
SIGPLAN Notices 18 1969 August

THE EXTENSION FACILITIES OF IMP

Edgar To Irons° Institute for Defense Analysis~ lOS Prospect Avenues r~rinceton~
New Jersey 08540° 1969 May 15o

The objective for the extension feature of the programming language Imp is to pro.~
vide an extension capability powerful enough to describe in detail the construction of
a useful compiler for common programming languages, yet simple enough to allow unsoph~o
isticated programmers to make useful modifications to the language° Particular empha~
sis is given to keeping the concepts and constructions concise and few in number°

The base language provides for the expression of algorithms using formulas similar
to those of common algorithmic languages but attributing a value to each such formula
so that the concepts of expression and statement are merged° Thus~ the usual express=
ions~ like A+B*C, are used to denote arithmetic values~ but A <B~ A + B~ A => B~ A : B~
and A ~ B are also expressions denoting~ respectively~ the truth of the condition A< B
(1 or 0)~ assigning B to A (value B)~ conditional evaluation of B (value B if A~O~ oth=
eFwise value A and B is net evaluated)~ tagging of B with the name A (value B)~ and
sequential evaluation of A and then B (value B)o Thus a program for computing the sum
S of vector A with N values is shown below° The extension facility allows new express~

ions to be introduced with the use of the notation
S ÷I~O~ A ~ B~ where A is a construction specifying the syn~
T: S + S+A[I]~ tactic structure of the new item and B gives the value
(I +l+l) ~ N => ~ T~ of an instance of the new item° Thus~ (A) = (B) else

(C) ~ ~A => (T+ B~ ~ L)~ T÷ C~ L: T ~ defines a new expressions for conditional eva
aluation whose value is B if A~O~ otherwise~ Co Parentheses are used on the left to
denote ~para~eter expressions ~ and other symbols to denote their required occurrence in
an instance of the new item° Thue~ with the above extension~ writing X => ~ elsj~ N
has the same effect as writing X => (T+ 3~ ~ L)~ T÷ N~ L: To

In this ~ost elementary form of the extensien~ the syntactic type of the para-
meter has been filled in automatically as ~expression~ ~ However~ the syntactic type
of the parameters may be given explicitly by using (A~NAME) instead of (A) to specify
that the syntactic type of A is NAME° Appending X ~ to the left of the construction
specifies the resultant syntactic type of the extension to be X~ Assuming the syntac=
tic type NAME exists already within the systems this fully expressed form of extension
can be used to specify a list of NAMEs (NAL) as shown in the examples

NAL ~ (A,NAME) ~ ~A ~

((K +J) for J tb~u cont A~
set K BTTg)

X ~ Y , Z NAL

NAL NAL - Z

NAL NAL = T
I

NAL X

Such specification yields the parse and parse tree shown to the right. In the second
extension, by omitting the quote marks, we have specified that the right side is a
~computation ~ to be carried out while compiling~ Such computations aregiven in Imp,
in this case using the list functions: cont A (the node below A)~ scr A (the node to
the right of A), and A fo Z B thr~ C (crEte A for variable B pointing successively
to C and its scr~)o

The computation specified here is executed after computations on subnodes and its
effect is to reduce the parse tree shown above in the following steps:

NAL NAL

NAL ~ Z NAL ~ Z

NAL - Y X ~ Y

X

NAL

X~Y-Z

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1115858.1115863&domain=pdf&date_stamp=1969-08-01

SIGPLAN Notices !9 1969 August

To illustrate a significant use of computed extensions we will now describe the
implementation of a vector operator system allowing most operators to automatically
become vector operators° By example~ we wish to denote ~ Ai*B i for i = !ooon~ where

~ d ~ n is the leasg imenslon of A or B~ by + A*B In generai~ we wish to be able to use
any binary operator in place of the + and any arbitrary expression in place of the
A~Bo

We introduce a rudimentary extension for vector declarations which at compile
time stores the e×pression for the length of a vector A in a compile time vector named
LENGTH: (A) if{ (B) ~191~ LENGTH +valu ~ +Bo For each binary operator which we will
allow to compress a vector expression we introduce an extension like BINOP ~ + ~ ~P ÷0~
(P +P+Q) for I t j~ N~ P~ to give the form for the repeated evaluation of the expression~
which we will put in for Qo The computed extension for compression is:

(A~BINOP)[(B)] ~ (TOP +REP(B~iOO000) A with ~Q~ +B~ ~N ~ +TOP)

Evaluation of the subroutine~ REP~ replaces each occurrence of a vector variable V in
B with its indexed expression V+I+~ and assigns to TOP an expression which computes the
upper limit for I (maximum lO0000) in the iteration of the expressions The result of
the computed extension is the expression associated with the BINOP A~ but with each
occurrence of q in A replaced with the modified expression B~ and with N replaced by
an expression for the upper limit°

The function REP is recursively defined by:

recursive REP on L~T is
~(70~ J O ~ REP(~ont L~T)$
else
~'NUM/ERIC (IfENGTH+valu L+)~
S <T = >(T+S$ Y÷LENGTH+valu i~)$
K+ ~A+I+~ with ~A ~ +L$
val2{ L +valu K~
tong L÷ tong K)

/ -Z->REP(scZ

With these extensions~ writing:

X ~ 3 ~$ Y i~ 10 ~lon

is the equivalent of writing

X is 3 ~$ Y is I0 ~

(P+P + x+l+* (gl+ + x+l+))
fo< I t~ 3~ P)

