
DATA STRUCTURES FOR COMPUTER GRAPHICS 

Marshall D~ Abrams 

National Bureau of Standards 

Abstract 

Introduction 

Overview of Graphical Data Structures 
General Graphic Data Structure 

Multiple Levels of Data Structure Storage 

S~mple Use of General Graphic Data Structure 
The Tailored Graphical Data Structure 

Data Structure Languages 

Conclusion 

References 

269 

269 
270 

272 

276 
278 

279 

283 
284 

284 

-26~ 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1115880.1115892&domain=pdf&date_stamp=1971-02-01


ABSTRACT 

This paper introduces data structures as applied to computer graphics. 
Design criteria for computer graphics data structures are discussed~ followed 
by a comparison of general-purpose and tailored graphic data structures. A 

general graphic data structure is introduced as an example of a structure 
meeting the preceding criteria. The Z 6 language is then examined as a tool 

for implementing the above data structure~ and is compared to a few other 
language systems, 

IN T I%0 D U C TIOIW 

"Computer graphics" is the general term applied herein to the use of 
a digital computer to form an internal model representation of an externally 
perceived graphical entity. The objective of such modeling is to extract infor- 
mation from the graphical entity so that it may be modified~ manipulated~ or 
otherwise processed. A short computer graphics reading list is provided at 
the end of this paper. 

After graphical information has been digitized, an organization must 
be provided for the storage and retrieval of this data within the memory of 

the computer system. The linear array is the simplest scheme available~ 
but it is not of interest within the scope of this paper even though it enjoys 

wide use in certain classes of applications° Rather, this report will be 

directed to a discussion of those organizations which represent the relation- 
ships among the components of the graphical entity. The relationships 
which must be represented within this subset of computer graphics include 

topology arid dependency relationships. It is most convenient to represent 
such information in a hierarchical data structure which~ in some abstract 

ways models the external graphical entity° 

-2G9- 



Historically, this subset has b e e n  restricted to the study of line 

drawings~ but gray-scale and color representations are currently under 

investigation° The purpose of the data structure is to facilitate the 
extraction of intelligence and manipulation of both the image and the infor- 

~lation it represents° 
A graphical image is a preferred medium of hu~nan communication 

because of the possibilities inherent for maximum information transfer with 
minimum effort. Graphical communication is often highly stylized~ requiring 

significant training for both the generation and interpretation of irnages o 
Conventions are established~ which may vary from one application field to 

another, which enable precise communication with a minimum effort and non- 
graphic al info rrnationo 

Since graphical corn~nnunication among humans is such an easy and 
effective technique, effort has been expended to extend this communication 
to digital systems. As with other languages which are close to human 

language and far from machine language, considerable resources must be 
allocated to store and manipulate the graphical communication within the 
digital s ystemo 

OVERVIEW OF GRAPHICAL DATA STRUCTURES 

Both medium and conventions present difficulties associated with the 
digital representation of graphical information. The significant attribute of 
the medium problem is dimensionalityo Pictures deal with two dimensions, 
sometimes representing three dimensions° High speed primary memory is 
usually addressed in a piece-wise linear fashion~ therefore a transformation 

is required to map the graphical structure into a one-dimensional frame. The 
information describing a graph=seal entity must be stored in such a way that it 

can be retrieved, manipulated, edited, and used to produce the desired 
graphical image. 

The pertinent information as s ociated with a graphical entity frequently 
consists of the geometrical description of the graphical item: scaling~ position~ 

and orientation data; relationships and connections to other items; name and 

identification of the item; graphical constraints on the item itself and on its 
relationship to other items; and non-display (textual)data intimately connected 
with the graphical entity° 

One of the first decisions to be made in designing a graphical data 
structure is whether it should be completely general~ or tailored to a specific 
application° The general fixed structure format is usually inefficient of 
storage since it must provide for unused options i Furthermore~ no matter 
how general the fixed structure was designed to be, there always exists the 
pathological case which exceeds the capability of the structure. In such a 
case, one has no choice but to redesign the structure, hopefully maintaining 
upward compatibility. 

~70- 



The tailored structure meets all of these objections, but necessitates 
the effort of construction° In facts the existence of general-purpose structures 
is extremely helpful to the user interested in tailoring a structure to his 
application° The intellectual effort implicit in the general structure may 

simply be transferred to the tailored s%ructure~ simultaneously modifying the 

structure to ~neet the current objectives° Since most graphical data structures 
are pointer-type structures, with such pointers being explicit or associatively 
addressed~ the presence of a language designed to work with such pointers 
greatly facilitates the construction of a data structure° 

While it is certainly possible to build the entire graphical data structure 
up from scratch~ the use of a list processing or associative processing language 

greatly si~plifies the work~ In fact most of the literature ostensibly devoted 
to computer-aided design is in fact concerned with data structure° Particular 
attention is called to references (i)~ (Z)~ (3)~ (9)~ (II) and (IZ) where the 
salient features of new and more established "service ~' languages are discussed. 

The next problem to be considered involves the communication of data 

to and from the graphical data structure. This data will often be involved in 
the process of drawing a pictures in modifying an existing picture~ or in re- 

drawing a picture from the data structure. The use of computer graphics in 
facilitating the convenient use of computers requires that this information 
transferal process not be a burden on the human user ZS, Delay that is annoying 

to the user should be avoided; a measure of tolerable delay is the user's concept 
of the difficulty of the task. While the design of graphical processors is not 

within the scope of this survey~ one cannot ignore the hardware requirements 

forced by the desire for rapid response° 
The mode of operation is for the user to communicate his desires to 

the digital system, often using graphical input devices such as light pen 
joysticks and mouse; and for the system to respond by displaying the desired 
picture on his CRT display. Simultaneously the data structure meeds to be 
updated to reflect the changes resultant from the CRT activity. Rapid response 
criteria require that at least part of the data structure must be instantaneously 
accessible to the user at the terminal 5, 6 The size of the local processor and 

the capacity of the communication line with the main system determine the 

extent of the local image of the complete data structure° 
A final problem is concerned with storage capacity in both the display 

driving computer and in the central system. The portion of the data structure 

represented in the local memory is usually less than that stored in the central 
system and may reasonably be restricted to that portion of the structure being 

displayed° If additional storage is available, this may be augmented by 
logically adjacent substructures possibly selected by an anticipatory mode 

al g o rithm° 
Storage restrictions in the central system require greater attention 

and careful study. At the time that a structure is created or modified~ it is 

necessary that the storage ~sed not be the limitation upon the process° Thus~ 
high speed core storage is required. Considering [he possible extent of 

-271- 



graphical data structures and the core use limitations imposed by the operating 

syster~ environn~ent, it is quite reasonable to expect and provide .for the 

possibility of insufficient core storage being avai].ableo The solution exists in 
the form of a paging scherr~e~ but careful attention and re-examination iY~ust be 

paid to the design and handling of the paging I, Z~ 3, 130 

GENERAL G R A P H I C  DATA STRUCTURE 

The concepts and techniques of graphical data structures will be intro- 

duced here in the form of an exarmple structure° This structure will purposely 

be kept at a level co~iprehendible to human users and modifiable by them° It 
is not intended that this presentation be exhaustive, but rather typical and 

hopefully educational~ The organization of the data structure presented here 
is an explicit referencing structure, similar to that of Cotton and OreatorexS~ 
the GRAPHIC-2 system 4' 7 and GIKAspSo The structure is certainly not 

exclusive; additional examples are given the surveys by Grayt~ Dodd ZI, and 
Ha~iltonZ7° The structure will be presented inn the form of a directed graph; 

the mechanism of representing such a structure in a computer memory will 

be discussed subsequently° 
In an effort to minimize the amount of graphics terminal machine 

language programming required, especially by users that are not interested 
in such a level of detail, the commonly used picture-building elements are 

provided as building blocks called ~'basic subpictures"o A basic subpicture 
may be a single command to draw (display) a point~ line~ or conic section; it 

:nay also be a sequence of such commands to draw a commonly used geometric 
entity-. Such basic subpictures are often in the form of the "frame" or "skeleton" 

of an open subroutines because the essential positioning information must be 
supplied by each reference to (use of) the basic subpictureo The basic sub- 
picture data block must also contain the identification and relative location 
of the externally accessible terminals of the subpicture, such terminals being 
the parts of points of connection to the subpicture by the greater~ outside 

world° If there are to be constraints on the use of the basic subpicture~ these 
constraints must also be contained within a block pointed to by the basic sub- 

picture data block° 
Within the context of basic subpictures lie all of the characters and 

geometric figures directly presentable with a single machine level command, 
these constitute the ~'hardware character set" Commonly used graphical 
entities may also be coded in graphical control language as a short program, 
and provided as a time-saving service, in addition it is desirable for a user 

to be able to define his own subpictures which are useful for his application° 
The definition of a subpicture is usually not within the scope of the graphical 
language-data strucbare being herein described, but is at the level of graphical 
control language. 

Thus~ a picture is the highest level, encono.passing all lower constituent 
levels° These lower levels being collectively referred to as subpictures° The 
lowest level is termed a basic subpicture in that it is the only level which 
references the display° 

'-272- 



Using graph terminology, each basic subpicture is a node in the 
directed grs.ph which is the graphical data structure. Although it is quite 
possible for the node block to be of variable size, herein pointers will be 

used to reference variable sized data segment blocks. Under these conventions, 
a basic subpicture node can appear as in figure Io 

Identification of Node as Basic Subpicture 

Name of Basic Subpicture 
Pointer to Terminals 

Pointer to Non-Display Information 
Pointer to Display Instructions 

Figure Io Basic Subpicture Node 

Since a basic subpicture does not possess any absolute frame of reference, it 
cannot in and by itself cause any display. It must be referenced by a higher 

node to be used as a display item° These higher nodes will in general reference 
multiple lower nodes, thus building a picture out of previously created com- 

ponents. The terms "higher" and "lower" relate only to position in a directed 
graph drawn to describe the structure and might instead be termed "subsequent" 

and "prior" respectively. 
The construction of a picture is described by a directed graph wherein 

the top node is the pictures the intermediate nodes are subpictures~ and the 
terminal nodes are the basic subpictureo A sample graphical data structure is 

represented in figure Zo 
While it is fairly obvious that when expressed in computer code the 

picture and subpicture nodes need to be represented by data blocks, it may 
not be immediately clear that the same is true for the branches connecting 
the nodes. There is of course a trade-off between the information associated 
with the node block and that associated with the branch block° The following 
selections are somewhat arbitrary although typical7. The subpicture node 

block will essentially consist of pointers to other information containing blocks. 
Among these blocks is the branch block, which deserves special mention° 

The branch block contains the necessary transformation on the lower 

nodes to incorporate them into the subpicture defined by the subpicture node. 
Certain blanks in the skeleton frame of the lower level picture must be com- 
pleted, and other parameters may require systematic modification. The 
transformation information consists essentially of displacement~ scale, and 

rotation information. 
Since all nodes except the highest "picture" node are intrinsicly 

referenced to zero~ a new reference displacement must be provided for each 
instance of use of subpicture and basic subpicture node. This displacement 

~273- 



PICTURE NODE 

Y 
SUBPICTURE SUBPICTURE 

NODE 

SUBPICTURE 
NODE 

8A%C 
SUBPICTURE 
NODE 

BSN 

\ 

J 
SUBPICTURE \ 

BSN BSN 

FIGURE 2, SAMPLE GRAPHICAL DATA STRUCTURE 

-274- 



may o c c u r  in a virtual display space having no size relationship to the display 

viewing area; therefore~ an additional displacement calculation may be 
required in the process of display generation when the segment of the structure 

is selected for display° 
Scale and rotation information must also be provided when constructing 

the present subpicture out of lower level items~ in most applications it is 

unlikely that the rotation information will require changing after picture- 
generation tirne~ but scale may be a continuously varying pararnetero The 
analogy of photographic enlargement is accomplished by a modification of the 

scale pararnetero In certain applications this operation could be the critical 

item in operation of the facility, 
The connectivity of the subpicture constituting the present level sub- 

picture must be separately treated° It is not sufficient to build a picture by 
appropriately placing subpictures so that their terminals coincide° Subsequent 
parameter change in the branch blocks~ or minor malfunction in the hardwares 
could easily destroy such coincidence° Thus~ there must be explicit provision 

for an ordered relationship among the terminals of subpictures associated 

within a higher level picture° 
For this reason~ another block is provided~ this being the "connector" 

block. The connector block is a specific example of a constraint. It is pre- 
sented as a separate block by virtue of its prevalence° The connector block 

must identify the lower level terminals to be connected~ and it must point to 
the constraints on such connection. These constraints might include a require- 
rnent for coincidence. If the terminals being connected were not coincident~ 
the connector block would be required to provide a line to form the connection. 

This line in turn could have attributes such as intensity and rate of blink° 

The blocks described above may be represented as follows: 

J 
Identification as Connector Block I 

Pointers to Terminals ~ I 

Blink Rate, Constraints I 
Pointer to Next Connector Block__j 

Figure 3. Connector Block 

Identificatlon as Branch Block 

Name of Branch 
Pointer to Lower Node 
Displacement, Rotation and Scale of Lower Node 

Pointer to Non-display Information 

Pointer to Next Branch Block 

Figure 4~ Branch Block 

-275- 



Identification as Node Block 

Name of Node 

Pointer to Terminal Block 

P o i n t e r  to Branch Block 

Pointer to Connector Block 

Pointer to Non- dis play Inforrnation 

Figure 5o Node Block 

Identification as Terminal Block 

Relative Location of Terminal 

Pointer to Next Terminal Block 

Figure 6. Terminal Block 

The design of the pointer scheme is a critical part of any data structure° 

An excellent discussion is given by DoddZZ~ to which the reader is referred~ 

The most simple pointer structure is the single linked list wherein each block 

contains a pointer to the succeeding block in the list. The pointer field in the 

terminal block contains a special symbol known as the ~'null pointer" indicating 
the termination of the listo 

The major shortcoming of the single linked list is the inability to return 
to the head of the list without having previously saved the location of this head 

in a well known location to which reference might be made° 

The single linked list is rarely employed simply because a ring structure 

may be obtained by having the end of the list point back to the head° Of course~ 

the head and tail must be suitably flagged to avoid endless ring-chasingo Another 

way of returning to the head of the list is to use a doubly-linked list possessing a 

backward as well as a forward pointer~ but this involves twice as many pointers. 

It is~ on the average~ twice as fast as the single linked list in returning to the 
head of the list. 

One purpose of rings or doubly-linked lists is to be able to return to the 

head of the lists or the list pointers when a success or failure has occurred~ 

the second pointer which the doubly-linked list requires is often replaced by a 

back pointer to the head of the listo To conserve spaces the pointer to the head 

of the list may not occur in everyblock~ but rather in strategically placed blocks° 

A great deal of effort has gone into the development of pointer arrange- 

ments~ this being the critical decision in designing a data structure. The 

structures examined by Gray9 appear more different than similar~ yet they are 
all concerned with related problems. 

MULTIPLE LEVELS OF DATA STRUCTURE STORAGE 

The requirements of fast response to operationally complex require- 

ments and possible large data structures necessitate that the structure be 

sir~ultaneously maintained in more than one level of storages at least in part° 
Eirst~ consider the question of storage in the display° 

-276- 



Early graphical displays required the exclusive service of a large 

computer system° Today the trend is to provide a small computer as the 

local service to each display and to service this local processor-graphical 

terminal from the central system only when necessary° There is a whole 
spectrurrl of capabilities of local processor attached to graphical processors° 

We shall not go into the evolution of such dedicated processors here; the 
situation has been stated elsewherel7o Needless to say, however, the extent 

and kind of representation of the graphical data structure in the local computer 

is highly dependent upon the kind(s) and amount of storage available~ the 

instruction repertoire, and the speed of the local processor° 
The minimum information to be kept in the local processor is the display 

list which directly controls the picture presented. The display list is extremely 
machine-dependents containing the necessary machine instructions to generate 
tl~e display° If the computing capability of the local processor is non-existent 

or extremely minimal it may be necessary to construct the display list in the 
main system for transmission to the graphical display° In such a case the 
local processor fulfills only the function of refreshing° In this situation it is 
impossible to reference the graphical data structure via the display image 

because the display list has been generated only for display purposes. 
In systems with minimum local processing ability~ or even in more 

substantial systems, it seems a waste of an expensive resource to store the 
display list in randomly addressable core storage. It appears a better allocation 
of resources to use rotating storage for the display listo Not only does this free 
core storage for programs~ but it makes it possible to carry on display refresh 
as a parallel process° Recentl8, 19~Z0 and not so recentZl systems have used this 

approach° ~',~ 
The next step is to provide an association between the display list and 

the graphical data structure° Such as association requires a referencing 
technique from the display list back to the data structure. A pointer scheme 
can be implemented, but difficulty occurs as to the subpicture level to be 
pointed to. Under various conditions the user at the graphical terminal might 

be interested in pointing to a picture, a level of subpicture, or a basic sub- 
picture° An automatic safe technique is to have the pointer go to the highest level 

of subpicture being referenced, with the user being able to initiate pointer chasing 

under his control to reach the desired lower level° 
If memory and speed allow~ part or all of the graphic data structure 

may be contained in the local processor. If sufficiently large and fast~ the 

local processor could contain the entire data structure, generate its own 
display list~ and reference the main system only for archival purpose or for 
linking to other subsystems° In this form of operation the graphical Subsystem 

can be considered a "sketchpad" on which various trial drawings are made° 

':<But a cycling display carries with it three prices to pay: (I) it is usually 

slow to access, (Z) it is fixed in size (but the size can be very large), and 

(3) it can be quite difficult to respond to light pen interactions° 

-277- 



When an acceptable one is produced it can be preserved by referring it to 

the central computers 
In general:~ the data structure will be too vast to be contained 

completely in the graphical terminal° A cornprolnise is then effected 

wherein part of the data structure might be transported as needed between 
the central system and the graphical subsysterno The degree of compromise 
is a function of the processing capability of the graphical terrninal~ a subject 
well discussed by Myer and SutherlandlTo For convenient operation the 

trans~nission must occur within the user's wait tolerance° When only part 
of the data structure is resident in the graphical subsyste~ extreme care 

must be taken with the pointer to the non-resident parts of the structure° 
There must be a mechanism for fl.agging references to non-resident items;, 

there must be a mechanism for enlarging or contracting the size of the 

portion of the data structure available° These problems are quite akin to 
the multiple-level storage problem in the central system~ which shall be 
discussed next° 

The adage of "a picture being worth a thousand words" is magnified 
in computer representation° It can easily require many thousand words to 
store a moderately complex picture, Such storage requirements can. easily 
consume available high-speed primary memory, 

It is certainly possible to design the driving and service program~ 

the "resident system", into minimally-interacting modules° These modules 
can be brought into core as pages I, iZ or overlaysl3~ thus reducing the core 
storage -which must be devoted to the systern~ 

For user-created programs and data structures the situation is 
different° It is desirable that as few- restrictions as necessary be placed on 

the programm.ero Therefore, systems are written which automatically assign 
program and data to storage pagesl~ 3~ 13 However, there is not total r~gidity 
in these page assignments; variable-sized pages I and partial user control3~ IZ 

helps to adapt the system to its current use, For the storage of the graphical 
data structures it is even more important that the system be given as much 

information as is available, With complete information it is possible to 
implement valid anticipation of  program needs 3 

SAMPLE USE OF GENERAL GRAPHIC DATA STRUCTURE 

Representing a graphical data structure on paper is an awkward 

necessity. Awkward because the confines of standard paper size makes it 
an exercise in topological ingenuity on the part of the writer and parallax 
error elimination on the part of the reader. Necessary because the expository 

approach alone generally produces an incomplete information transferal. 
The first illustration, in figure 7 is of the structure representing a 

triangle° This is a trivially simple structure involving only one node and one 
basic subpicture~ The one node~ which is automatically the top (picture) node 

points to three rings: branch, terminal, and connector. Each block in the 

-278- 



branch ring contains a pointer to the basic subpicture used, namely "point", 

the X~ Y coordinates of the instance of that point and a pointer to the next 
branch block and back to the node block° Each terminal block contains the 

coordinates of the terminal relative to the origin of the subpicture (which in 

this case are selected to be all the verticies)~ and the forw-ard ring pointer° 

Each connector block contains a pair of pointers to the terminals being 
connected~ and the forward ring pointer° All of the remaining fields contain 

zeroes interpreted as null pointers° The organization of the blocks is in 

conforIY~ance with figures I~ 3~ 4~ 5, and 6. 
Let us now use this triangle as a subpicture in building a larger 

picture° As an example, consider the hexagon shown in figure 8(a)~ The 
triangle used of the subpicture is assumed to have been drawn in the position 

shown in figure 8(b). Note that external terminals are denoted by small circles 

in these figures, 
The data structure of the hexagon is drawn in figure 9. kacluded is the 

terminal block ring of the triangle data structure which is necessarily referenced 
by the connector ring of the hexagon, Note the dotted lines representing pointers 

from the connector ring of the hexagon to the terminal ring of the triangle° 
These dotted lines from connector blocks to terminal blocks associated 

with another node block are representations of an amazingly complex pointer 
chasing mechanism required° The connector block must point to the branch 

ring which it accesses by pointing to the branch pointer in the node block° 
From the appropriate branch block it obtains a pointer to the node block of the 
subpicture references° Also from the branch block it obtains the displacement, 
rotation, and scale data which is necessary for the calculation of location of the 

desired terminal in the particular instance of use. From the node block pointed 
to by the branch block it obtains the pointer to the terminal ring associated with 
that level of subpicture~ Finally~ that terminal ring is traversed until the 

particular terminal desired has been acquired~ 
Since such pointer chasing is not an abnormality in graphic data structures, 

there must be a mechanism easing such constructions, The pointer concatenation 
facility of L 6 Z3 recently implemented by R° A° Siegler in conversational form 

as GL6Z4, is one technique which facilitates such pointer chasing. 

TILE TAILORED GRAPHICAL DATA STRUCTURE 

As discussed in the overview, it is frequently convenient to construct 

a data structure which is tailored to the graphical image to be modeled. The 

tailored structure can eliminate those features of the general graphic data 
structure which do not apply to the problem at hand. The structure of the 
graphical entity may be taken into account in designing the tailored structure; 

conditions which were provided for in the general case may not occur° There- 
fores the space reserved for the eventualities in the general structure could 

be released for other use in a tailored structures 

-279- 



i 

<_L> i 

.._J i 

l 

L 0 ~ 

~Tf- 

0 > 
¢ 
= 
£ 

< 

< 

-T i ° - J  

Z 

0 

o 
o 
_ J  

cc~ 

: 

C 

~ J  

. . . .  

0 

Q 

0 ~ . ~  
~.~ 

_..J~ 

F O  
! 

i o  
! 

i 

_J_ 

t <=::~ ! = 

t m ~ m  

0 

xf 

i 
0 

Z 

2o 

0 

Z 

o 

t~ 

-280- 



(Q,) 

Ibm) 

FIGURE 8 HEXAGON, {a) COMPOSED FROM TRIANGLE. (b) TERMINALS DENOTED "THUS: (~-~o) 

-281 



.... J <-+) 

! 

i 

--_4 

--J 

¢.t.'2 

4 ~  

t 

] 

i 

~ c 

t~ 

2122 
e 

i 2~2 r~22 ~ 
<_~ ~- . -  

I × I  

o ~ 

~ m  

i. i 

I <L'U~ 
m 

=r2 i 

I f X =  

r 

t 

i c~,= 

c..) 
>_J 

..... J 

t 

<-~%! 

,c=, ~ d  

<17o 
<'> 

>~ 
k~J 

L~ 

0 

i* J 
CC~: 

22"~ 
~..*2J 

~J 

-282- 



Fixed format data structures and the language systems supporting 

thernS, 15, Z6, Z8, Z9 have been first developed as the solution mechanism to 
specific problems° Indeed, since these languages were designed with a 

class of problem applications in mind, the user might be unaware of the 
potential data structure restrictions° 

Looking back, it is possible to contrast these fixed structure systems 
to produce a generalized set of criteria as has been done herein. For new 

applications~ however, it appears that a data structure language is the better 
approach° Using a language designed to manipulate data structure gives the 
user increased freedom and power° 

D A T A  STRUCTURE LANGUAGES 

Several groups have developed languages for the manipulation of graphic 
data structures (among other applications)° One faznil~, which will be explored 
herein, is that derived from L 6Z3, including DSPS 3, 12; CL6 Z4; and XL6. 

XL6 is currently under development by "the author, being a compiler, written 
in FORTRAN and therefore to a certain extent portable, currently producing 
relocatable binary code for the UNIVAC 1108 which has compatible subroutine 

linkage with FORTRAN° It is this author's opinion that use of a variety of 
specialized languages offers advantages over one all-purpose language. 

L 6 is a low level language in that the programmer must be aware of 
words and bits, but it possesses the higher level characteristic of a set of 
run time subroutines which support its operation° Being low level, L 6 

expresses data structures very well for programmer visualizations 
One useful feature in L 6 is the ability to define the location of a "field" 

within a "block" of consecutive computer words° A field, once defined, may 
contain a pointer to another block, an arithmetic value, or anything else the 

programmer desires° A field is designated by a single letter name. The 
complete specification of a field includes the word in the block in which the 
field is to exist, the name of the field, and the inclusive bit boundaries 
constituting the field within the computer word. 

The format of the field definition command is 

( < w o r d > ,  D < f i e l d  n a m e > ,  < b i t  b o u n d  1 >  , < b i t  b o u n d  Z >  ) 

w h e r e  < w o r d >  , < b i t  b o u n d  1 >  , a n d  < b i t  b o u n d  Z >  a r e  a l l  i n t e g e r s  

indicating the relative word in the block, and the inclusive bit boundarles 

within that word. < field name > is the single letter name by which the field 
is symbolically referenced° XL6, like DSPS, permits multi-character names, 

thus permitting association of name with function for an increase in readability 

and visualization. 
Like most programming languages, L 6 provides the programmer with 

a means for inserting comment lines for internal documentation Lu L 6 such 
comment lines must contain an asterisk in. column one and are ignored by the 

L 6 translator. 

- 2 8 3 -  



The ability to define those fields appropriate to the specific 
application is only one advantage of the -tailored data structure° Az~}~other 
advantage of this tailored data structure is the ability to define variable 
size blocks, the size being determined during program execution° This 
feature permits optimum memory utilization° The meaning attributed to 
field contents is the progra~umer~s responsibility° Note also that field 
definitions are nonunique; it is likewise the programmer's responsibility 
to use the field definition he requires from the set created° 

CONCLUSION 

Having presented design criteria for graphic data structures, a 
sample data structure meeting these criteria, and a language for imple- 
menting the designed data structure~ the picture is not cornplete o Completion 
requires an implementation, with interactive modification of the data structure 
and perhaps extension to the language° The author hopes to enjoy the pleasure 
of this interaction in the near future° 

RE FE RE N CE S 

1o Feldrnan~ JoA~ and  R o v n e r ,  PoDo,  An A L O O L - B a s e d  A s s o c i a t i v e  
L a n g u a g e ,  Commo AC~gl 1Z~ NOo 8, 439-449  (Aug° t969) .  

Zo Rovner~ PoDo,  and  F e l d m a n ,  J °A .~  The L e a p  L a n g u a g e  and Data  
Structure, Proco IFIP Congress ]968~ C73-C77o 

3o Evans, De and Van Dam, Ao, Data Structure Programming System~ 
op° cit°, C67-C7Zo 

4o Ninke~ Wo No ~ A Satellite Display Console Systen~ for a Multi-Access 
Central Computer, Opo cit°~ E65-ETIo 

5o Cotton~ IoZ£o and Greatorex, FoS~ Data Structures and Techniques for 
Remote Computer Graphics~ Fall Joint Computer Conference, 1968, 
533-544° 

6. Kulsrud~ HoDo~ A Oeneral Purpose Oraphic Languages Comm. ACM~ 
iI, No. 4~ Z47-Z54 (April 1968). 

7~ Christensen~ Co~ and Pinson~ EoN.~ Multi-Function Oraphics for a 
Large Computer System, Fall Joint Computer Conference, 1967~ 697-711. 

8o Thomas~ E~Mo, OR~A.SP--A Graphic Service Programs Proco ACM 
National Meeting~ 1967~ 395-40Zo 

9o Oray~ J°Co~ Compound Data Structure for Computer Aided Design: A 
Survey, opo cito, 355-365° 

i0o Wexeblat, R. Lo~ and Freedman, HoAo, The MULTILANG On-line 
Programming Systems Spring Joint Computer Conference, 1967, 559-569. 

Iio Van Dam, Ao, and Evans~ Do, A Compact Data Structure for Storing~ 
Retrieving~ and Manipulating Line Drawings~ opo cito~ 601-610. 

IZo Evans~ Do and Van Dame Ao~ Data Structure Programming System~ IBM 
document number 360 D 06o8o003~ 

-284- 



13. Bobrow, DoGo, and Murphy, D.L., Structure of a LISP System Using 
Two-Level Storages Co~nmo ACM~ i0/, No. 3~ 155-159 (iMarch 1967)o 

]4° Sutherland~ WoR, o~ The On-Line Graphical Specification of Computer 
Procedures, Ph~Do Dissertation~ MoI. To (Jan° 1966). 

15. Kantrowitz~ Wo~ CORAL Macros--Reference Guide, Lincoln Labs° (1965)o 
16o Feldman~ JoAo~ Aspects of Associative Processing~ CFSTI AD 614-634 

(April 1965)o 
17o ~glyer~ ToHo ~ and Sutherland, foE° ~ On the Design of Display Processors~ 

Co~nrn. ACM,~ I__i/~ NOo 6~ 410-414o 
18o Rippy~ DoE~ ~ MAGIC II - Graphical Display Terminal Interfaced to a 

Digital Cornputer~ Computer/Display Interface Study~ Final Report~ AD 
699366 (April 1969). 

19o Gear~ CoWo~ An Interactive Graphic Modeling Systems Dept° of Computer 
Science~ Univ. of lli. Report Noo 318 (April 1969). 

Z0o Hostovsky~ Ro~ Design of a Display Processing Unit in a Multi-Terminal 
Environments op. cito~ Report Noo 343 (July 1969). 

Zlo Rippy~ D~E° and Hu~nphries, D° E°~ MAGIC -- A Machine for Automatic 
Graphics Interface to a Computers Fall Joint Computer Com_ference~ 1965~ 
819, 

ZZo Dodd~ GoGo~ Elements of Data Management Systems~ Computing Surveys~ 
i~ No. Z~ 117-133 (July 1969)o 

Z3o Hnowlton, Ho Co, i Program~ner's Description of L6~ Comm. ACM~ 9~ 
NOo 8 (Aug. 1966)~ 

Z4o Siegler~ R. Ao~ The CL6 Conversational List Processing Systems Computer/ 
Display Interface Study~ Final Report~ AD 699366 (April 1969)o 

ZS. iV!iller; R. B° , Response Time in Man-Computer Conversational 
Transactions~ Fall Joint Computer Conference, 1968, Z67-Z77. 

Z6. Sutherland~ I° EGg SKETCHPAD: A Man-Machine Graphical Communication 
System, Spring Joint Computer Conferences 1963o 

ZTo Hamilton~ JoAo~ A Survey of Data Structures for Interactive Graphics, 
CFSTI~ AD 706 706. 

Z80 Sutherland, Io Eo ~ "The COITAL Language and Data Structures " Adams 
Associates Computer Display Review~ Vol° i~ Section Iio 

Z9o Ellis, To Go ~ Heafner~ J. F0 , and Sibley, Wo L. ~ The Grail Ring Structure 
and Primitives~ CFSTI~ AD 706 715~ 

A SHORT COMPUTER GRAPHICS READING LIST 

Bowman~ So , and Lickhalter~ R~A°, "Graphical Data Management in a Time- 
Shared Environments" Proc. 1968 SJCC, 353-362, 

IKennedy, J°R.~ "A System for Time-Sharing Graphic Consoles~" Proco 1966 

FJCC~ ZII-ZZZo 
Princes M. Do, "Man-Computer Graphics for Computer-Aided Designs ~' Proco 

IEEE, 54~ IZ~ 1968-1708 (Dec. 1966). 
Hobbs, L. C~, '<Display Applications and Technology, ,I Proco IEEE, 54, lZ, 

1870-1884 (Dec° 1966)o 

-285- 



)Machover, Co, "Graphic CRT Terminals -- Characteristics of Com~nercially 

Available Equipment~ ~ Proco 1967 FJCC~ 149-159o 
Abzub, to, ~'Graphic Data Process ing . , "  Datam~ation~ January  1965, 35-37° 
Wylie, C~, Romney~ Go~ TJvans~ D0 and Erdahl~ Ao, ~Half-tone Pe r spec t i ve  

Drawings by Coznputer, ~ Proco 1967 FJCC, 49-58, 
Licklider, Jo C~ Ro, '~A Picture is Worth A Thousand Words -- and it Costs 

.... " Proc~ 1969 SJCC, 617-6ZIo 
Davis, So, ~'Display Processing Subsystems for Cow, purer Data Displays," 

Computer Designs Volo 8, Number 5, May 1969, pp 50-55° 
Johnson, C~ log "Principles of Interactive Systerns~ " IBM Systerns Journal, 

Vol0 7~ numbers 3 & 4, 1968o 
Parker, Do Cox "Solving Design Problems in Graphical Dialogue, '~ O~-line 

Co~z~.p~ter Graphics, 1966~ McGral-Hillo 
Van Dam, io, i Survey of Pictorial Data Processing Techniques and Eq2ii 2- 

ro_ent, distributed by Clearinghouse for Federal Scientific and Technical 
Information, Number AD 626 155. 

Davis, Mo Ro and Ellis, To Go , "The RAND Tablet: A Man-Machine Graphical 
Communication Device," Proco 1964 FJCC, 325-350° 

Storm, RolM~, "A New Display Terminal~" Computer DeN (April 1968), 80-86° 
Hargreaves~ B. eto alo~ "l~nage Processing Hardware for a Man-Machine 

Graphical Communications System, " Proc0 1964 FJCC, 363-386, 
Ophir, Do et al.~ "BRAB: The Brookhaven Raster Displays" CACM, 1]~ 

Moo 6, 415-4.16 (June 1968)o 
Ahuja, Do Vo , "An .Algorithm for Generating Spline-liRe Curves, " IBM 

Systems Journal~ Vol, 7, Numbers 3 & 4, 1968o 
Ahuja, D. Vo and Coons~ SoA.~ "Geometry for Construction and Display," 

IBM Systems Journal, Volo 7~ Numbers 3 & 4~ 1968o 
Appel, Ao, Dankowski~ ToPos Dougherty, RoLo~ "Aspects of Display 

Technology~ '~ IBM Systems Journal, Volo 7~ Numbers 3 & 4, 1968o 
Charfaris, Go Joe "Display Technology-Today and Tomorrow," Proceeding__ 

of the Societyfor Information~ Vol. I0, Number I~ Winter 1969, 

pp 3-29, 
Sutherland, IoEo , "Co:mputer Graphics - Ten Unsolved Problems, " Datamation~ 

May 1966, pp 22-27° 
Teixeira, J. Fo, and Sallen~ Ro P° ~ "The Sylvania Data Tablet: A New Approach 

to Graphic Data Input J~ AFIPS Conference Proceeding_ _ s~ 1968 Spring Joint 
Computer Conference, pp 315-3ZIo 

Auerbach Corpo & Auerbach.lnformation, Inc~ "Special Report-Design and 
Application of Automated Display System, " Auerbach Standard EDP 
R eports~ Vol0 1, Z3:IZ0o001, 1969o 

Johnson, To E. , "Sketehpad III: A Computer Program for Drawing In Three- 
Dimensions~" AFIPS Conference Proceedings~ Vol. Z3~ 1963o 

Desens~ ROB., Computer Processing for Display of Three-Dimensional 
Structures~ CFSTI, AD 706 010. 

-286- 




