
matically (Figure 10a) and the system accomplishes server-
peer transition faster. For the system with average lifespan
of 4.0 hours, the peers fail too early to serve other peers
so that it never reaches a transition point. The above re-
sults are confirmed by capacity growth of all tested systems
plotted in Figure 10b. The system with longer average peer
lifespan grows faster than those with shorter lifespan. For
the case of lifespan four hours, the system never reaches
the required number of qualified peer to service all coming
requests. For the systems simulated, the calculated thresh-
old value of survival rate γ to guarantee positive capacity
growth is 0.7843, which also means the peers should have an
average lifespan of at least 4.12 hours. This explains why
the capacity of the system with average lifespan of 4 hours
does not grow.

8.5 Service Acceleration
We verify our conclusions about service acceleration (Sec-

tion 7.1) by allowing requesting peers to act as supplying
peers before the whole media stream is delivered. We test
inter-session delays with different values (from L/5 to L/2,
and L as the control). From Figure 11, we can see that the
usage of inter-session delays shorter than L does accelerate
the server-peer transition: k0 decreases from 8.0 to about 6.0
when delay changes from L to L/2. Further decrease of k0

can also be observed when d gets even smaller. However, this
effect on k0 quickly diminishes: the results of d = L/4 and
d = L/5 are almost identical. We test different sequences
of random inputs and very similar results are obtained and
the k0 values observed match closely to the theoretical value
given by Eq.(21)(data not shown).
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9. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the capacity growth of P2P

media streaming systems using a discrete-time analytical
model. The capacity is defined as the total streaming band-
width available from both servers and peers that previously
acquired the media files. Based on the analytical model,
we found that the capacity of such systems increases expo-
nentially with time. Knowing the exact pattern of the sys-
tem capacity growth enabled us to determine the moment
at which the streaming load can be shifted from servers to
peers. We obtained explicit expressions to determine this
moment, which we call the server-peer transition time k0.
The server-peer transition time can be used by the system
operator to decide when to reallocate server resources. We
analyzed the capacity and server-peer transition time for
single- and multi-file streaming systems. We showed that
the equations derived for single-file systems can approximate
the behavior of multi-file systems, within some boundary
conditions.

We extended our analysis to quantify the effects of peer
failures on the system performance. In particular, we model
the unreliability and limited commitment of peers to the
system by a lifespan random variable. We derived explicit
expressions for the server-peer transition time using two
commonly-known lifespan distributions in the literature: ex-
ponential and Pareto. Furthermore, we considered a general
peer failure model in which the lifespan could follow any ar-
bitrary distribution. Although we did not obtain explicit
expressions in this case, we showed how the solution can
be computed using simple numerical methods. Our analysis
gives explicit expressions of performance metrics on most of
the scenarios considered. Otherwise, numerical solutions are
obtained. In addition, we conducted extensive simulation
experiments which: (i) validated our analytical conclusions,
and (ii) studied the effects of changing several parameters,
e.g., request rate, average peer bandwidth contribution, and
average peer lifespan on system performance.

Finally, our results from the analysis and the simulation
experiments leads to better understanding of the operation
of P2P media streaming systems. To that end, we have the
following comments and suggestions for designers of P2P
media streaming systems:

1. The system performance is most sensitive to the ca-
pacity growth factor, which is the average peer band-
width contribution (α) divided by the bandwidth re-
quired to stream the media file (b). Therefore, we
should concentrate on maintaining a large α

b
value.

One idea is to give higher priorities to peers with higher
bandwidth contributions. Specifically, we could re-
serve some server bandwidth for high-capacity peers
to enable them to get early admission to the system;

2. Peers receiving a media file should be allowed to serve
others before receiving the entire file. However, a re-
ceiving peer does not need to become a serving peer
too early in the session. As a rule of thumb: a delay
of about one-third of the session length would yield
better performance in terms of faster system capacity
growth rates;

3. Peer failure negatively affects the system capacity by
decreasing the capacity growth factor. Thus, main-
taining a sufficiently large P2P community is the key

to success. Incentive mechanisms could be used to en-
courage peers to stay longer in the system.

4. System performance can deteriorate when too many
media files are introduced in the system. To some
extent, this may be mitigated by synchronizing the
growth of file-specific subsystems using private chan-
nels, especially when files are of different lengths and
bitrates.

This study can be extended in several directions. For
example, it could be interesting to analyze the strategies
proposed above (e.g., fast track channels for high-capacity
peers and providing incentives for peers to stay longer) and
how these strategies enhance system performance. Since
the focus of our analysis was on the early stages of system
operation, another extension can be studying the system
dynamics after the server-peer transition point. At the in-
dividual peer level, we may need to design file replacement
policies especially when peers request many files and have
limited storage capacity. It is important to design these
replacement policies with minimal or no global information
about other peers in the system. Furthermore, the impact of
these policies on the system performance need to be studied.
Other possible research directions include QoS management
and handling security and integrity concerns in P2P media
systems.
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APPENDIX

A. A SELF-CONTAINED PROOF OF THE-
OREM 5.1

Proof. This proof is based on Lemma A.1, which shows
that at any time a CDN server channel becomes vacant, the
probability that it will be occupied by a request to file f is
λf

λ
. Then the number of channels used by file f follows a bi-

nomial distribution and the same arguments in the previous
proof in Section 5.1 hold true.

Lemma A.1. Suppose we have F independent Poisson streams
with arrival rates λ1, λ2, . . . , λF . At any time t, the proba-
bility that the first event that arrives after t is from stream

f (f = 1, 2, . . . , F ) is
λf

λ1+λ2+···+λF
.

Proof. We start the proof by considering the case of
F = 2: there are two Poisson streams with parameters λ1

and λ2. We know that the inter-arrival time of a Poisson
stream follows an exponential distribution with the same
parameter. As Poisson processes are memoryless, we can
denote the arrival times of the two streams after any time
point t as X1 and X2. The joint distribution of X1 and X2 is



Table 4: Theoretical reject rate at k0

Offered Load 10 50 100 500 1000 5000 10000
Rejection Probability .2146 .1048 .0757 .0349 .0248 0.0112 .0079

F (x1, x2) = λ1e
−λ1x1λ2e

−λ2x2 . Without loss of generality,
the probability that the next event comes from stream one
is

Pr
˘

X1 < X2

¯

=

Z +∞

0

Z +∞

x1

λ1λ2e
−(λ1x1+λ2x2)dx2dx1

=

Z +∞

0

λ1λ2e
−λ1x1

„
Z +∞

x1

e−λ2x2dx2

«

dx1

=

Z +∞

0

λ1e
−(λ1+λ2)x1dx1

=
λ1

λ1 + λ2

Z +∞

0

(λ1 + λ2)e
−(λ1+λ2)x1dx1

=
λ1

λ1 + λ2
.

The above results can be easily generalized to n (n > 2)
streams. For arrival times X1, X2, . . . , Xn, the probability
of X1 being the smallest one can be obtained from the above
solution:

Pr {X1 < min{X2, X3, . . . , Xn}} =
λ1

λ1 +
Pn

i=2 λi
=
λ1

λ
.

In the above reasoning we use the following result: the ran-
dom variable X∗ = min

˘

X2, X3, . . . , Xn

¯

follows a expo-
nential distribution with parameter λ2 +λ3 + · · ·+λn. This
is easy to obtain as follows:

Pr
˘

X∗ > x
¯

= Pr
˘

X2 ≥ x
¯

Pr
˘

X3 ≥ x
¯

· · ·Pr
˘

Xn ≥ x
¯

= e−λ2xe−λ3x · · · e−λnx

= e−(λ2+λ3+···+λn)x.

B. ESTIMATION OF REJECT RATE
At the end of any period k, the system has a total band-

width of N(1+ α
b
)k, meaning the number of concurrent ses-

sions it can support is

s =
N

b

„

1 +
α

b

«k

.

Given this, the instantaneous reject rate can be calculated.
As requests are rejected immediately without waiting in a
queue, our streaming system can be modeled as an Erlang
loss system [7] with s service lines, an arrival rate of λ,
and service rate of 1

L
. The probability of request rejection

(blocking) is given by the Erlang B formula as:

B(s, a) =
as/s!

Ps
i=0 a

i/i!
(24)

where a = λL is called the offered load of the system. There
are many efficient algorithms [22] developed for evaluating
the Erlang B formula.

An obstacle in using the Erlang loss model in our analysis
is that system capacity is time-variant in our model while a
fixed s value is assumed in the Erlang model. However, the

applicability of Erlang model in our analysis can be justi-
fied by the following observation: in each streaming period,
the majority (if not all) of streaming sessions start at the
very beginning of that period. This is due to the heavy load
put to the system. As a result, the system capacity jumps
to a higher level at the beginning and stays unchanged for
the rest of the streaming period. In other words, the sys-
tem capacity is more like a step function than a smooth
exponential function of time. Therefore, we can safely map
the system to an Erlang loss system within each streaming
period. Some of the values of B(s, a) under the condition
s = a (exactly what happens at k0) are listed in Table 4.
We can see that the expected reject rate is very close to zero
when s or a is large (what we expect in a busy streaming
service). We verify our estimations of reject rate by Erlang
B in Figure 6.
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