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ABSTRACT 

Methods for the representation of complex data structures in APLt 
a programming language based on rectangular arrays and a multiplicity 
of functions~ are presented° Data structures considered are: strings 
and sets~ stacks and queues~ tables~ linked lists~ and LISP-like struc- 
tures. The material provides insight into the nature of data structures 
and should aid in establishing future requirements for primal and base 
languages° 

INTRODUCTION 

Modern computing systems tend to be complex compared with the simple 

word-oriented machines of fifteen years ago. Todays we hear of privi- 
leged operations ~ supervisor/problem states ~ interrupts ~ sophisticated 
I/Or etc. In spite of this~ the primal language for using the computer 

(ioeo t assembler language) has remained essentially the same - except 
for a few bells and whistles. Problem solvers and programmers~ howevert 
wish to use the machine in another way: with a higher-level language 
such as ALGOL~ FORTRAN~ or PL/I. Thusfart the compiler has been the 
bridge between the languages of the user and the language of the computers 
Because compiler and compilation costs are high and problem solvers and 
machine designers seem to be going in opposite directions~ several 
researchers -namely: Bashkow, Sassong and Kronfeldl~ Melbourne and 
PugTnire2~ Sugimto3~ and Weber 4 - have proposed and developed systems 

that directly execute the statements of a higher-level language. Recent 
advances in microprogramming and writable control store (e~g., see Husson 5) 
indicate that the architecture of a computer using a higher-level 
language as a primal language is indeed feasible from both performance 
and cost standpoints~ 
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The recent popularity of APL has resulted in at least one APL 

machine (see Thurber and Myrna 6) and led several researchers to con °- 
jecture on the possibility of implementing APL (or a subset of it) as 

a primal language° APL is also in widespread use as a problem solving 
language and the number of APL enthusiasts (in all areas of computer 

science) is growing rapidly° For both applications~ the key question 

is: "How do we represent complex data structures in APL~ a language 
based on rectangular arrays and a multiplicity of appropriate ftu%ctions?" 

The answers should help to establish future requirements for primal 

and base lal~guageso 
This topic is the subject of this paper° The material should 

provide new insights into the nature and storage of complex data 

structures. Obviously~ most of the concepts are already known° Yet, 
there is much benefit in providing a unified treatment of this important 
area of computer technology° The concepts~ and functions as wells are 

presented by order of increasing complexity° In other words, the first 
few functions are relatively simple whereas the latter ones, especially 
those on LISPs are fairly obscure~ using recursive functions and related 

techniques 

THE APL SYSTEM 

Statements and Functions 

The APL 'terminal system 7 combines Iverson's language 8 and the 

concept of time sharing to form an effective system for interactive 
computing° Input to APL takes one of two principle forms: statements 

in the APL language and system comm~andso System commands are used to 
address the ~2PL terminal system itself and provide miscellaneous services 

%hat are outside the scope of the language itself° Statements in the 
APL l&nguage fall into 3 categories: 

lo Specification statements such as 

A+2x 3+¢ 

2o Branch statements~ such as 

÷LOOP+2 

3o Function definitions~ such as 

VR÷X PLUS Y 
R+X+Y 
V 

Moreover~ the system operates in two modes: the execution mode and 
the definition mode. In the execution mode, statements are executed 

APL stands for A Programming Language based on the book by K.Eo Iverson~ 
A Programming Language~ Wiley~ 1962o 
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immediately° In td~e definition modes statements are stored as part 
of a function definition° System commands and functions can only be 
entered in the execution mode° 

Specification and brancih statements permit expressions as arg~umentso 
Expressions can be composed of constants, variables~ monadic and dyadic 
functions s and parentheses in the usual sense° A right-to-left order 
of execution has been adop~cedo Table 1 contains the primitive scalar 
functions contained in APLo They also apply to array arguments on an 
element-by-element basis° Thus 

4 10 1.8 +-+ 1 2 3x4 5 6 

etco 

Com~osi te Functions 

The extension of the scalar dyadic functions to arrays are termed 
composite fhnctions° Three functions fall into this category: reductions 
inner products and outer product° Reduction is written: 

~/A 

where ® is a dyadic function and A is an array. Thus if V+3 2 9 1 4s 
then 

19+-+ + /V 

Reduction also applies to rank-n arrays along a single coordinate and 

effectively reduces the number of coordinates by one. 
Inner products which is related to the ordinary matrix product¢ is 

written 

Af°gB 

where f and g are dyadic functions and A and B are arrays° The matrix 
product of conformable matrices J and B is denoted by 

A +  o xB 

The outer product resembles the familiar cartesian product and is 

written 

Ao.~ 

where A and B are arrays and f is again a dyadic function. If A÷I 2 S 
and B÷6 8 10, then Ao.+B yields the matrix: 

7 9 11 
8 10 12 
9 11 13 
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Monadic form fS 

Definition Name 
or example 

+B ++ 0 +B 

-B ÷÷ 0-B 

×s ÷+ (~>0)-(S<0) 

÷B +÷ 1¢B 

B < LB 
3 o ~ 4  3 

- 3  14 -4 

*B + ÷  (2°71828° o)*B 

® * N  ÷÷ N +÷ *@N 

I-3. 14 ÷+ 3o 14 

~0 + +  1 
~B + +  B x ~ B - I  

or IS ÷+ Gamma(B+l) 

?B +÷ Random choice 
from ~ B 

OB + +  B x 3 o  14159. o . 

~1 +÷ 0 ~0 ÷+1 

Plus 

Negative 

Signum 

Reciprocal 

Ceiling 

Floor 

Exponential 

Natural 
logarithm 

Magnitude 

Factorial 

Rol i 

Pi times 

Not 

( -A )o.B 
(1-B.2)*o5 

Arcsin B 
Arccos B 
Arctan B 

(-1+B.2).o5 
Arcsinh B 

A AoB 

0 ( 1 - B , 2 ) * o 5  
1 Sine B 
2 Cosine B 
3 Tangent B 

4 (1+B.2).o5 
5 Sinh B 

Arccosh B 6 Cosh B 

Arctanh B 7 I Tanh B 

Table of Dyadic o Functions 

Dyadic foz~ ifB 

Name Definition 
or example 

Plus 

Minus 

Time s 

Divide 

Maximum 

Mi n imum 

Power 

Logarithm 

Re s idue 

2 + 3 ° 2  +-+ 5 ° 2  

2 - 3 . 2  + >  - 1 o 2  

2 X 3 o 2  +.÷ 6 ° 4  

2 ¢ 3 . 2  + ÷  0 ° 6 2 5  

3 [ 7  ++ 7 

3 L 7  + +  3 

2 * 3  + ÷  8 

Binomial 

zoef ficient 

Deal 

]irculaz 

%nd 
)r 
{and 
{or 

]ess 
~ot greater 
~qual 
~ot less 
~reater 
~ot Equal 

A®B +÷ Log B base A 
A÷B ÷+ ( ® B ) ÷ ® A  

Case ~ A IB 

A B-(IA) B÷IA 
A = 0 , B _ > 0  B 
A = 0 ~ B < 0 | D o m a i n  e r r o r  

A~B ÷÷ (~B)÷(~A)×!B-A 
2 [ 5  ÷+ i0 3 ! 5  +÷ 10 

A Mixed Function (See 
Table 3°8) 

See Table at left 

1 
0 
o 

0 

Relations 
Result is 1 if the 
relation holdst 0 
if it does not: 

3_<7 ÷+ 1 
7_<3 ÷+ 0 

Table l o Primitive Scalar Functions 
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Mixed Functions 

The mixed functions in APL are designed for use with arrays and 

provide a variety of useful operations~ such as: 

Generating a vector of integers,~ 

Finding the index of an element in a vector° 
Determining the size or shape of an array. 
Raveling an array or scalar to form a vector~ 
Catenating vectors and rank-n arrays. 
Selecting or dropping elements of an array. 

Sequencing elements of a vector° 
Compressing and expanding an array° 

Reversals rotation~ and transpositions 
Set functions 

Base value and representation functions. 
Random number generation° 

Mixed functions are summarized in Table 2° 

Inde~r£ng 

A subscript in APL is termed an index and may be a scalar or an 
array~ If V + -7 3 9 6 5 1 4 3~ then V[3 6 1]+-~ 9 1 -7. Sim/larly~ 
if J + 2 2p2 7 3 1~ i~e.~ 

then 

9 -7 

Also~ if B + 2 4p -7 3 9 6 5 1 4 3~ i-oe.t 

B = 7 3 9 

5 1 4 

then B[2;3] : 4, B[;2] -- 3 I, and B[2;] : 5 1 4 3. 

Miscel laneo~ Comments 

Since this paper contains a number of APL programs t several comments 

are necessary, Firsts the user's input is indented six spaces and the 
computer types beginning in the left hand margins Next, if the ~ast 

operation in a statement is not a branch or specifications then the 

result is typed at the terminal. Thus, 

A÷IO 

A+3 
13 
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Name S i g n  I D e f i n i t i o n  o r  e x a m p l e  2 

Size 

Reshape 

Ravel 

Catenate 

Index S 4 

l l n d e x  
g e n e r a t o r  s 

Index of s 

T a k e  

p r o p  
G r a d e  u p  5 

G r a d e  d o w n  s 

Compress 5 

E x p a n d  5 

Reverse s 

R e  t a t e  5 

Transpose 

M e m b e r s h i p  

Decode 

Encode 

Deal 3 

pA 

VpA 

~A 

V,V 

VEAl 

MEA;A] 

A[A;o o 

o . ~ ; d ]  

iS 

ViA 

V+A 

V+A 
~xA 

VA 

V/A 

V\A 

~4 

ACA 

v~A 

~A 

A6A 

gi V 

VTS 

p P + +  4 p};,' + +  3 4 

R e s h a p e  A t o  d i m e n s i o n  Y 
12pE ++ ~ 12 0pE ++ ~ 0 
~A + +  ( x / p i ) p i  ~E + + L 1 2  

p 5  + +  l 0  

3 4p ~ 12 + +  E 

p , 5  + +  "i 

P,I 2 + +  2 3 5 7 1 2 

1 
.P[ 2 ] + + 3  P[ 4 3 2 1] ++7  5 3 2 

El1 3;3 2 1] ++ 3 2 1 

1 1 10 9 
E[1;] ++ 1 2 3 4 ABCD 

E[;1] ++ 1 5 9 'ABCDEFGHIJKL~[E] ++ EFGH 

IJKL 
14 ++ 1 2 3 4 

0 ++ a n  e m p t y  v e c t o r  

5 1 2 5 
PiE ++ 3 S 4 5 

S 5 5 5 

P t  3 + + 2  

4 414 + +  1 

2 3iX ++ iBC 

EFG 
2+P ++ 5 7 

First S integers 

L e a s t  i n d e x  o f  A 

i n  Ve o r  l+pV 

43 5 3 2 ++ 4 1 3 2 

~3 5 3 2 +'+ 2 1 3 4 

T a k e  ( d r o p )  IV[I] f i r s t  
e l e m e n t s  o n  c o o r d i n a t e  
£o ( L a s t  i f  VIII<O) 
T h e  p e r m u t a t i o n  w h i c h  
w o u l d  o r d e r  J ( a s c e n d -  
i n g  o r  d e s c e n d i n g )  

1 3 
1 0 1 O/P ++ 2 5 1 0 1 O/E ÷+ 5 7 

9 11 
1 0 1/[1]E ++ 1 2 3 4 ++ 1 0 lIE 

9 10 11 12 

A BCD 
1 0 1\12 ++ 1 0 2 1 0 1 1 I\X ++ E FGH 

f JKL 
D CBA IJKL 

¢x + +  H a F E  ¢[~]x + ÷  ex + +  EFaH 
LKJI ~P ++ 7 5 3 2 ABCD 

B CDA 
3%P ++ 7 2 3 5 ++ -1¢P 1 0 -lqbX ÷+ EFGH 

LIJK 

S?S 

Coordinate I of A 
becomes coordinate 

VII] of result 

AEI 

2 lkX ++ BFJ 

CGK 
1 lkE ++ 1 6 11 DHL 

Transpose last two coordinates @E ++ 2 i@E 

1 0 
pWcY ++ pW EeP ++ 1 0 1 0 

P < 1 4  + ,1 1 0 0 0 0 0 0 
10±1 7 7 6 ++ 1776 

24 60 60T3723 ++ 1 2 3 

24  60 6 0 1 1  2 3 ++ 3 7 2 3  

60 6 0 T 3 7 2 3  ++ 2 3 

W?Y ÷+ Random deal of W elements from i Y 

Table 2o Primitive Mixed Functlons 
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lo R e s t r i c t i o n s  o n  a r g u m e n t  r a n k s  a r e  i n d i c a t e d  b y :  S f o r  
s c a l a r ,  V f o r  v e c t o r ,  M f o r  m a t r i x ~  i f o r  Any°  E x c e p t  a s  
t h e  f i r s t  a r g u m e n t  o f  Si.A o r  S I A l ,  a s c a l a r  may  b e  u s e d  
i n s t e a d  o f  a v e c t o r °  A o n e - e l e m e n t  a r r a y  may  r e p l a c e  a n y  
s c a l a r °  

2o A r r a y s  u s e d  1 2 3 ~ 
i.n e x a m p l e s ~  P +÷ 2 3 5 7 S' +-~ 5 6 7 8 

9 10 1 t  12 
3o F u n c t i o n  d e p e n d s  o n  i n d e x  o r i g i n s  

ABCP 
X + ÷  EFGH 

IJKL 

4° E l i s i o n  o f  a n y  . i n d e x  s e l e c t s  a l l  a l o n g  t h a t  c o o r d i n a t e °  

5° The  f u n c t i o n  i s  a p p l i e d  a l o n g  t h e  l a s t  c o o r d i n a t e ;  t h e  
s y m b o l s  t ,  %, a n d  e a r e  e q u i v a l e n t  t o  /~ \~  a n d  ©~ 
r e s p e c t i v e l y ~  e x c e p t  t h a t  t h e  f u n c t i o n  i s  a p p l i e d  a l o n g  t h e  
f i r s t  c o o r d i n a t e °  I f  I S ]  a p p e a r s  a f t e r  a n y  o f  t h e  s y m b o l s ~  
t h e  r e l e v a n t  c o o r d i n a t e  i s  d e t e r m i n e d  b y  t h e  s c a l a r  So 

Notes to Table 2. 

* Tables 1 and 2 and the above notes are reproduced from: 

Falkoff~ AoDo, and KoEo Iverson~ APL\360 User's M~ual~ Yorktown Heights~ 

NoYo~ IBM Corporations Watson Research Centers 1968 (Also available as 

IBM form #GH20-0683-1) 

Also~ the function header statement needs further explanation. Consider~ 

VR+X ABC Y;I;J 

The del (V) puts the APL system into the execution mode. R specifies 

an explicit result; ABC is the name of the function; X and Y are dummy 
variables (arguments); and I and J are local variables. Lastly, the quad 

symbol (~]) or the quote-quad symbol (~) indicates input or output - 
depending on how it is used. A~{~ denotes input and []+A denotes output° 

STRINGS AND SETS 

The most primitive type of data structure, other than a scalar 
numeric data item, is the string - taken in this case to be a sequence 

of characters° In APL, a character string is stored as a vector so 
that a list of strings is stored as a two~dimensional array or an extra 
long vector. A set is stored in a similar manner but is restricted to 

either character or numeric data° 

Subs tring 

The SUBSTR function in PL/I, for examples is easily constructed in 
APLo The function uses a string name~ an offset~ and a length as follows: 
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SUBSTR(NHE~ LOC~ kiN) 

and is simulated in APL as shown in Figure Io 
value of the substring. 

~t%e function r e t u r n s  t h e  

Ill 

FOR 

TE 

?SUBSTR[~]V 
V R+S SUBSTR A 

R+S[-I+A[ I ]+ tA[ 233 
V 

C+ ~ TEA FOR TWO 
C SUBSTR 5 

C SUBSTR i 2 

Fig. 1 Subs tring 

Alphabetic Sort 

An amazingly simple APL program can be constructed to sort strings 
that are stored as a two-dimensional array° Each row of the matrix 

represents a distinct string as depicted in Figure 2o The function uses 
the base value function to compute an index for each row and then uses 
the grade up function to compute the permutation of indices that would 

order the rows in ascending sequence° 

[I] 
[2] 

VSORr[~]V 
V R÷SORT A~S 

S÷ ~ ABCDEFGHIJKLMNOPQRSTUVWXYZOI23q56789' 
R+A[~(2+pS)ikSiA~] 

V 

DA TA 
TEA FOR TWO 
ALL COWS EAT GRASS 
IMPOSSIBLE 
SIGPLAN NEWS 
MAGIC SQUARE 

SORT DATA 
ALL COWS EAT GRASS 
IMPOSSIBLE 
MAGIC SQUARE 
SIGPLAN NEWS 
TEA FOR TWO 

Figs 2 Alphabetic sort -374- 



Pattern Matching and Replacement 

The ability to search a given string for a sequence of characters had 
its foundations in Markov algorit/~ms and is an i~r?ortant feature of the 
SNOBOL language° In SNOBOL~ pattern matching and replacement has the 
general form: 

STR PAT = REPL 

where STR is the string references PAT is the pattern~ and REPL is the 
replacement string° In the above skeletons any of the constructss except 
the string reference~ can be omitted as required by a particular applica- 

tion. Two APL fnnctions are presented in Figure 3o The firsts FINDs 
gives the index of the first occurrence of one string in another. The 
seconds REPLACE, replaces one sequence of characters with another~ In 
the latter case, a dummy function WITH is used to give the function the 
appearance of being a statement in a problem-oriented languaget ioeo, 

STR REPLACE A WITH B 

[i] 

VFIND[n]V 
V P÷C FIND D 

P÷(A/[i](-I+IpC)%(C÷,C)o~=D)11 
V 

Eli 
[9] 

VWITH[O]V 
V R÷A WITH B 

~ 1 3 5 Z ÷ B  
R÷A 

2 

[I] 
[23 
[33 

VREPLACE[D]V 
V R÷STR REPLACE A;I;J 

+( (pSTR)>_I+I+, (A÷,A) FIND(STR÷,STR) )/LI 
+0 ~ pR~-STR 

LI:R÷STR[iI-I]~Ui35_V,STR[J+i(pSTR)-J÷-I+I+pA] 
V 

TXT÷'ALL COWS EAT GRASS' 

TXT REPLACE 'EAT' WITH 'CHEW' 
ALL COWS CHEW GRASS 

ALL 
TXT REPLACE 'COWS ~ WITH ~' 

EAT GRASS 

Fig° 3 Pattern matching and replacement 
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Set Union and Intersection 

The membership function in APL~ written 

A~B 

returns 'the value 1 if A is an element of B~ The result has the same 
structure as the left argument° Thus ~TEA FOR TWO~ ~ ~ yields the vector 
0 0 0 1 0 0 0 1 0 0 0o The membership function is used in the union and 

intersection functions given in Figure 4o 

[i] 

VUHfONE~]V 
V R+U UNION V 

R÷Uo(~VcU+oU)/V+oV 
V 

VfNTERS[O]V 
V R+U INTERS V 

R+(U~V)/U 
V 

ABDGH ' INTERS ~ BGL 

BG 
i 3 7 UNION 3 4 5 

i 3 7 4 5 

Fig° 4 Set union and intersection 

C~naracter Trans lation 

One of the most frequent problems in terminal-oriented systems 
involves a Character translation based on the type of terminal on the 
other end of the telephone lines Although the operation is trivial 
coneeptuatlly~ it is often cumbersome unless the computer has an appropriate 

instruction° Figure 5 lists an appropriate TRANS function that utilizes 
the indexing facilities in APLo 

STACKS AND QUEUES 

Storage is maintained dynamically in APL and this feature is particularly 
useful for implementing stacks and queues~ In each cases the object is 

represented as a vector but in contradistinction to most implementations, 
a list pointer is not required~ Stack and queue functions use the take 
and drop functions in APL which are useful for operating on a list without 
decomposing ito 
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[ 1 ]  
[ 2 ]  
[ 3 ]  

vz'~A~vs[ O]v  
V B+.TRANS A ; A I ; A 2  

ii+~ -a±n[ c_VA I o ~ ~ D I TO* ?p [~+uwD+cA°'-<~=_>>.v 
A2 +~ ABCDEFGHIJKLMNOPQRSTUVWXYZOi23456789 
B+A 2 [ A I ~.A ] 

V 

TRANS ~e~-_op-~wo ~ 
TEA FOR TWO 

TRANS ~ l * O [ [ l ± ~ e  ~ 
IMPOSSIBLE 

Fig° 5 Character translation 

Queues 

A queue is a data structure in which additions are made at one end 
and deletions are made at the other. It is frequently referred to as a 

FIFO l{sto Figure 6 contains functions for QUE and DEQUE, respectively~ 

Eli 

[i] 
[23 

45 

2 

-17ol 

VQUE[U]V 
V QUE A 

Q+Q ~A 
V 

VDEQUE[~]V 
V R+DEQUE 

R+I+Q 
Q÷i+Q 

V 

Q÷io 

QUE 45 
QUE 2 
QUE -17 ~ I 
DEQUE 

DEQUE 

QUE I19 
DEQUE 

Fig~ 6 Queue functions 
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Stacks 

A stack is a structure in which entries are made at the same end 

using a last-in-first-out algorithm° Stack functions are given in 

Figure 7 o 

[13 

Ill 
[23 

17ol 

2 

119 

VPUSH[~]V 
V PUSH A 

STACK+A ~STACK 
V 

VPULL[D3V 
V R+PULL 

R+l +STACK 
STA CK+I +STACK 

V 

STACK+ I 0 

PUSH 4 5 

PUSH 2 
PUSH -17 ° i 

PULL 

PULL 

PUSH 119 
PULL 

Fig. 7 Stack functions 

TABLES 

A table is a set of ordered pairs (k£~ v£) with unique first components 
ki~ Here the ki's are taken to be numeric values while the values can be 
numeric values or character strings° An entry V i is said to be associated 
with the key ki~ Table lookup involves determiningr for a key klt the 
table entry (ki~ ui) where 

k I = k i 

The process makes available the required value Vl 
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Numerate Values 

A num~eric table is stored as an {n×2) matrix where the first column 

represents tAe keys and the second column represents the values° Given 
a key K and a table T~ it is easily determined if that key is found in 
the table; in fact it is expressed as 

K{T[~i] 

Replacement~ deletions addition~ and fetch functions are given in Figure 8. 

Varic~ble Length Character Values 

Table management using variable-length character values represents 

more of a problem but is easily solved in APLo The keys are stored as a 
vector ID of numeric values ~ Character values are stored as a continuous 
string TEXT of characters° A supplementary vector START is also used 
to denote the position of each entry in TEXT corresponding to an element 
of ID and a vector LENGTH that gives the length of each variable-length 

entry. Consider the entries: 

Key Value 

37 'TEA FOR TWO' 
3 'ALL COWS EAT GR/igS ~ 

50 ' IMPOSSIBLE' 
14 ' SIGPLAN NEWS 

159 VMAGIC SQUARE 

If these values were entered sequentially~ they would be stored as 

fol lows : 

ID 
37 3 50 14 159 

START 
0 11 29 39 51 63 

LENGTH 
11 18 10 12 12 

TEXT 
TEA FOR T~/OALL COWS EAT GRASSIMPOSSIBLESIGPLAH HEWSMAGIC SQUARE 

Functions to stores fetch~ and delete entries are given in Figure 9. 

LINKED LISTS 

Linked lists commonly exist in two forms: unidirectional lists and 

bidirectional lists ~ represented as follows 
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[i] 

ill 

[i] 
[2] 
[3] 

[ 1 ]  
[ 2 ]  
[ 3 ]  

[i3 
[2] 
[3] 

Ill 
[2] 
[33 

VCHECKf~]V 
V L+T CHECK K 

L+KcT[~i] 
V 

VINBEX[D]V 
V I+T INDEX K 

I+T[~iJIK 
V 

VREPLACE[D]V 
V REPLACE V 

+(TABLE CHECK V[i])/Li 
+O~pD÷~KEY NOT IN TABLE T 

LI:TABLE[TABLE INDEX V[i]~2]+V[2] 
v 

VAmD[S]V 
ADD V 
+(-TABLE CHECK V[ I ] ) /L I 
40~p[~+~DUPLICATE KEY ~ 

LI:TABLE+TABLE~[i] V 
v 

VFETCH[~]V 
V R÷FETCH K 

->(TABLE CHECK K)/Li 
+O,pD÷~KEY NOT IN TABLE T 

LI:R+TABLE[TABLE INDEX K~2] 
V 

VDELETE[U]? 
V DELETE K~I 

+(TABLE CHECK K)/Li 
+O~pD÷~KEY NOT IN TABLE T 

LI:TABLE+(((I-i)~2)+TABLE)~[I]((-((I+pTABLE)-I+TABLE INDEX K))~2)+TABLE 
V 

Figo 8 Functions for use with tables with numeric values 
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TABLE 
3 34 
2 67  
8 32 
9 1 1 2  
5 55 

REPLACE 8 75 

TABLE 
3 34 
2 67 

8 75 

9 112 
5 55 

ADD 13 0 

TABLE 

3 34 

2 67 
8 75 
9 112 

5 55 
13 0 

FETCH 2 
67 

FETCH 45 

KEY NOT IN TABLE 

DELETE 9 

TABLE 
3 34 
2 67 

8 75 

5 55 
13 0 

DELETE 41 
KEY NOT IN TABLE 

Fig, 8 (Continued) 
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[ 1 ]  
[ 2 ]  

[13 
E2] 
I s ]  
[ 4] 
[ 5 ]  
[ 6 ]  
[ 7 ]  

[ 1 ]  
[ 2 ]  
[ 3 ]  

I s ]  
E6] 
[ 7 ]  
[ 8 ]  

[ 1 ]  
[ 2 ]  
[ 3 ]  
[ 4 ]  
[ 5 ]  
[,s] 

V 

v 

VZNITE0]V 
INIT 
ID÷LEffGTH÷TEXT÷tO 
START+gO 

V 

VSTORE[O]V 
STORE~I~A 
~ENTER INTEGER ID FOLLOWED 
+(O:I+D)/o 
+(O:pA+~)/O 
LENGTH+LENGTH~pA 
ID÷ID~I 
START÷STARTopTEXT+TEXToA 
+2 

BY TEXT ON THE NEXT LINE T 

VSETOH[g]V 
V FETCH LIST~IND~I~L 

L+pIND÷IDtLIST÷~LIST 
+(I=v/IND>pID)/ERR 
I+O 

LOOP:+(L<I÷I+i)/O 
TEXT[START[IND[I]]+tLENGTH[IND[I]]] 

+LOOP 
ERR:~!NVALID ID ~ 

V 

VDELETEE~]V 
V DELETE KEY~I 

+((pID)aI÷IDtKEY)/GO 
+O,pD÷~INVALID ID ~ 

GO:TEXT÷TEXT[~START[I]],TEXT[J+~(pTEXT)-J÷START[I]+LENGTH[I]] 
ID+ID[tI-L],ID[I+~(pID)-I] 
START÷START[tI-1]~((START[I+~(pSTART)-I])-LENGTH[I]) 
LENGTH+LENGTN[tI-1],LENGTH[I+t(pLENGTH)-I] 

V 

Fig. 9 Functions for use with tables with variable-length values 
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INIT 
STORE 

ENTER INTEGER ID FOLLOWED BY TEXT ON THE NEXT LINE 
[] : 

37 

TEA FOR TWO 
C] 

3 
ALL COWS EAT GRASS 
[! : 

5O 
IMPOSSIB LE 

14 
SIGPLAN NEWS 

159 

MAGIC SQUARE 

0 

FETCH 14 3 
SIGPLAN NEWS 

ALL COWS EAT GRASS 

ID 
37 3 50 14 159 

DELETE 14 
FETCH 14 

INVALID ID 
FETCH 50 

IMPOSSIBLE 

Fig. 9 (Continued) 
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.... _~! ~o~ol ~ ::7---~I ~ ~o~ol 

Unidirectional List 

] 

Data ~---~ 

Bidirectional L{8 t 

In APL~ the data part of a linked-list is stored as numeric or character 
data~ as required. Pointer data is stored as a numeric array with indices 
to preceding and succeeding nodes~ as required. 

Unidirectional Lists 

Consider the numeric list 

It is represented in APL as: 

LIST = 

fn_Lt_ 

Adding a node after the second one is depicted as follows~ 
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4s I 81 t 

50 • 

and in APL as: 

LIST = 

Thust deletions and additions are made without requiring that other data 

items be moved° Figure l0 gives functions for listing~ adding~ and deleting 
node elements° Although boundary conditions have not been satisfied in all 
cases to preserve clarity of expositions the functions demonstrate the 
flexibility inherent in APL and the effective use of dynamic storage. 

Bidirectional Lists 

Bidirectional lists are similar to their unidirectional counterparts 
but contain backward pointers as shown previously° Backward pointers 
facilitate deletion and require only that the location of the node to be 

deleted be known° The list: 

is represented in APL as: 
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VLISTE~]V 
V R÷LIST L~I;J 

[1] I+J+l 
[2] LOOP:+(L[J~2]:O)/PRINT 
[33 I+I~J÷L[J~2] 
[43 +LOOP 
[5] PRINT:R+L[I~I] 

V 

[13 
[ 2 ]  
[ 3 ]  

[13 

[13 

[ 1 ]  
[ 2 ]  
[ 3 ]  

VINSERT[~]V 
V INSERT N 

N[i] NODE AFTER WHICH NEW NODE SHOULD BE INSERTED 
N[2] NEW NODE 

L[N[i];2]+i+~L+L~[I] N[2]~L[N[i]~2] 
V 

VINDEXOF[ ~]V 
V R÷INDEXOF A 

R+L[ ; 1 ] IA 
V 

VPRED[~]V 
V R+PRED I 

V 

VDELETE[D]V 
V DELETE N 

N[[] NODE TO BE DELETED 
N[2] PRECEDING NODE 

L[N[2]~2]+L[N[I]~2] 
V 

VAPPEND[~]V 
V APPEND i~I~J 

[13 I+1 
[2] LI:÷((I~L[J+I~2])~O)/L1 
[3] L+L~[1](A~O) 
[4] L[J~2]+I+pL 

V 

Fig° i0 Manipulation of unidirectional linked lists 
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45 

81 
-lq 

4 5 

45 

81 
-14 
5O 

45 

2 

4 

2 

L 
2 

3 
0 

LIST L 

81 -14 
INSERT 2 50 
L 

2 
4 
0 
3 

LIST L 
81 50 -14 

INDEXOF 81 

PRED 3 

PRED INDEXOF 50 

DELETE 2 1 
LIST L 

45 50 -14 
APPEND 95 
LIST L 

45 50 -14 95 

Fig. i0 (Continued) 
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LIST = ~_i4 ~ i 2 

Again~ an additional node is depicted schematically as~ 

Io  I 

E , 

C_ 

and in APL as: 

LIST ~ 0 

[ 2 

, 75~0 _ 

Sample APL functions for bidirectional linked lists are given as Figure llo 

LISP-LIKE S TRUCTUB]gS 

The LISP languages developed by McCarthy 9 and discussed by Hopgood I0 and 
Katzanll~ presents data structures that are more complicated to represent 
and to effectively process, 
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VLIST[D]V 
V R÷LIST L~I~J 

[ 1 ] I÷J÷l 
[2] LOOP:+(L[J;3]=O)/PRINT 
[3] I+oI~J+L[J~3] 
[ 4 ] +LOOP 
[5] PRINT:R÷L[I~2] 

V 

VAPPEND[ []]V 
V APPEND A~I~J 

[1 ] I÷1 
[9] Li:+((I+L[J+I~3])zO)/L1 
[33  L+L~[i] J,A~O 
[43 LEJ~3]+I+pL 

V 

[ i  ] 
[ 2 ]  
[ 3 ]  
[ 4 ]  
I s ]  
[ 6 ]  

[lJ 

[I] 

[13 
[23 
[33 
[4] 

VI~SERT[~]V 
V INSERT N~.I 

A if[l] NODE AFTER WHICH NEW NODE SHOULD BE INSERTED 
N[2] NEW NODE 

+(L[N[I];3]~O)/Li 
APPEND N[2] 
÷0 

LI:L[L[I~3]~I]÷L[ff[i]~3]÷I÷i+pL+L~[I] N~L[N[I];3] 
V 

VINDEXOF[~]V 
V R÷INDEXOF A 

R÷L[~2]IA 
V 

VPRED[~]V 
V R÷PRED I 

R+L[;3]II 
V 

VDELETEE~]V 
V DELETE I 

I INDEX OF NODE TO BE DELETED 
L[L[I~f]~3]÷L[I;3] 
+(S[I~3]=O)/O 
L[L[I~3];f]÷L[I;I] 

V 

Fig. ii Manipulation of bidirectional linked lists 
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45 

3 

4 

45 

45 

L 
0 45 2 

1 81 0 

APPEND 75 
L 

0 45 2 

1 81 3 
2 75 0 

iNSERT 2 25 

L 
0 45 2 
1 81 4 

4 75 0 

2 25 3 
LIST L 

81 25 75 

INDEXOF 75 

PRED 3 

APPEND 90 
L 

0 45 2 

1 81 4 
4 75 5 

2 25 3 

3 90 0 
LIST L 

81 25 75 90 

DELETE INDEXOF 25 
LIST L 

81 75 90 

Figs ii (Continued) 
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Let the LISP register, depicted as 

be represented in APL as a matrix of the form 

/ ty~e l index I car 

cdr 

where 

t yy~_e structure 
0 composite symbol 
1 atomic symbol 
2 null symbol 

Atomic symbols are stored as single characters in a character array° 
Composite symbols are stored as a rank-3 array - in this case named LISTo 
The character array is appropriately named DATA. Thus the LISP representa- 

tion of 

+A*+CDE 

and depicted as 

would be stored in the APL version as: 
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DATA 
+A*+CDE 

LIST 
1 1 

0 2 

1 2 
0 3 

0 4 
2 0 

1 3 
0 5 

0 7 
0 6 

1 7 

2 0 

1 4 
0 8 

1 5 

0 9 

1 6 
2 0 

APL functions (Figure 12) are developed to perform the following 

LISP-lime operations 

1 ~ print 

2 o cons 
3 o car 
4 o cdr 
5 o atom 

6 o nil 
7~ enter data 

CONCLUS IONS 

Alt~hough the preceding discussion is notf and is not meant to beF a 

complete treatment of data structures and associated processing~ it is 
perhaps indicative of the functions that programmers actually program and 
of structures that language designers consider, There is no intent here to 

debate whether the data structures provided in APL are sufficiently 
primitive to build n~re complicated structures or whether the APL primitive 
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Eli 

[l] 

El] 

[l] 

[i] 

[i] 

V R+ENTER A 
R+I ~ pDATA+DATA ~A 

V 

v cotJs [ D J v 
V B+A COHS B 

R+I+pLIST+LIST,,[I] A~[0°5] B 
V 

VOA£[[]Jv 
V R+CAR I 

R+LIST[I~I ~ ] 
V 

yoDel@Jr 
V R+CDR I 

R+LIST[I;2~] 
V 

vNIS[DJv 
V R÷NIL 

R+ 2 0 
V 

VATOM[DJV 
V R+ATOM V 

R÷I:i+V 
V 

VINIT[D]V 
V INIT 

[i] DATA÷tO 

[2] LIST+ 0 2 2 p O 
V 

Fig° 12 Manipulation of LiSP-like structures 
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[i] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
Is] 
[9] 

VrRft, T2[ ~] V 
V R÷PRINT A 

+( l : p  ~A ) /L1 
÷ ( 2 : p ~ J ) / L 2  
÷O~pR ÷~DOMAI~'7 ERROR 

LI;÷OopR÷LPRI'NT J 
L2 :÷( 0:I+A )/L3 
÷(1:1+A)/L5 
+p R÷ I 0 

L3:+OopR÷LPRINT A[2-] 
L5 :÷OpR+DATA[A[ 2 ]] 

V 

IN PRINT ~ 

[13 
[23 
E33 
[43 
[53 
[e3 
[ 7 ]  
[s3 
[93 
[ i o ]  
I l l ]  
[123 

VLPRIflT[[]]V 
R÷LPRINT A 
÷( (LIST[A ,~ i .~ I] :i )^LIST[A 
÷( (LIST[A ~ i ~ I] :O)^LIST[A 
+( (LIST[A i i ; I] :I)^LIST[A 
+( ( LIST[A i1~ l ]=O )ALIST[A 
.+((LIST[A ~I ~i]=I)ALIST[A 
+( ( LIST[ A ~ I11]=O )ALI-ST[ J 
÷pR÷10 

L1 :÷0, pR÷DATA[ LIST[ A ~ I ~ 2 ] 
L2:÷O~pR+(LPRIzVT LIST[At1 
L3 :÷0 ~ p R÷DA TA [ LIST[ A ~ I ~ 2 ] 
L,4:÷0~pR÷(LPRINT LIST[All 
L5 :÷0opR÷DATA[LIST[A ~1~23 

[13] L6:÷O~pR÷LPRINT LIST[A~11 
V 

~211]=1)/L1 
~2;1]=1) /L2 
1211] :0 ) /L3  
12~1] :0) /L4  
1211] :2 ) /L5  
~2~1] :2) /L6 

] ~DATA[LIST[A ~ 2 ~2 ]] 
2 ] ) ,DATA[LIST[A ~ 2 ~ 2 ] ] 

]~LPRINT LIST[A~2~2] 
12])oLPRINT LIST[A~219] 
] 
23 

Fig° 12 (Continuation i) 
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PRINT 1 
+A*+CDE 

CAR 1 
1 1 

+ 
PRINT CAR 1 

PRINT CDR 1 
A*+CDE 

PRINT CAR 3 
*+CDE 

ATOM CAR 4 

PRINT CAR 4 

INIT 

I÷(ENTER ~+~) CONS COMP (ENTER ~X ~) CONS COMP 
(ENTER ~Y~) CONS NIL 

+XY 
PRINT I 

LIS T 
1 1 
2 0 

1 2 
0 1 

1 3 
0 2 

DA TA 
YX+ 

Fig~ 12 (Continuation 2) 
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*+XYZ 

LOC+(ENTER ~*~) CONS COMP (COMP I) CONS COMP 
(ENTER ~Z ~ ) CONS NIL 

PRINT LOC 

L I S T  
1 i 
2 0 

1 2 
0 1 

1 3 
0 2 

i 4 
2 0 

0 3 
0 q 

i 5 
0 5 

DA TA 
YX+Z* 

Fig. 12 (Continuation 3) 
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functions are sufficiently rich° It cannot be ignored, hc~ever~ that the 

functions presented are amazingly simple - that is~ considering the amount 
of progr~ing t~at ordinarily would be required in assembler language or 

most other languages° It seems that we as language designers should be as 
interested in the base language upon which sophisticated structures can be 
built as we are on the data structures themselves° In this ways our labors 
may affect, significantly~ the computing machines of tomorrow° 
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