
SIGPLAN Notices 53 1969 August 

PANEL ON THE CONCEPT OF EXTENSIBILITY 

Chaired by Peter Wegner, Cornell University° 

This panel was composed of Cheatham, Christensen, McIlroy, and Nicholls° It 
came at the end of the day, and the discussion sometimes became rather specialized° 
Remarks of general interest follow° 

MoCo Harrison: I want to make two comments and one short commercial° First of 
all, a trivial point about the word that we are all using° "Extensibility ~' smacks 
too much of '~extensive '~ to me, I prefer extendibility° 

The second point is that any progra~ing language in which programs and data are 
essentially interchangable can be regarded as an extendible language° I think this 
can be seen very easily from the fact that Lisp has been used as an extendible lan- 
guage for years° 

Now my commercial:, we have a "son of Lisp" extendible language which we have 
been implementing at New York University over the past few months. This is based 
on an extendible Lisp system that has vectors and strings° You can do the same sort 
of thing with vectors as yon can with lists, except that you use square brackets 
instead of round brackets and you can index the elements° We put a translator on 
the front of this to make it look like Algol° I guess it is in the direction of 
Lisp 2, but the translator takes about two thousand word on the 6600~ it is a very 
simple translator° The programmer can add prefix or infix operators, he can specify 
left and right precedences of those operators and he can also define macros that are 
applied to the results of the precedence analysis. Altogether, we can get this 
Algol-like language with virtually nothing built into the translator except the 
operator precedences and the macros. 

~ j  I think that not all the languages we saw today are "sons of Algol"° 
In fact, l'd very boldly classify their Designers into two categories: the 
anarchists and the fascists~ 

We have two anarchists in Irons and Standish~ anarchists in the sense that 
these languages~ particularly Irons ~ language, seem to be devoid of data types, pre- 
conceptions about scope, and persistence of data° They have, in some sense, the 
same capabilities that a computer has naked, before it has been reined in to run as 
an Algol maohine~ 

For extensions which are trivial, but perhaps more desirable to the user, the 
fascists (who say "anything you want to do, as long as it's my way, is all right H) 
probably have the edge° For interesting experiments in language, I think I would 
turn more to the anarchists, who don~t have so many preconceptions about how we 
compute. It is the fascists who are the sons of AigQio 

J° A~ Feldman: I have two interrelated comment/questionso The first one has 
to do with this extensibility game° I thought I understood it before I came in 
here, and I will first tell you what I think has ~happened here~ It seems to have 
now become "all useful things to do in helping to write systems programs ~ and, there- 
fore, no one could possibly be against ito That is, we have heard about editors~ 
compiler-compilers, and all these things are partof the extensible language game. 
If that is true, then I think we ought to get a new word for what I used to think 
extensible languages were--which is that one defined additions to the language al- 
most wholly in terms of the existing language without any direct reference to the 
compiler, that is in a macro-like fashion~ Now I notice that Tim Standish and Ned 
Irons are now looking at things I would have called translator-writer systems tech- 
niques and saying "Yes, we will go back and see what happens in Phase 2o ~ 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1115858.1115871&domain=pdf&date_stamp=1969-08-01


SIGPLAN Notices 54 1969 August 

This leads me to my second comment° I have been able until now to at least 
convince myself that what has been called extensible languages can he dismissed in 
about three sentences~ which go like this: If you are making a non-trivial exten= 
sion to the language you are changing the compiler in an important way° If you are 
doing that~ why do you try to do it in an non-procedural, macro-like mystical fash- 
ions why don~t you write the compiler in a coherent manner~ and then the person who 
is going to change the compiler goes and does that° If the compiler is written in 
the source language that is not unreasonable~ 




