REPRESENTATION AND MANIPULATION OF DATA STRUCTURES IN APL

Harry Katzan, Jr.Pratt Institute
Abstract 367
Introduction 367
The APL System 368
Statements and Functions 368
Composite Functions 369
Mixed Functions 371
Indexing 371
Miscellaneous Comments 371
strings and sets 373
Substring 373
Alphabetic Sort 374
Pattern Matching and Replacement 375
set Union and Intersection 376
Character Translation 376
stacks and Queues 376
queues 377
Stacks 378
Tables 378
Numeric Values 379
Variable Length Character Values 379
Linked Lists 379
Unidixectional Lists 384
Bidirectional Lists 385
List-Like Structures 388
Conclusions 392
References 397

ABSTRACT

Methods fox the representation of complex data structuxes in APL, a programing language based on rectangular arrays and a multiplicity of functions, are presented. Data structures considered are: strings and sets, stacks and queues, tables, linked lists, and LISP-ike struem tures. The material provides insight into the nature of data structures and should aid in establishing future requirements for primal and base languages.

TNTRODUCTION

Modern computing systems tend to be complex compared with the simple word-oriented machines of fifteen years ago. Today, we hear of privileged operations, supervisor/problem states, interrupts, sophisticated I/O, etc. In spite of this, the primal language for using the computer (i.e., assembler language) has remained essentially the same - except for a few bells and whistles. Problem solvers and programers, however, wish to use the machine in another way: with a highermlevel language such as ALGOL, FORTRAN, or PL/I. Thusfar, the compiler has been the bridge between the languages of the user and the language of the computer. Because compiler and compilation costs are high and problem solvers and machine designers seem to be going in opposite directions, several researchers - namely: Bashkow, Sasson, and Kronfeld, Melbourne and Pugmire ${ }^{2}$, Sugimto ${ }^{3}$, and Weber x^{4} - have proposed and developed systems that directly execute the statements of a higher-level language. Recent advances in microprogramming and writable control store (e.g., see Husson ${ }^{5}$) indicate that the architecture of a computer using a highex-level language as a primal language is indeed feasible from both performance and cost standpoints.

The recent popularity of $A P L$ " has resulted in at least one APL machine (see Thurber and Myrnab) and led sevexal researchers to conjecture on the possibility of implementing ApL (or a subset of it) as a pximal language. $A p x$ is also in widespread use as a problem solving language and the numbex of ApL enthusiasts (in all areas of computer science) is growing rapidy. Fox both applications, the key question is: "How do we represent complex data structures in ARL, a language based on rectangular arrays and a multiplicity of appropriate functions?" The answers should help to establish future requirements for primal and base languages.

This topic is the subject of this paper. The material should provide new insights into the nature and storage of complex data structures. Obviously, most of the concepts are already known. yet, there is much benefit in providing a unified treatment of this important area of computex technology. The concepts, and functions as well, are presented by order of increasing complexity. In other words, the first few functions are relatively simple whereas the latter ones, especially those on LISP, axe faixly obscure, using xecursive functions and related techniques.

THE ARL SYSTEM

Statements and Functions
The APL terminal system ${ }^{7}$ combines Iverson's language ${ }^{8}$ and the concept of time shaxing to form an effective system fox interactive computing. Input to APL takes one of two principle forms: statements in the APL language and system commands. System commands are used to address the ApL terminal system itself and provide miscellaneous sexvices that are outside the scope of the language itself. Statements in the APL language fall into 3 categories:

1. Specification statements such as

$$
A+2 \times 3+4
$$

2. Branch statements, such as

$$
\rightarrow L O O P+2
$$

3. Function definitions, such as
$\nabla R+X$ PLUS Y
$R+X+Y$
∇

Moreover, the system operates in two modes: the execution mode and the definition mode. In the execution mode, statements are executed

[^0]immediately, In the definition mode, statements are stored as part of a function definition. System commands and functions can only be entered in the execution mode.

Specification and bxanch statements pemit expressions as arguments. Expressions can be composed of constants, vaxiables, monadic and dyadic functions, and parentheses in the usual sense. A right-tomeftorder of execution has been adopted. Table 1 contains the primitive scalar functions contained in ApL. They also apply to array arguments on an element-by-element basis. Thus

$$
41018 \leftrightarrow 123 \times 456
$$

etc.

Composite Functions

The extension of the scalar dyadic functions to arrays are temed composite functions. Three functions fall into this category: reduction, inner product, and outer product. Reduction is wxitten:

$$
\omega / A
$$

where is a dyadic function and A is an array. Thus if $V+32914$, then

$$
19 \leftrightarrow+/ V
$$

Reduction also applies to rank-n axrays along a single coordinate and effectively reduces the number of coordinates by one.

Inner product, which is related to the ordinary matris product, is written
$A f \cdot g B$
where f and g are dyadic functions and A and B are arrays. The matrix product of conformable matxices A and B is denoted by

$$
A+. \times B
$$

The outer product resembles the familiar cartesian product and is written

$$
A \circ . f B
$$

where A and B are arrays and f is again a dyadic function. If $A+123$ and $B \notin 6810$, then $A 0 .+B$ yields the matxix:

7	9	11
8	10	12
9	11	13

Table 1. Primitive Scalar Functions*

The mixed functions in APL are designed for use with axtays and provide a variety of userul operations, such as:

Generating a vector of integers.
Finding the index of an element in a vector.
Detemining the size or shape of an array.
Raveling an array or scalar to form a vector.
Catenating vectors and rank-n arrays.
Selecting or dropping elements of an array.
Sequencing elements of a vector.
Compressing and expanding an axray.
Reversal, rotation, and transposition.
set functions.
Base value and representation functions. Randorn number generation.

Mixed functions axe sumaxized in Table 2.

Indexing

A subscript in APL is termed an index and may be a scalar or an array. If $V \nleftarrow-73965143$, then $V\left[3617 \rightarrow 91^{-7}\right.$. Similarly, ifA $42202731, i, e$,

$$
A=\left(\begin{array}{ll}
2 & 7 \\
3 & 1
\end{array}\right)
$$

then

$$
V[A] \leftrightarrow 3 \begin{array}{rr}
4 & 4 \\
9 & -7
\end{array}
$$

Also, if $B+24 p^{-7} 3965143$, i.e.

$$
B=\left(\begin{array}{rrrr}
-7 & 3 & 9 & 6 \\
5 & 1 & 4 & 3
\end{array}\right)
$$

then $B[2 ; 3]=4, B[; 2]=31$, and $B[2 ;]=5143$.

MiscelZaneous Connents

Since this paper contains a number of APL programs, several comments are necessary. First, the user's input is indented six spaces and the computer types beginning in the left hand margin. Next, if the last operation in a statement is not a branch or specisication, then the result is typed at the terminal. Thus;
$A+10$
$A+3$
13

Name	Sign	Definition or example ${ }^{2}$
Size	$\bigcirc \mathrm{A}$	$\bigcirc P \leftrightarrow 4 \quad \rho E \leftrightarrow 34 \quad \rho 5 \leftrightarrow 10$
Reshape	VpA	
Ravel	, A	120E $\rightarrow 11200 E \leftrightarrow 10$ $, A \leftrightarrow(x / \rho A) \rho A \quad, E \leftrightarrow 112 \quad 0,5 \leftrightarrow 1$
Catenate	V,V	P, 12 $\rightarrow 2 \begin{aligned} & \text { P }\end{aligned}$
	V[A]	
Index ${ }^{4} 4$	$M[A ; A]$	($E\left[\begin{array}{lllll}1 & 3 & 3 & 2 & 1\end{array}\right] \rightarrow \begin{array}{rrrr}3 & 2 & 1 \\ 11 & 10 & 9\end{array}$
	A[A:	
Index generator ${ }^{3}$	${ }^{1} 5$	First S integers $14 \leftrightarrow 1{ }^{2} 34$ $10 \leftrightarrow a n$ empty vector
Index of ${ }^{3}$	$V i A$	Least index of $A \quad$ Pi3 $\rightarrow \rightarrow 2 \quad 512 c 5$ in V, or $1+0 V \quad P_{2} E \leftrightarrow 3 \begin{array}{llll}5 & 4 & 5\end{array}$
		$4414 \leftrightarrow 1 \quad 50505$
Take	$V \uparrow A$ $V \downarrow A$	Take (drop) IV[I] first $23 \uparrow X \rightarrow A B C$ elements on coordinate $-2 \uparrow p \leftrightarrow 4 \quad$ EFG I. (Last if $V[I]<0)$
Grade up5	ΔA	The permutation whichWould order A lascend- \quad43 5 3 2$\rightarrow 4$4 1 3 2
Grade down ${ }^{5}$	$\dagger A$	ing or descending) \dagger_{3}
Compress ${ }^{5}$	V / A	$1010 / P \leftrightarrow 250$
Expand ${ }^{5}$	$V \backslash A$	
		$\xrightarrow{ }$ I JKL
Reverse ${ }^{5}$	ϕA	$\phi X \leftrightarrow$DCBA HGFE$\quad \phi[1] X \leftrightarrow \Theta X \leftrightarrow$ IJKL
Rotate ${ }^{5}$	$A \phi A$	$3 \phi P \leftrightarrow 7235 \leftrightarrow-1 \phi P \quad 10{ }^{-1 \phi X} \leftrightarrow \mathrm{BCDA}$
		$L I J K$
Transpose		Coordinate AEI
	$V \phi A$	Coordinate I of $A \quad 21$ OX \rightarrow BFJ
		becomes coordinate
		$V[I]$ of result $11 Q E \leftrightarrow 1611$
	QA	Transpose last two coordinates $Q E \leftrightarrow 21 中 E$
Membership	$A \in A$	
Decode	V1V	$1011776 \leftrightarrow 1776$ ¢ $6460601123 \leftrightarrow 3723$
Encode	VTS	246060 T3723 $\rightarrow 12306073723 \leftrightarrow 23$
Deal ${ }^{3}$	S?S	$W ? Y \leftrightarrow$ Random deal of W elements from $1 Y$

Table 2. Primitive Mixed Functions*

1. Restrictions on argument ranks are indicated by: S for scalax, V for vector, M for matrix, A for Any. Except as the first argument of SiA or $S[A]$, a scalar may be used instead of a vector. A one-element array may replace any scalar.
2. Arrays used $1 \begin{array}{lllll}1 & 2 & 3 & 4 & A B C D\end{array}$

$$
\begin{array}{lllll}
9 & 10 & 11 & 12 & I J K L
\end{array}
$$

3. Function depends on index origin.
4. Elision of any index selects all along that coordinate.
5. The function is applied along the last coordinate; the symbols $t, ~ t, ~ a n d ~ e ~ a r e ~ e q u i v a l e n t ~ t o ~ / \%, ~ a n d ~ \phi, ~$ respectively, except that the function is applied along the first coordinate. If [S] appears after any of the symbols, the relevant coordinate is determined by the scalar S.

Notes to Table 2.

* Tables 1 and 2 and the above notes are reproduced from:

Falkoff, A. D., and K.E. Iverson, APL 360 User's Monuat, Yorktown Heights, M.Y. IBM Corporation, Watson Research Center, 1968 (Also available as TBM form \#GH20-0683-1)

Also, the function header statement needs further explanation. Consider,

$$
\nabla R+X A B C Y ; I ; J
$$

The del (∇) puts the APL system into the execution mode. R specifies an explicit xesult; $A B C$ is the name of the function: X and Y are durnyy variables (arguments); and I and J are local variables. Lastly the quad symbol (D) or the quotemquad symbol (D) indicates input or output depending on how it is used. $A 4]$ denotes input and $[\square A$ denotes output.

STRINGS AND SETS
The most primitive type of data structure, other than a scalar numeric data item, is the string - taken in this case to be a sequence of characters. In APL, a character string is stored as a vector so that a list of strings is stored as a twomimensional array or an extra long vector. A set is stored in a similar manner but is restricted to either character or numeric data.

Substming

The SUBSTR function in $P L / x$, for example, is easily constructed in ApL. The Eunction uses a string name, an offset, and a length as follows:

$$
-373-
$$

SUBSTR(NME, LOC, LEN)
and is simulated in APL as shown in Figure 1 . The function returns the value of the substring.

```
            \nablaSUBSTR[口]|
            \nabla R&S SUBSTR A
[1]
    R&S[-1+A[1]+1A[2]]
        \nabla
            CKTEA FOR THO'
            C SUBSTR 5 3
FOR
            C SUBSTR 1 2
TE
```

Fig. 1 Substring

Alphabetic Sort

An amazingly simple ARL program can be constructed to sort strings that are stored as a twomimensional array. Each row of the matrix represents a distinct string as depicted in Figure 2. The function uses the base value function to compute an index for each row and then uses the grade up function to compute the permutation of indices that would order the rows in ascending sequence.

```
            \nablaSORT[प]\nabla
            \nabla R&SORT A:S
    [1] St'ABCDEFGHIEKLMNOPQRSTUVWXYZ0123456789'
    [2] }R\leftarrowA[A(2+pS)\perpQSiAs
            \nabla
                    DATA
TEA FOR TWO
ALL COWS EAT GRASS
IMPOSSIBLE
SIGPLAN NEWS
MAGIC SQUARE
    SORT DATA
ALL COWS EAT GRASS
IMPOSSIBLE
MAGIC SQUARE
SIGPLAM NEWS
TEA FOR TWO
```


Patterm Matching and Replacement

The ability to search a given string for a sequence of characters had its foundations in Markov algoxithms and is an important feature of the SNOBOL Language. In SNOBOL, pattem matching and replacement has the general form:

$$
S T R P A T=R E R L
$$

where STR is the string reference, PAT is the pattern and RERL is the replacement string. In the above skeleton, any of the constructs, except the string refexence, can be omitted as required by a particular application. Two APL Eunctions are presented in Figure 3. The Eirst, EIWD, gives the index of the first occurrence of one string in another. The second, REPLACE, replaces one sequence of chaxacters with another. In the latter case, a dummy function WITH is used to give the function the appearance of being a statement in a problem-oriented language, i.e.

STR REPLACE A WITH B

```
        \nablaFIND[D]\nabla
    \nabla P&C FIND D
[1] P*(A/[1](-1+10C)\phi(C*,C)0.=D):1
    \nabla
        \nablaWITH[\square]\nabla
    \nabla R&A WITH B
[1] U135y<B
[2] R\leftarrowA
    \nabla
        \nablaREPLACE[口]\nabla
    \nabla R&STR REPLACE A;I;J
[1] }->((\rhoSTR)\geqI*14,(A*,A) FIND(STR*,STR))/L
[2] }->0,pR+ST
[3] L1:R&STR[II-1],U135V,STR[J+1(\rhoSTR)-J*'1+I+\rhoA]
    \nabla
        TXT*'ALL COWS EAT GRASS'
        TXT REPLACE 'EAT' WITH 'CHEW'
ALL COWS CHEW GRASS
        TXT REPLACE 'COWS' WITH ''
ALL EAT GRASS
```

Fig. 3 Pattem matching and xeplacement

The membership function in APL, written
$A \in B$
returns the value 1 if A is an element of B. The result has the same structure as the left axgunent. Thus "TEA FOR TWO ϵ " yielas the vector 00010001000 . The membership function is used in the union and intersection functions given in Eigure 4 .

```
            \nablaUNION[प]\nabla
    \nabla R&U UNION V
[1] R&U,(~V\inU\leftarrow,U)/V&,V
    \nabla
        \nablaIMTERS[D]V
        \nabla R&U INTERS V
[1] R*(U\inV)/U
    \nabla
        * ABDGH' INTERS 'BGL'
BG
1
```

Fig. 4 Set union and intersection

Character Translation

One of the most frequent problens in terminal-oriented systems involves character translation based on the type of terminal on the other end of the telephone line. Although the operation is trivial conceptuatlly, it is often cumbersome unless the computer has an appropriate instruction. Figure 5 lists an appropriate TRAMS function that utilizes the indexing facilities in API.

STACKS AND QUEUES
Storage is maintained dynamically in $A p L$ and this feature is particularly useful for implementing stacks and queves. In each case, the object is represented as a vector but in contradistinction to most implementations, a list pointer is not required. stack and queue functions use the take and drop functions in APL which are useful for operating on a list without decomposing it.

```
        \nablaTRAMS[प]\nabla
    \nabla B+TRANS A:A1:A2
```



```
    [2] A2*'ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789,
    [3] B&A2[A1:A]
    7
        TRANS '~E\alpha-- Op-~wO'
    TEA EOR TWO
        TRANS ':|*OTT1LME"
    IMPOSSTBLE
```

 Fig. 5 Character translation
 Quenes

A queue is a data structure in which additions are made at one end and deletions are made at the other. It is frequently referred to as a FIEO list. Figure 6 contains functions for $Q U E$ and DEQUE, respectively.

```
            \nablaQUE[D]D
            \nabla QUE A
    [1] }\mp@subsup{|}{\nabla}{}Q\leftrightarrowQ,
            \nablaDEQUE[D]\nabla
        \nabla R<DEQUE
    [1] R<1+Q
    [2] Q*1+Q
        \nabla
            Q+10
            QUE 45
            QUE 2
            QUE - 17.1
            DEQUE
    4 5
            DEQUE
    2
        QUE 119
        DEQUE
    -17.1
```

Fig. 6 Queue functions

Stacks
A stack is a structure in which entries are made at the same end using a last-in-fimt-out algorithm. stack functions are given in figure 7.

```
            \nablaPUSH[D]V
        \nabla PUSH A
    [1] STACK+A,STACK
        \nabla
        \nablaPULL[O]V
        \nabla R<PULL
    [1] R&1个STACK
    [2]STACK+1+STACK
        \nabla
            STACK}+1
            PUSH 4.5
            PUSH 2
            PUSH-17.1
            PULL
-17.1
            PULL
2
            PUSH 119
            PULL
1 1 9
```

Fig. 7 stack functions

TABLES

A table is set of ordered pairs $\left(k_{i}, v_{i}\right)$ with unique first components k_{i}. Here the $k_{i}^{\prime \prime}$ s are taken to be numeric values while the values can be numeric values or character strings. An entry v_{i} is said to be associated with the key k_{i}. Table lookup involves determining, for a key k^{1}, the table entry (k_{i}, v_{i}) where

$$
k^{1}=k_{i}
$$

The process makes available the required value v_{i}

Numexic Values

A numexic table is stoxed as an (nx2) matrix where the first colum represents the keys and the second column represents the values. Given a key K and a table T, it is easily detemined if that key is found in the table; in ract it is expressed as

$$
K \in T[: 1]
$$

Replacement, deletion, adition, and Eetch functions are given in Figuxe 8.

Variable Length Character Values

Table management using variable-length character values represents more of a problem but is easily solved in APL. The keys are stored as a vector ID of numeric values. Character values are stored as a continuous string TEXT of characters. A supplementary vector START is also used to denote the position of each entry in TEXT corxesponding to an element of ID and a vector LEAGTH that gives the length of each variable-length entry. Consider the entries:
Key Value
37 'TEA FOR TWO'
3 'ALL COWS EAT GRASS'
50 'IMPOSSIBLE'
14 'SIGPLAN NEWS'
159 'MAGIC SQUARE'

If these walues were entered sequentially, they would be stored as follows:

```
        ID
```

$\begin{array}{lllll}37 & 3 & 50 & 14 & 159\end{array}$
START
$\begin{array}{llllll}0 & 11 & 29 & 39 & 51 & 63\end{array}$
LENGTH
$\begin{array}{lllll}11 & 18 & 10 & 12 & 12\end{array}$
TEXT

TEA FOR TWOALL COWS EAT GRASSIMPOSSIBLESIGPLAN NEWSMAGIC SQUARE

Functions to store, fetch, and delete entries are given in Figure 9. ITNKED LISTS

Linked lists commonly exist in two forms: unidirectional lists and bidirectional lists, represented as follows:

```
            \nablaCHECK[口]V
    \nabla L&T CHECK K
[1] L&K\inT[;1]
    \nabla
        #INDEX[D]D
    \nabla I&T INDEX K
[1] I&T[:1]:K
    \nabla
        \nablaREPLACE[口]\nabla
    \nabla REPLACE V
[1] }->(TABLE CHECK V[1])/L
[2] }->0,0\square&|EY NOT IN TABLE
[3] L1:TABLE[TABLE INDEX V[1]:2]*V[2]
    \nabla
        \nablaADD[\square]\nabla
    \nabla ADD V
[1] }->(~TABLE CHECK V[1])/L1.
[2] }->0,O口&:DUPLICATE KEY
[3] L1:TABLE*TABLE.[1] V
    \nabla
        \nablaFETCH[D]\nabla
    \nablaR↔FETCHK
[1] }->(TABLE CHECK K)/L
[2] }->0,0\square\div1KEY NOT IN TABLE'
[3] L1:R&TABLE[TABLE INDEX K:2]
    \nabla
        \nablaDELETE[\square]\nabla
    \nabla DELETE K:I
[1] }->(TABLE CHECK K)/L
```



```
[3] L1:TABLE&(((I-1),2)&TABLE),[1]((-((1\uparrow\rhoTABLE)-I&TABLE INDEX K)),2)\uparrowTABLE
    \nabla
```

Fig． 8 Functions for use with tables with numexic values

```
                    TABLE
            3 34
            267
            8 32
            9 112
            5 55
                    REPLACE 8 75
                    TABLE
                3 34
            67
            75
            112
                5
                    ADD 130
                    TABLE
                3 34
                267
                8 75
                9 112
            5 55
            130
                FETCH 2
    6 7
    FETCH 45
    KEY NOT IN TABLE
            DELETE9
                    TABLE
            3 34
            2.67
            8 75
            5 55
            130
                            DELETE41
    KEY NOT IN TABLE
```

Fig. 8 (Continued)

```
    \nablaIMIT[口]\nabla
    \nabla INIT
    ID&LENGTH&TEXT*10
    START*,0
    \nabla
    \nablaSTORE[D]\
    \nabla STORE:I:A
        'ENTER INTEGER ID FOLLOWED BY TEXT ON THE NEXT LINE'
    [1] [2] }->(0=I&\square)/
    [3] }->(0=0A<\square)/
    [4] LENGTH+LENGTH,OA
    [5] ID&ID,I
    [6] START&START,OTEXT*TEXT,A
    [7] ->2
    \nabla
        \nablaFETCH[\square]\nabla
    \nabla FETCH LIST:IND:I:L
    [1] L&PIMD&IDILIST*,LIST
    [2] }->(1=V/IND>\rhoID)/ER
    [3] I*O
    [4] LOOP: }->(L<I&I+1)/
    [5] TEXT[START[IND[I]]+BLENGTH[IMD[I]]]
    [6] [<<<
    [7] }->\mathrm{ LOOP
    [8] ERR:'INVALID ID'
    \nabla
        \nablaDELETE[口]\nabla
    \nabla DELETE KEY;I
[1] }->((\rhoID)\geqI&ID:KEY)/G
[2] }->0,0口<<|NVALID ID'
[3] GO:TEXT&TEXT[1START[I]],TEXT[J+1(\rhoTEXT)-J&START[I]+LENGTH[I]]
[4] ID&ID[1I-1],ID[I+1(\rhoID)-I]
[5] START&START[II-1],((START[I+1(\rhoSTART)-I])-LENGTH[I])
[6] LENGTH<LENGTH[:I-1],IENGTH[I+1(\rhoLENGTH)-I]
    \nabla
```

Fig． 9 Functions fox use with tables with variable－length values

```
            IMIT
                            STORE
ENTER INTEGZR ID FOLLOWED BY TEXT ON THE NEXT LINE
\square:
                            37
TEA FOR TWO
\square:
3
ALL COWS EAT GRASS
\square:
    50
IMPOSSIBLE
\square:
    1 4
SIGPLAN NEWS
\square:
    159
    MAGIC SQUARE
    \square:
            O
            FETCH 14 3
SIGPLAN NEWS
ALL COWS EAT GRASS
            ID
    37 3 50 14 159
            DELETE 14
            FETCH 14
INVALID ID
            FETCH 50
IMPOSSIBLE
```

Fig. 9 (Continued)

Inidirectional List

Bidimectional List

In $A P L$, the data part of a linked-1ist is stored as mumeric or character data, es required. Pointer data is stored as a numeric array with indices to preceding and succeeding nodes, as required.

Unidinectional Lists
Consider the numeric list

It is represented in $A P L$ as:

$\operatorname{LsT}=$| 45 | 2 |
| :---: | :---: |
| 81 | 3 |
| -14 | 0 |

Adding a node after the second one is depicted as follows:

and in APL as:

LIST $=$| 45 | 2 |
| :---: | :---: |
| 81 | 4 |
| 24 | 0 |
| 50 | 3 |

Thus, deletions and additions are made without requiring that other data items be moved. Figure 10 gives functions for listing, ading, and deleting mode elements. Although boundary conditions have not been satisfied in all cases to preserve clarity of exposition, the functions demonstrate the flexibility inherent in APL and the effective use of dynamic storage.

Bidirectional Lists

Bidirectional lists are similar to their unidirectional counterparts but contain backward pointers as shown previously. Backward pointers facilitate deletion and require only that the location of the node to be deleted be known. The 1ist:


```
        \nablaLIST[D]V
    \nabla R<LIST L:I;J
    [1] I I*0*I 
    [3] I*I,J*L[J:2]
    [4] }->\mathrm{ LOOP
    [5] PRINT:R*L[T:1]
    \nabla
        VINSERT[D]V
    \nabla INSERT N
    [1] M M1] NODE AFTER WHICH NEW NODE SHOULD BE INSERTED
    [2] N[2] NEW NODE
    [3] L[N[1]:2]&1^pL*L,[1] N[2],L[N[1];2]
    \nabla
        \nablaINDEXOF[D]D
    \nabla R&INDEXOE A
    [1] }R+L[:1]:
    \nabla
        \nablaPRED[G]D
    \nabla R+PRED I
    [1] P&L[:2],I
    \nabla
        \nablaDELETE[口]\
    7 DELETE N
    [1] N N[1] NODE TO BE DELETED
    [2] A N[2] PRECEDING NODE
    [3] L[N[2];2]*L[N[1]:2]
        \nabla
        \nablaAPPEND[D]D
    \nabla APPEND A;I:U
    [1] I I 1
    [2] L1:->((I&L[J&I;2])}\not=0)/L
    [3] }L<[L,[1](A,0
    [4] L[J;2]*1+pL
        \nabla
```

Fig. 10 Manipulation of unidirectional linked $1 i s t s$

```
            L
            45 2
            813
    -14 0
                LIST L
    45 81 -14
                INSERT 2 50
                L
            45 2
            81 4
            -14 0
            50 3
            LIST L
    45 81 50 -14
                INDEXOF }8
    2
        PRED 3
    4
        PRED INDEXOF 50
    2
        DELETE 2 1
        LIST L
    45 50-14
        APPEHD 25
        LIST L
    45 50 1-14 25
```

Fig. 10 (Continued)

LIST $=$| 0 | 45 | 2 |
| :---: | :---: | :---: |
| 1 | 81 | 3 |
| 2 | 75 | 0 |

Again, an additional node is depicted shematically as:

and in APL as:

LIST =

0	45	2
1	81	4
4	75	0
2	25	3

Sample ApL functions for bidirectional Linked lists are given as Eigure 11. LISP-LTKE STRUCTURES

The LTsP Language, developed by McCarthy 9 and discussed by Hopgood 10 and Katwan 11 presents data structures that axe more complicated to represent and to effectively process.

```
        VLIST[D]V
    \nabla R&IIST L;I:J
    [1] I*-J*1
    [2] LOOP:->(L[む;3]=0)/PRINT
    [3] I&I;e&L[J:3]
    [4] ->TOOP
    [5] PRINT:R*L[I:2]
    V
        \nablaAPPEND[口]\nabla
    \nabla APPEND A;I;J
    [1] }I<
    [2] L1:->((I*L[J*I:3])\geq0)/L1
    [3] L&L,[1] e, A,0
    [4] L[J:3]*1个0L
        \nabla
        \nablaINSERT[D]\nabla
    \nabla INSERT N:I
    [1] A N[1] NODE AFTER WHICH NEW NODE SHOULD BE IMSERTED
    [2] N[2] NEW NODE
    [3] }->(L[N[1];3]\not=0)/L
    [4] APPEND N[2]
    [5] }->
    [6] L1:L[L[I;3]:1]*L[N[1]:3]&I&1\uparrowpL&L,[1] N,L[N[1]:3]
    \nabla
        \nablaINDEXOF[D]V
    \nabla R&INDEXOF A
    [1] R&L[;2]:A
    \nabla
        \nablaPRED[\square]\nabla
    \nabla R&PRED I
[1] R&L[;3]|I
    \nabla
        \nablaDELETE[口]\nabla
    \nabla DELETE I
    [1] A I INDEX OF NODE TO BE DELETED
    [2] L[L[I;1];3]*L[I;3]
    [3] }->(L[I;3]=0)/
    [4] L[L[I;3];1]*L[I;1]
        \nabla
```

Fig． 11 Manipulation of bidirectional linked lists

```
        L
        045 2
        181 0
        APPEND 75
        L
        0}45\quad
        1813
        275 0
        IMSERT 2 25
        L
        045 2
        1814
        4% 0
        2 25 3
        LIST L
    45 81 25 75
        INDEXOF75
    3
    PRED 3
    4
        APPEND 90
        L
        O45 2
        1814
        4 75 5
        2 25 3
        3 90 0
        LIST L
    45 81 25 75 90
        DELETE INDEXOF 25
        LIST L
    45 81 75 90
```

Fig, 11 (Continued)

Let the LISP register depicted as
cax cdr
be represented in APL as a matrix of the form

type	index
car	
type	index
car	

where

$\frac{\text { type }}{0}$	$\frac{\text { stmucture }}{\text { composite symbol }}$
1	atomic symbol
2	null symbol

Atomic symbols are stored as single characters in a character array. Composite symbols are stored as a rank-3 array - in this case named LIST. The character array is appropriately named DATA. Thus the LISp representation of

$$
+A+C D E
$$

and depicted as

would be stored in the APL version as:
$+A *+C D E$

	${ }^{\text {LIS T }}$
1	1
0	2
1	2
0	3
0	4
2	0
1	3
0	5
0	7
0	6
1	7
2	0
1	4
0	8
1	5
0	9
1	6
2	0

ApL functions (Figure 12) are developed to perform the following LISP-lime operations:

1. print
2. cons
3. car
4. cdr
5. atom
6. nil
7. enter data

CONCLUSIONS
Although the preceding discussion is not, and is not meant to be, a complete treatment of data structures and associated processing, it is perhaps indicative of the functions that programmers actually program and of structures that language designers consider. There is no intent here to debate whether the data structures provided in ApL are sufficiently primitive to build more complicated structures or whether the APL primitive

```
        \nablaENTER[C]\
    \nablaR&ENTER A
    [1] R<1,pDATA<DATA,A
    \nabla
        \nablaCONS[D]\nabla
    \nabla R&A CONS B
    [1] R&1^0LIST*LIST:[1] A,[0.5] B
    V
        \nablaCAR[D]\nabla
        \nabla P&CAR I
    [1] R*LIST[I;1;]
    \nabla
        \nablaCDR[\square]V
    \nabla R&CDR I
    [1] R&LIST[I;2;]
    \nabla
        \nablaNL[\square]\nabla
    \nablaR&NIL
    [1] R&20
    \nabla
        \nablaATOM[D]\nabla
    \nabla R&ATOM V
    [1] R*1=1\uparrowV
        \nabla
            \nablaINIT[口]\nabla
        \nabla INIT
    [1] DATA*10
    [2] LIST& 0 2 2 00
        \nabla
```

rig. 12 Manipulation of LISP-1ike structures

```
        \nablaPRIMT[\square]\nabla
    R&PRINT A
[1] }->(1=\rho,A)/L
[2] }->(2=p,A)/L
[3] ->0,PR&DOMAIN ERROR IN PRINT:
[4] L1:->0,pR&LPRIDT A
[5] L2: }->(0=1+A)/L
[6] ->(1=1\uparrowA)/L5
[7] }->pR&1
[8] L3:->0,PR*LPRIMT A[2]
[9] L5:->0pR*DATA[A[2]]
    \nabla
        \nablaLPRINTIDIV
    \nabla R&LPRINT A
[1] }->((\operatorname{LIST}[A;1;1]=1)ALIST[A;2;1]=1)/L
[2] }->((LIST[A;1;1]=0)^LIST[A;2;1]=1)/L
[3] }->((\operatorname{LIST}[A;1;1]=1)ALIST[A;2;1]=0)/L
[4] }->((LIST[A;1;1]=0)^LIST[A;2;1]=0)/L
[5] }->((\operatorname{LIST}[A;1;1]=1)ALIST[A;2;1]=2)/L
[6] }->((\operatorname{LIST[A;1;1]=0)ALIST[A;2;1]=2)/L6
[7] }->pR*:
[8] L1:->0,PR*DATA[LIST[A:1:2]],DATA[LIST[A;2;2]]
[9] L2:->0,0R&(LPRINT LIST[A;1;2]),DATA[LIST[A;2;2]]
[10] L3:->0,OR&DATA[LIST[A;1;2]],LPRINT LIST[A;2;2]
[11] [4:->0,\rhoR&(LPRINT LIST[A;1;2]),LPRIMT LIST[A;2;2]
[12] LS:->0,\rhoR&DATA[LIST[A:1:2]]
[13] [6:->0,pR&LPRINT LIST[A;1:2]
    7
```

Fig. 12 (Continuation 1)

```
        PRINT 1
+A*+CDE
            CAR 1
1 1
    PRINT CAR1
    +
    PRINT CDR 1
A*+CDE
    PRINT CAR 3
*+CDE
    ATOM CAR 4
1
    PRINT CAR4
    INIT
            I&(ENTER''') CONS COMP (ENTER 'X') CONS COMP
            (ENTER 'Y') CONS NIL
            PRINTI
    +YY
        LIST
        1 1
        2 0
        12
        0}
        13
        0}
        DATA
    YX+
```

(ig. 12 (Continuation 2)

	$\operatorname{LOC}+(2$	$\begin{aligned} & \left.*^{1}\right) \\ & \left(2^{9}\right) \end{aligned}$	$\begin{aligned} & \text { COMS } \\ & \text { CONS } \end{aligned}$	$\begin{aligned} & \text { COMP } \\ & \text { NIE } \end{aligned}$	$(C O M P I)$	CONS	COMP
* + XYZ	PRINT						
	LIST						
1							
2							
1.							
01							
1							
02							
14							
20							
03							
04							
15							
05							
	DATA						
$\underline{X}+2 *$							

Fig. 12 (Continuation 3)
functions are suficiently wich. Tt cannot be ignored, however, that the functions presented are amazingly simple - that is, considering the amount of programing that ordinarily would be required in assembler language or most other languages. It seems that we as language designers should be as interested in the base language upon mich sophisticated structures can be built as we are on the data structures themselves. In this way, our labors may affeck, significantly, the computing machines of tomorrow.

REPERENCES

1. Bashkow, T.R. A. Sasson, and A. Kronfeld, "System design of a FORTRAN machine, IEEE Transactions on Electronic Computers, EG-16 (August, 1967), p. 485-499.
2. Melbourne, A.J. and J.M. Pugnixe, "A small computer for the direct processing of FORTRAN statements; Computer Joumal, 8(1968), p. 24-27.
3. Sugimto, M. "PL/I reducer and direct processor". Proceedinge of the 24th ACM Mational Conference, (1969), p. 519-538.
4. Weber, H. "A microprogrammed implementation of EULER on IBM 360/30," Communications of the ACM, (September, 2967). p. 549-558.
5. Husson, S., Microprograming: Principles and Practices, Englewood Clifs, N.J. Prentice-Hall, Inc. 1970.
6. Thurber, K.J. and J.W. Myma, "System design of a cellular ApL computer," IEEE Transactions on Computers, Vol. c-19. Number 4 (Apri1, 1970), p. 291-303.
7. Katzan. H. APL Programming and Computer Techniques, New York Van Nostrand Reinhold Co. 1970.
8. Ivexson, K.E., A Progromming Language, New York, John Wiley and Sons, Inc. 1962.
9. McCarchy, J., et al., LISP 1.5 Progrommer's Manual, Cambridge, Mass., The M.I.T. Press, 1962.
10. Hopgood, F.R.A. Compiling Techniques, New York, American Elsevier Publishing Company, Inc., 1969.
11. Katzan, H. Advanced Programming: Programming and Operating Systems, New Yoxk, Van Nostrand Reinhold Co. 1970.

[^0]: APL stands for A programming Language based on the book by k. E . Iverson, A Programming Language, wiley, 1962.

