Check for
Updates

Marshall D. Abrams

National Bureau of Standards

Abstract 2069
Introduction 269
Overview of Graphical Data Structures 270
General Graphic Data Structure 272
Multiple Levels of Data Structure Storage 276
Sample Use of General Graphic Data Structure 278
The Tailored Graphical Data Structure 279
Data Structure Languages 283
Conclusion 284
References 284

268~


http://crossmark.crossref.org/dialog/?doi=10.1145%2F1115880.1115892&domain=pdf&date_stamp=1971-02-01

ABSTRACT

This paper introduces data structures as applied to computer graphics.
Design criteria for computer graphics data structures are discussed, followed
by a comparison of general-purpose and tailored graphic data structures. A
general graphic data structure is introduced as an example of a structure
meeting the preceding criteria. The 16 language is then examined as a tool
for implementing the above data structure, and is compared to a few other
language systems,

INTRODUCTION

"Computer graphics'' is the general term applied herein to the use of
a digital computer to form an internal model representation of an externally
perceived graphical entity. The objective of such modeling is to extract infor-
mation from the graphical entity so that it may be modified, manipulated, or
otherwise processed. A short computer graphics reading list is provided at
the end of this paper.

After graphical information has been digitized, an organization must
be provided for the storage and retrieval of this data within the memory of
the computer system. The linear array is the simplest scheme available,
but it is not of interest within the scope of this paper even though it enjovs
wide use in certain classes of applications. Rather, this report will be
directed to a discussion of those organizations which represent the relation-
ships among the components of the graphical entity. The relationships
which must be represented within this subset of computer graphics include
topology and dependency relationships. It is most convenient to represent
such information in a hierarchical data structure which, in some abstract
way, models the external graphical entity.

—269—



Historically, this subset has been restricted to the study of line
drawings, but gray-scale and color representations are currently under
investigation. The purpose of the data structure is to facilitate the
extraction of intelligence and manipulation of both the image and the infor-
mation it represents.

A graphical image is a preferred medium of human communication
because of the possibilities inherent for maximum information transfer with
minimum effort. Graphical communication is often highly stylized, requiring
significant training for both the generation and interpretation of images.
Conventions are established, which may vary from one application field to
another, which enable precise communication with a minimum effort and non-
graphical information,.

Since graphical communication among humans is such an easy and
effective technigue, effort has been expended to extend this communication
to digital systems. As with other languages which are close to human
language and far from machine language, considerable resources must be
allocated to store and manipulate the graphical communication within the
digital system.

OVERVIEW OF GRAPHICAL DATA STRUCTURES

Both medium and conventions present difficulties associated with the
digital representation of graphical information. The significant attribute of
the medium problem is dimensionality. Pictures deal with two dimensions,
sometimes representing three dimensions. High speed primary memory is
usually addressed in a piece-wise linear fashion, therefore a transformation
is required to map the graphical structure into a one-dimensional frame. The
information describing a graphical entity must be stored in such a way that it
can be retrieved, manipulated, edited, and used to produce the desired
graphical image.

The pertinent information associated with a graphical entity frequently
consists of the geometrical description of the graphical item: scaling, position,
and orientation data; relationships and connections to other items; name and
identification of the item; graphical constraints on the item itself and on its
relationship to other items; and non-display (textual) data intimately connected
with the graphical entity.

One of the first decisions to be made in designing a graphical data
structure is whether it should be completely general, or tailored to a specific
application. The general fixed structure format is usually inefficient of
storage since it must provide for unused oPtionsl, Furthermore, no matter
how general the fixed structure was designed to be, there always exists the
pathological case which exceeds the capability of the structure. In such a
case, one has no choice but to redesign the structure, hopefully maintaining
upward compatibility. '

=27 0=



The tailored structure meets all of these objections, but necessitates
the effort of construction. In fact, the existence of general-purpose structures
is extremely helpful to the user interested in tailoring a structure to his
application. The intellectual effort implicit in the general structure may
simply be transferred to the tailored structure, simultaneously modifying the
structure to meet the current objectives. Since most graphical data structures
are pointer-type structures, with such pointers being explicit or associatively
addressed, the presence of a language designed to work with such pointers
greatly facilitates the construction of a data structure.

While it is certainly possible to build the entire graphical data structure
up from scratch, the use of a list processing or associative processing language
greatly simplifies the work. In fact, most of the literature ostensibly devoted
to computer-aided design is in fact concerned with data structure. Particular
attention is called to references (1), (2), (3), (9), (11) and (12) where the
salient features of new and more established "service! languages are discussed,

The next problem to be considered involves the communication of data
to and from the graphical data structure. This data will often be involved in
the process of drawing a picture, in modifying an existing picture, or in re-
drawing a picture from the data structure. The use of computer graphics in
facilitating the convenient use of computers requires that this information
transferal process not be a burden on the human userZ, Delay that is annovying
to the user should be avoided; a measure of tolerable delay is the user's concept
of the difficulty of the task, While the design of graphical processors is not
within the scope of this survey, one cannot ignore the hardware requirements
forced by the desire for rapid response,

The mode of operation is for the user to communicate his desires to
the digital system, often using graphical input devices such as light pen
joystick, and mouse; and for the system to respond by displaying the desired
picture on his CRT display. Simultaneously the data structure needs to be
updated to reflect the changes resultant from the CRT activity. Rapid response
criteria require that at least part of the data structure must be instantaneously
accessible to the user at the terminal® 6. The size of the local processor and
the capacity of the communication line with the main system determine the
extent of the local image of the complete data structure.

A final problem is concerned with storage capacity in both the display
driving computer and in the central system. The portion of the data structure
represented in the local memory is usually less than that stored in the central
system and may reasonably be restricted to that portion of the structure being
displayed. If additional storage is available, this may be augmented by
logically adjacent substructures possibly selected by an anticipatory mode
algorithm.

Storage restrictions in the central system require greater attention
and careful study. At the time that a structure is created or modified, it is
necessary that the storage used not be the limitation upon the process. Thus,
high speed core storage is required. Considering the possible extent of

~271-



graphical data structures and the core use limitations imposed by the operating
system environment, it is quite reasonable to expect and provide for the
possibility of insufficient core storage being available. The solution exists in
the form of a paging scheme, but careful attention and re-examination must be
paid to the design and handling of the pagingl, 2, 3, 13,

GENERAL GRAPHIC DATA STRUCTURE

The concepts and techniques of graphical data structures will be intro-
duced here in the form of an example structure. This structure will purposely
be kept at a level comprehendible to human users and modifiable by them. It
is not intended that this presentation be exhaustive, but rather typical and
hopefully educational, The organization of the data structure presented here
is an explicit referencing structure, similar to that of Cotton and Greatorex5,
the GRAPHIC-2 sys‘tem4’ 7 and GRASP®. The structure is certainly not
exclusive; additional examples are given the surveys by Gray?, Dodd21, and
Hamilton27?. The structure will be presented in the form of a directed graph;
the mechanism of representing such a structure in a computer memory will
be discussed subsequently.

In an effort to minimize the amount of graphics terminal machine
language programming required, especially by users that are not interested
in such a level of detail, the commonly used picture-building elements are
provided as building blocks called "basic subpictures''. A basic subpicture
may be a single command to draw (display) a point, line, or conic section; it
may also be a sequence of such commands to draw a commonly used geometric
entity. Such basic subpictures are often in the form of the '"frame' or ''skeleton'
of an open subroutine, because the essential positioning information must be
supplied by each reference to (use of) the basic subpicture. The basic sub-
picture data block must also contain the identification and relative location
of the externally accessible terminals of the subpicture, such terminals being
the parts of points of connection to the subpicture by the greater, outside
world. If there are to be constraints on the use of the basic subpicture, these
constraints must also be contained within a block pointed to by the basic sub-
picture data block.

Within the context of basic subpictures lie all of the characters and
geometric figures directly presentable with a single machine level command,
these comnstitute the "hardware character set'. Commonly used graphical
entities may also be coded in graphical control language as a short program,
and provided as a time-saving service. In addition it is desirable for a user
to be able to define his own subpictures which are useful for his application.
The definition of a subpicture is usually not within the scope of the graphical
language -~data structure being herein described, but is at the level of graphical
control language.

Thus, a picture is the highest level, encompassing all lower constituent
levels. These lower levels being collectively referred to as subpictures. The
lowest level is termed a basic subpicture in that it is the only level which
references the display.

27 2~



Using graph terminoclogy, each basic subpicture is a node in the
directed graph which is the graphical data structure. Although it is quite
possible for the node block to be of variable size, herein pointers will be
used to reference variable sized data segment blocks., Under these conventions,
a basic subpicture node can appear as in figure 1.

Identification of Node as Basic Subpicture
Name of Basic Subpicture

Pointer to Terminals

Pointer to Non-Display Information
Pointer to Display Instructions

Figure 1. Basic Subpicture Node

Since a basic subpicture does not possess any absolute frame of reference, it
cannot in and by itself cause any display. It must be referenced by a higher
node to be used as a display item. These higher nodes will in general reference
multiple lower nodes, thus building a picture out of previously created com-
ponents. The terms "“higher'" and "lower' relate only to position in a directed
graph drawn to describe the structure and might instead be termed "'subsequent"
and ''prior' respectively.

The construction of a picture is described by a directed graph wherein
the top node is the picture, the intermediate nodes are subpictures, and the
terminal nodes are the basic subpicture. A sample graphical data structure is
represented in figure 2.

While it is fairly obvious that when expressed in computer code the
picture and subpicture nodes need to be represented by data blocks, it may
not be immediately clear that the same is true for the branches connecting
the nodes. There is of course a trade-off between the information associated
with the node block and that associated with the branch block., The following
selections are somewhat arbitrary although typical?. The subpicture node
block will essentially consist of pointers to other information containing blocks.
Among these blocks is the branch block, which deserves special mention.

The branch block contains the necessary transformation on the lower
nodes to incorporate them into the subpicture defined by the subpicture node.
Certain blanks in the skeleton frame of the lower level picture must be com-
pleted, and other parameters may require systematic modification. The
transformation information consists essentially of displacement, scale, and
rotation information.

Since all nodes except the highest "picture'' node are intrinsicly
referenced to zero, a new reference displacement must be provided for each
instance of use of subpicture and basic subpicture node. This displacement

=273~



¢, PICTURE NODE

~# SUBPICTURE o, SUBPICTURE
NODE L "NODE

~ SUBPICTURE

&& SUBPICTURE

T\ NODE NODE

1

I
BASIC D BSN BSN
SUBPICTURE
NODE

FIGURE 2. SAMPLE GRAPRICAL DATA STRUCTURE

2T b



may occur in a virtual display space having no size relationship to the display
viewing area; therefore, an additional displacement calculation may be
required in the process of display generation when the segment of the structure
is selected for display.

Scale and rotation information must also be provided when constructing
the present subpicture out of lower level items. In most applications it is
unlikely that the rotation information will require changing after picture-
generation time, but scale may be a continuously varying parameter. The
analogy of photographic enlargement is accomplished by a modification of the
scale parameter. In certain applications this operation could be the critical
itern in operation of the facility.

The connectivity of the subpicture constituting the present level sub-
picture must be separately treated. It is not sufficient to build a picture by
appropriately placing subpictures so that their terminals coincide. Subsequent
parameter change in the branch blocks, or minor malfunction in the hardware,
could easily destroy such coincidence. Thus, there must be explicit provision
for an ordered relationship among the terminals of subpictures associated
within a higher level picture.

For this reason, another block is provided, this being the ''connector”
block. The connector block is a specific example of a constraint. It is pre-
sented as a separate block by virtue of its prevalence. The connector block
must identify the lower level terminals to be connected, and it must point to
the constraints on such connection., These constraints might include a require-
ment for coincidence. If the terminals being connected were not coincident,
the connector block would be required to provide a line to form the connection.
This line in turn could have attributes such as intensity and rate of blink.

The blocks described above may be represented as follows:

Identification as Connector Block
Pointers to Terminals

Blink Rate, Constraints

Pointer to Next Connector Block

Figure 3. Connector Block

Identification as Branch Block

Name of Branch

Pointer to Lower Node

Displacement, Rotation and Scale of Lower Node
Pointer to Non-display Information

Pointer to Next Branch Block

Figure 4. Branch BRlock

~275~



Identification as Node Block

Name of Node

Pointer to Terminal Block

Pointer to Branch Rlock

Pointer to Connector Block
Pointer to Non-display Information

Figure 5. Node Block

Identification as Terminal Block
Relative Liocation of Terminal
Pointer to Next Terminal Block

Figure 6. Terminal Block

The design of the pointer scheme is a critical part of any data structure.
An excellent discussion is given by Dodd?2, to which the reader is referred.

The most simple pointer structure is the single linked list wherein each block
contains a pointer to the succeeding block in the list. The pointer field in the
terminal block contains a special symbol known as the '"null pointer' indicating
the termination of the list.

The major shortcoming of the single linked list is the inability to return
to the head of the list without having previously saved the location of this head
in a well known location to which reference might be made.

The single linked list is rarely employed simply because a ring structure
may be obtained by having the end of the list point back to the head. Of course,
the head and tail must be suitably flagged to avoid endless ring-chasing. Another
way of returning to the head of the list is to use a doubly-linked list possessing a
backward as well as a forward pointer, but this involves twice as many pointers.
It is, on the average, twice as fast as the single linked list in returning to the
head of the list.

One purpose of rings or doubly-linked lists is to be able to return to the
head of the list, or the list pointer, when a success or failure has occurred;
the second pointer which the doubly-linked list requires is often replaced by a
back pointer to the head of the list. To conserve space, the pointer to the head
of the list may not occur in every block, but rather in strategically placed blocks.

A great deal of effort has gone into the development of pointer arrange-
ments, this being the critical decision in designing a data structure. The
structures examined by Gray9 appear more different than similar, yet they are
all concerned with related problems,

MULTIPLE LEVELS OF DATA STRUCTURE STORAGE

The requirements of fast response to operationally complex require-
ments and possible large data structures necessitate that the structure be
simultaneously maintained in more than one level of storage, at least in part.
First, consider the question of storage in the display.

276~



Early graphical displays required the exclusive service of a large
computer system. Today the trend is to provide a small computer as the
local service to each display and to service this local processor-graphical
terminal from the central system only when necessary. There is a whole
spectrum of capabilities of local processor attached to graphical processors.
We shall not go into the evolution of such dedicated processors here; the
situation has been stated elsewherel7. Needless to say, however, the extent
and kind of representation of the graphical data structure in the local computer
is highly dependent upon the kind(s) and amount of storage available, the
instruction repertoire, and the speed of the local processor.

The minimum information to be kept in the local processor is the display
list which directly controls the picture presented. The display list is extremely
machine -dependent, containing the necessary machine instructions to generate
the display. If the computing capability of the local processor is non-existent
or extremely minimal it may be necessary to construct the display list in the
main system for transmission to the graphical display. In such a case the
local processor fulfills only the function of refreshing. In this situation it is
impossible to reference the graphical data structure via the display image
because the display list has been generated only for display purposes.

In systems with minimum local processing ability, or even in more
substantial systems, it seems a waste of an expensive resource to store the
display list in randomly addressable core storage. It appears a better allocation
of resources to use rotating storage for the display list. Not only does this free
core storage for programs, but it makes it possible to carry on display refresh
as a parallel process. Recentl8, 19,20 and not so recentZ! systems have used this
approach, *

The next step is to provide an association between the display list and
the graphical data structure. Such as association requires a referencing
technique from the display list back to the data structure. A pointer scheme
can be implemented, but difficulty occurs as to the subpicture level to be
pointed to. Under various conditions the user at the graphical terminal might
be interested in pointing to a picture, a level of subpicture, or a basic sub-
picture. An automatic safe technique is to have the pointer go to the highest level
of subpicture being referenced, with the user being able to initiate pointer chasing
under his control to reach the desired lower level,

If memory and speed allow, part or all of the graphic data structure
may be contained in the local processor. If sufficiently large and fast, the
local processor could contain the entire data structure, generate its own
display list, and reference the main system only for archival purpose or for
linking to other subsystems. In this form of operation the graphical subsystem
can be considered a V'sketchpad' on which various trial drawings are made.

*But a cycling display carries with it three prices to pay: (1) it is usually
slow to access, (2)itis fixed in size (but the size can be very large), and
(3) it can be quite difficult to respond to light pen interactions.

~277~-



When an acceptable one is produced it can be preserved by referring it to
the central computer.

In general, the data structure will be too vast to be contained
completely in the graphical terminal. A compromise is then effected
wherein part of the data structure might be transported as needed between
the central system and the graphical subsystem. The degree of compromise
is a function of the processing capability of the graphical terminal, a subject
well discussed by Myer and Sutherlandl?. For convenient operation the
transmission must occur within the user's wait tolerance. When only part
of the data structure is resident in the graphical subsystem, extreme care
must be taken with the pointer to the non-resident parts of the structure.
There must be a mechanism for flagging references to non-resident items;
there must be a mechanism for enlarging or contracting the size of the
portion of the data structure available. These problems are quite akin to
the multiple-level storage problem in the central system, which shall be
discussed next.

The adage of ""a picture being worth a thousand words' is magnified
in computer representation. It can easily require many thousand words to
store a moderately complex picture. Such storage requirements can easily
consume available high-speed primary memory.

It is certainly possible to design the driving and service program,
the '"resident system'!, into minimally-interacting modules. These modules
can be brought into core as pages! 12 or overlaysl3, thus reducing the core
storage which must be devoted to the system.

For user-created programs and data structures the situation is
different. It is desirable that as few restrictions as necessary be placed on
the programmer. Therefore, systems are written which automatically assign
program and data to storage pagesl, 3,13, However, there is not total rigidity
in these page assignments; variable-sized pagesl and partial user control3, 12
helps to adapt the system to its current use. For the storage of the graphical
data structures it is even more important that the system be given as much
information as is available, With complete information it is possible to
implement valid anticipation of program needs 3.

SAMPLE USE OF GENERAL GRAPHIC DATA STRUCTURE

Representing a graphical data structure on paper is an awkward
necessity, Awkward because the confines of standard paper size makes it
an exercise in topological ingenuity on the part of the writer and parallax
error elimination on the part of the reader. Necessary because the expository
approach alone generally produces an incomplete information transferal.

The first illustration, in figure 7 is of the structure representing a
triangle. This is a trivially simple structure involving only one node and one
basic subpicture. The one node, which is automatically the top (picture) node
points to three rings: branch, terminal, and connector. Each block in the

=278~



branch ring contains a pointer to the basic subpicture used, namely '"point',
the X, Y coordinates of the instance of that point, and a pointer to the next
branch block and back to the node block. Each terminal block contains the
coordinates of the terminal relative to the origin of the subpicture (which in
this case are selected to be all the verticies), and the forward ring pointer.
Each connector block contains a pair of pointers to the terminals being
connected, and the forward ring pointer. All of the remaining fields contain
zeroes interpreted as null pointers. The organization of the blocks is in
conformance with figures 1, 3,4, 5, and 6.

Let us now use this triangle as a subpicture in building a larger
picture. As an example, consider the hexagon shown in figure 8(a). The
triangle used of the subpicture is assumed to have been drawn in the position
shown in figure 8(b). Note that external terminals are denoted by small circles
in these figures.

The data structure of the hexagon is drawn in figure 9. Included is the
terminal block ring of the triangle data structure which is necessarily referenced
by the connector ring of the hexagon., Note the dotted lines representing pointers
from the connector ring of the hexagon to the terminal ring of the triangle.

These dotted lines from connector blocks to terminal blocks associated
with another node block are representations of an amazingly complex pointer
chasing mechanism required. The connector block must point to the branch
ring which it accesses by pointing to the branch pointer in the node block,

From the appropriate branch block it obtains a pointer to the node block of the
subpicture references. Also from the branch block it obtains the displacement,
rotation, and scale data which is necessary for the calculation of location of the
desired terminal in the particular instance of use, From the node block pointed
to by the branch block it obtains the pointer to the terminal ring associated with
that level of subpicture. Finally, that terminal ring is traversed until the
particular terminal desired has been acquired.

Since such pointer chasing is not an abnormality in graphic data structures,
there must be a mechanism easing such constructions. The pointer concatenation
facility of Lé 23, recently implemented by R. A. Siegler in conversational form
as CL624, is one technique which facilitates such pointer chasing.

THE TAILORED GRAPHICAL DATA STRUCTURE

As discussed in the overview, it is frequently convenient to construct
a data structure which is tailored to the graphical image to be modeled. The
tailored structure can eliminate those features of the general graphic data
structure which do not apply to the problem at hand. The structure of the
graphical entity may be taken into account in designing the tailored structure;
conditions which were provided for in the general case may not occur. There-
fore, the space reserved for the eventualities in the general structure could
be released for other use in a tailored structure.

=27 9=



0 0

&

%3078 HOLJ3NNOD

FIONYIYLY 30 NLINYLS vIva 2 3un9id

0 0

0

D

¥0078 TVNIRYIL

« LNIOd .,

JUNLENS JISYE

& £

« & 1HI0d .

%3018 HONYYS

0] 0] anf

v INIOd .

¥J018 HORYHE

&

0
0l 0] ]y
L .1 LNI0d
%0018 HONVYE
. J19NVINL .
%2018 300N

. L

=280~



{0,

{b.)

FIGURE 8 HEXAGON. (o) COMPOSED FROM TRIANGLE. (b) TERMINALS DENOTED THUS: (b))

-281



~282-

Gt oy
R
T —
- eI
w Y3078 300N
i
i
m
i
H
i
m &
i %
_
NEZENE
S .
L TISRVINL THON.
Y9076 HONYHE
9 F 3

ko

mw mm

ot : L JIShYIL 1437,

i
SROSVIGH . %2016 HONYER

%301 300N

é

L




Fixed format data structures and the language systems supporting
them5, 15,26, 28, 29 have been first developed as the solution mechanism to
specific problems, Indeed, since these languages were designed with a
class of problem applications in mind, the user might be unaware of the
potential data structure restrictions.

Looking back, it is possible to contrast these fixed structure systems
to produce a generalized set of criteria as has been done herein, For new
applications, however, it appears that a data structure language is the better
approach. Using a language designed to manipulate data structure gives the
user increased freedom and power.

DATA STRUCTURE LANGUAGES

Several groups have developed languages for the manipulation of graphic
data structures (among other applications). One family, which will be explored
herein, is that derived from LO 23, including DSPS 3> 12, CL6 24; and XL6.
XL6 is currently under development by the author, being a compiler, written
in FORTRAN and therefore to a certain extent portable, currently producing
relocatable binary code for the UNIVAC 1108 which has compatible subroutine
linkage with FORTRAN, It is this author's opinion that use of a variety of
specialized languages offers advantages over one all-purpose language.

L” is a low level language in that the programmer must be aware of
words and bits, but it possesses the higher level characteristic of a set of
run time subroutines which support its operation. Being low level, L6
expresses data structures very well for programmer visualization.

One useful feature in L& is the ability to define the location of a 'field"
within a ""block' of consecutive computer words. A field, once defined, may
contain a pointer to another block, an arithmetic value, or anything else the
programmer desires. A field is designated by a single letter name. The
complete specification of a field includes the word in the block in which the
field is to exist, the name of the field, and the inclusive bit boundaries
constituting the field within the computer word.

The format of the field definition command is

(<word>, D <«field name>, <bit bound 1>, <bit bound 2> )

where <word> , <bitbound 1> , and <bit bound 2> are all integers
indicating the relative word in the block, and the inclusive bit boundaries
within that word. < field name > is the single letter name by which the field
is symbolically referenced. XLb, like DSPS, permits multi-character names,
thus permitting association of name with function for an increase in readability
and visualization, ‘

Like most programming languages, 1.6 provides the programmer with
a means for inserting comment lines for internal documentation. In L6 such
comment lines must contain an asterisk in column one and are ignored by the
L6 translator.

~283~



The ability to define those fields appropriate to the specific
application is only one advantage of the tailored data structure. Another
advantage of this tailored data structure is the ability to define variable
size blocks, the size being determined during program execution. This
feature permits optimum memory utilization., The meaning attributed to
field contents is the programmer’s responsibility. Note also that field
definitions are nonunique; it is likewise the programmer's responsibility
to use the field definition he requires from the set created.

CONCLUSION

Having presented design criteria for graphic data structures, a
sample data structure meeting these criteria, and a language for imple-
menting the designed data structure, the picture is not complete. Completion
requires an implementation, with interactive modification of the data structure
and perhaps extension to the language. The author hopes to enjoy the pleasure
of this interaction in the near future.

REFERENCES

1. Feldman, J.A. and Rovaner, P.D., An ALGOL-Based Associative
Language, Comm. ACM }_“%9 No. 8, 439-449 (Aug. 1969),

2. Rovner, P.D., and Feldman, J.A., The Leap Language and Data
Structure, Proc. IFIP Congress 1968, C73.C77.

3. Ewvans, D, and Van Dam, A., Data Structure Programming System,
op. cit., C67-C72.

4, Ninke, W.H., A Satellite Display Console System for a Multi-Access
Central Computer, op. cit., E65-E71.

5. Cotton, I. W, and Greatorex, I.S., Data Structures and Techniques for
Remote Computer Graphics, Fall Joint Computer Conference, 1968,
533.544,

6. Kulsrud, H.D., A General Purpose Graphic Language, Comm. ACM,

11, No, 4, 247-254 (April 1968).

7. Christensen, C., and Pinson, E.N., Multi-Function Graphics for a
Large Computer System, Fall Joint Computer Conference, 1967, 697-711.

g, Thomas, E.M., GRASP--A Graphic Service Program, Proc. ACM
National Meeting, 1967, 395-402.

9. Gray, J.C., Compound Data Structure for Computer Aided Design: A
Survey, op. cit., 355-365,

10. Wexeblat, R, 1., and Freedman, H.A., The MULTILANG On-line

Programming System, Spring Joint Computer Conference, 1967, 559-569.

11, Van Dam, A., and Evans, D., A Compact Data Structure for Storing,

Retrieving, and Manipulating Line Drawings, op. cit., 601-610,

12, Ewvans, D. and Van Dam, A., Data Structure Programming System, IBM

document number 360 D 06. 8, 003,

«284~



13. Bobrow, D.G., and Murphy, D.L., Structure of a LISP System Using
Two-Lievel Storage, Comm. ACM, }_._Q_/ﬁ No. 3, 155-159 (March 1967).

14. Sutherland, W.R., The On-Line Graphical Specification of Computer
Procedures, Ph.D. Dissertation, M.I. T. {(Jan. 1966).

15. Kantrowitz, W., CORAL Macros--Reference Guide, Lincoln Labs. (1965),

16. Feldman, J.A., Aspects of Associative Processing, CFSTI AD 614-634
(April 1965).

17. Myer, T.H., and Sutherland, I.E., On the Design of Display Processors,
Comm. ACM, 11/, No. 6, 410-414.

18. Rippy, D.E., MAGIC II - Graphical Display Terminal Interfaced to a
Digital Computer, Computer/Display Interface Study, Final Report, AD
699366 (April 1969),

19. Gear, C.W., An Interactive Graphic Modeling System, Dept. of Computer
Science, Univ. of IIl. Report No. 318 (April 1969).

20. Hostovsky, R., Design of a Display Processing Unit in a Multi- Terminal
Environment, op. cit., Report No. 343 (July 1969),

21, Rippy, D.E. and Humphries, D.E., MAGIC -- A Machine for Automatic
Graphics Interface to a Computer, Fall Joint Computer Conference, 1965,
819.

22. Dodd, G.G., Elements of Data Management Systems, Computing Surveys,
1, No. 2, 117-133 (July 1969).

23. Knowlton, K. C., A Programmer's Description of Lé, Comm. ACM, 9,
No. 8 {Aug. 1966).

24. Siegler, R.A., The CL6 Conversational List Processing System, Computer/
Display Interface Study, Final Report, AD 699366 (April 1969).

25, Miller, R.B., Response Time in Man-Computer Conversational
Transactions, Fall Joint Computer Conference, 1968, 267-277.

26. Sutherland, I.E., SKETCHPAD: A Man-Machine Graphical Communication
System, Spring Joint Computer Conference, 1963.

27. Hamilton, J.A., A Survey of Data Structures for Interactive Graphics,
CEFSTI, AD 706 706.

28. Sutherland, I,E., ""The CORAL Language and Data Structure,' Adams
Associates Computer Display Review, Vol. 1, Section II.

29. Ellis, T.0O., Heafner, J.F., and Sibley, W. L., The Grail Ring Structure
and Primitives, CFSTI, AD 706 715.

A SHORT COMPUTER GRAPHICS READING LIST

Bowman, S., and Lickhalter, R.A., "Graphical Data Management in a Time-
Shared Environment, ' Proc. 1968 SJCC, 353-362.

Kennedy, J.R., ""A System for Time-Sharing Graphic Consoles,' Proc. 1966
FICC, 211-222.

Prince, M.D,, "Man-Computer Graphics for Computer-Aided Design, ' Proc.
IEEE, 54, 12, 1968-1708 (Dec. 1966).

Hobbs, L.C,, "Display Applications and Technology, ' Proc. IEEE, 54, 12,
18701884 {(Dec. 1966),

285~



Machover, C., "Graphic CRT Terminals -- Characteristics of Commercially
Available Equipment, " Proc, 1967 FJCC, 149-159,

Abzub, 1., "Graphic Data Processing, "' Datamation, January 1965, 35-37.

Wylie, C., Rommney, G., Evans, D. and Erdahl, A., "Hali-tone Perspective
Drawings by Computer, !' Proc. 1967 FJCC, 49-58.

Licklider, J.C.R., "A Picture is Worth A Thousand Words -- and it Costs

., Proc, 1969 SICC, 617-621.

Davis, S., ''"Display Processing Subsystems for Computer Data Displays,’
Computer Design, Vol. 8, Number 5, May 1969, pp 50-55.

Johnson, C. I., "Principles of Interactive Systems,'' IBM Systems Journal,
Vol, 7, numbers 3 & 4, 1968.

Parker, D.C,, "Solving Design Problems in Graphical Dialogue, ' On-line
Computer Graphics, 1966, McGral-Hill.

Van Dam, A., A Survey of Pictorial Data Processing Techniques and Equip-
ment, distributed by Clearinghouse for Federal Scientific and Technical
Information, Number AD 626 155,

Davis, M. R. and Ellis, T.O., "The RAND Tablet: A Man-Machine Graphical
Communication Device, ' Proc. 1964 FJCC, 325-350.

Stotz, R.,H., "A New Display Terminal,' Computer Design (April 1968), 80-86.

Hargreaves, B. et. al., '"Image Processing Hardware for a Man-Machine
Graphical Communications System, '" Proc, 1964 FJCC, 363-386.

Ophir, D, et. al., "BRAB: The Brookhaven Raster Display,' CACM, 11,
No. 6, 415-416 (June 1968).

Ahuja, D.V., '"An Algorithm for Generating Spline-like Curves, ' IBM
Systems Journal, Vol, 7, Numbers 3 & 4, 1968,

Ahuja, D.V. and Coons, S.A., "Geometry for Construction and Display, "
IBM Systems Journal, Vol. 7, Numbers 3 & 4, 1968,

Appel, A., Dankowski, T.P., Dougherty, R.L., "Aspects of Display
Technology, ' IBM Systems Journal, Vol. 7, Numbers 3 & 4, 1968.

Charfaris, G.J., ""Display Technology-Today and Tomorrow,' Proceedings
of the Society for Information Display, Vol. 10, Number 1, Winter 1969,
pp 3-29.

Sutherland, I.E., ""Computer Graphics - Ten Unsolved Problems, ' Datamation,
May 1966, pp 22-27.

Teixeira, J.F., and Sallen, R.P., "The Sylvania Data Tablet: A New Approach
to Graphic Data Input, ' AFIPS Conference Proceedings, 1968 Spring Joint
Computer Conference, pp 315-321.

Auverbach Corp. & Auerbach Information, Inc., ''"Special Report-Design and
Application of Automated Display System, ' Auerbach Standard EDP
Reports, Vol. 1, 23:120,001, 1969.

Johnson, T.E., '"Sketchpad I11I: A Computer Program for Drawing In Three-
Dimensions, " AFIPS Conference Proceedings, Vol. 23, 1963,

Desens, R.B., Computer Processing for Display of Three-Dimensional
Structures, CFSTI, AD 706 010.

~286=





