SIGPLAN Notices 18 1969 August

| THE EXTENSION FACILITIES OF IMP

tpdtes Bdgar T. Irvons. Institute for Defense Analysis, 100 Prospect Avenue, Princeton,
New Jersey 08540, 1969 May 13.

The objective for the extension feature of the programming language Imp is to pro-
vide an extension capability powerful encugh to describe in detall the comstruction of
a useful compller for common programming languages, vet simple enough to allow unsophe-
isticated programmers to make useful modifications to the language. Particular empha-
sis is given to keeping the concepts and constructions concise and few in number,

The base language provides for the expression of algorithms using formulas similar
to those of common algorithmic lanpuages but atiributing a value to esach such formula
o that the concepts of expression and statement are merged. Thus, the usual express-
ions, like A+B*C, are used to denote arithmetic values, but A <B, A&+ B, A => B, A : B,
and 4 ; B are also expressions denoting, respectively, the truth of the condition A< B
(1 or 0), assigning B to A (value B), conditional evaluation of B (value B if 440, oth-
erwise value A and B is not evaluated), tagging of B with the name A (value B), and
sequential evaluation of A and then B {(value B). Thus a program for computing the sum
S of vector A with N values is shown below, The extension facility allows new sxpress-

, ions to be introduced with the use of the notation
S +1+0; A = B, where A i tructi i fying the syn-
, # B, where A is a construetion specifying the syn
T: 8« 5+4[11; \
(I «I41) £ N => go to T ta@ticna%ruﬁture of the n@? item and B gives the valus
E0.22 of an instance of the new item. Thus, (A) = (B) else
(C) = "A => (T« B; go to L); T« G; L: T' defines a new expressions for conditional ev-
aluation whose value is B if A£0, otherwise, C. Parentheses are used on the left to
denote "parameter sxpressions” and other symbols to denote their required occurrence in
an instance of the new item. Thus, with the above sxtension, writing X => 3 elge N
has the same effect as writing X => (T« 33 go to L); T« N; L: T.

In this most elementary form of the extension, the syntactic type of the para-
meter has been filled in automatically as "expression.” However, the syntactic type
of the parameters may be given explicitly by using (A,NAME) instead of (A) to specify
that the syntactic type of A is NAME. Appending X 2 f{o the left of the consitruction
gpecifies the resuliant syntactic type of the extension to be X, Assuming the syntac-
tic type NAME exists already within the system, this fully expressed form of extension
can be used to specify a list of NAMEs (NAL) as shown in the example.

NAL = (A,NAME) = °A? X, Y,z NAL

NAL & (A,NAL),(B,NAME) = 1 I —

({(K «J) for J thru cont A ffmmmmmmd N% 2

secr K +Bs A) NAL N?L = ¥
NAL b4

Such specification yields the parse and parse tree shown to the right. In the second
extension, by cmitting the quote marks, we have specified that the right side is a
"somputation” to be carried out while compiling., Such computations are given in Imp,
in this case using the list functions: cont 4 (the node below A), scr A (the node to
the right of A), and A for B thru C (evaluate A for variable B pointing successively
to C and its scrs).

The computation specified here is executed after computations on subnodes and its
effect is to reduce the parge tree shown above in the following steps:

ﬁ%L N%L N?L
N%L =% N%L = & X ¥ =3

NAL - Y X =Y
X

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1115858.1115863&domain=pdf&date_stamp=1969-08-01

SIGPLAN Notices 19 1969 August

To illustrate a significant use of computed extensions we will now describe the
implementation of & vector operator system allowing most operators to asutomatically
become vector operators. By example, we wish to denocte ¥ A.*B. for i = leesnny where
n is the least dimension of A or B, by + A*B . In general, we #ish to be able to use
any binary operator in place of the + and any arbitrary expression in place of the
A*B.

We introduce a rudimentary extension for vector declarations which at compile
time stores the expression for the length of a vector A in a compile time vector named
LENGTH: (A) is (B) long = LENGTH vvalu M +B. For each binary operator Whl@h we will
allow to compress s veetmr expression we introduce an extension like BINOP = E TP L0
(P «P+Q) for I to N; P’ to give the form for the repeated evaluation of the expre&glamg
which we will put in for Q. The computed extension for compression is:

(A,BINOP)[(B)] & (TOP «REP(B,100000) A with 'Q? «B, 'N! «TOP)

Evaluation of the subroutine, REP, replaces each occurrence of a vector variable V in
B with its indexed expression V+It, and assigns to TOP an expression which computes the
upper limit for I (maximum 100000) in the iteration of the expression. The result of
the computed extension is the expression associated with the BINOP A, but with each
occurrence of Q in A replaced with the modified expression B, and with N replaced by
an expression for the upper limit,

The function REP is recursively defined by:

s y X iaza .
recur%iye REP on L,T is With these extensions, writing:

({(cont L) # 0 = REP(ccmt L,T)s X is 3 long; Y is 10 lon
elﬁg [X* (Y4301

(SNUMERIC (LENGTHYvalu It);
S<T =>(T+8; ¥ +LENGTH¢valu 1t);

is the squivalent of writing

K+ 'AFTHY with *AY «Lg £ is 5 longs ¥ is 10 long;
valu L *valu K; (P «03
cont L+ cont K); (P«P + X%I4* (LT + X T))

(scr L) # 0 = >REP(ser L,T); ¥); for I to 3; P)

