
REPRESENTATION AND MANIPULATION OF DATA
5TRUCTURES [IN APL

Harry Katzan~ Jro

Pratt Institute

Abstract
Introduction

The APL System

Statements and Functions
Composite Functions

Mixed Functions

Indexing
Miscellaneous Comments

Strings and Sets

Substring

Alphabetic Sort
Pattern Matching and Replacement

Set Union and Intersection

Character Translation
Stacks and Queues

Queues

Stacks
Tables

Nulneric Values
Variable Length Character Values

Linked Lists

Unidirectional Lists
Bidirectional Lists

List-Like Structures

Conclusions

References

367
367

368
368
369

371

371
371
373

373
374
375

376

376
376

377

378
378

379

379
379
384

385
388

392
397

-366-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1115880.1115899&domain=pdf&date_stamp=1971-02-01

ABSTRACT

Methods for the representation of complex data structures in APLt
a programming language based on rectangular arrays and a multiplicity
of functions~ are presented° Data structures considered are: strings
and sets~ stacks and queues~ tables~ linked lists~ and LISP-like struc-
tures. The material provides insight into the nature of data structures
and should aid in establishing future requirements for primal and base
languages°

INTRODUCTION

Modern computing systems tend to be complex compared with the simple

word-oriented machines of fifteen years ago. Todays we hear of privi-
leged operations ~ supervisor/problem states ~ interrupts ~ sophisticated
I/Or etc. In spite of this~ the primal language for using the computer

(ioeo t assembler language) has remained essentially the same - except
for a few bells and whistles. Problem solvers and programmers~ howevert
wish to use the machine in another way: with a higher-level language
such as ALGOL~ FORTRAN~ or PL/I. Thusfart the compiler has been the
bridge between the languages of the user and the language of the computers
Because compiler and compilation costs are high and problem solvers and
machine designers seem to be going in opposite directions~ several
researchers -namely: Bashkow, Sassong and Kronfeldl~ Melbourne and
PugTnire2~ Sugimto3~ and Weber 4 - have proposed and developed systems

that directly execute the statements of a higher-level language. Recent
advances in microprogramming and writable control store (e~g., see Husson 5)
indicate that the architecture of a computer using a higher-level
language as a primal language is indeed feasible from both performance
and cost standpoints~

-367-

The recent popularity of APL has resulted in at least one APL

machine (see Thurber and Myrna 6) and led several researchers to con °-
jecture on the possibility of implementing APL (or a subset of it) as

a primal language° APL is also in widespread use as a problem solving
language and the number of APL enthusiasts (in all areas of computer

science) is growing rapidly° For both applications~ the key question

is: "How do we represent complex data structures in APL~ a language
based on rectangular arrays and a multiplicity of appropriate ftu%ctions?"

The answers should help to establish future requirements for primal

and base lal~guageso
This topic is the subject of this paper° The material should

provide new insights into the nature and storage of complex data

structures. Obviously~ most of the concepts are already known° Yet,
there is much benefit in providing a unified treatment of this important
area of computer technology° The concepts~ and functions as wells are

presented by order of increasing complexity° In other words, the first
few functions are relatively simple whereas the latter ones, especially
those on LISPs are fairly obscure~ using recursive functions and related

techniques

THE APL SYSTEM

Statements and Functions

The APL 'terminal system 7 combines Iverson's language 8 and the

concept of time sharing to form an effective system for interactive
computing° Input to APL takes one of two principle forms: statements

in the APL language and system comm~andso System commands are used to
address the ~2PL terminal system itself and provide miscellaneous services

%hat are outside the scope of the language itself° Statements in the
APL l&nguage fall into 3 categories:

lo Specification statements such as

A+2x 3+¢

2o Branch statements~ such as

÷LOOP+2

3o Function definitions~ such as

VR÷X PLUS Y
R+X+Y
V

Moreover~ the system operates in two modes: the execution mode and
the definition mode. In the execution mode, statements are executed

APL stands for A Programming Language based on the book by K.Eo Iverson~
A Programming Language~ Wiley~ 1962o

-368-

immediately° In td~e definition modes statements are stored as part
of a function definition° System commands and functions can only be
entered in the execution mode°

Specification and brancih statements permit expressions as arg~umentso
Expressions can be composed of constants, variables~ monadic and dyadic
functions s and parentheses in the usual sense° A right-to-left order
of execution has been adop~cedo Table 1 contains the primitive scalar
functions contained in APLo They also apply to array arguments on an
element-by-element basis° Thus

4 10 1.8 +-+ 1 2 3x4 5 6

etco

Com~osi te Functions

The extension of the scalar dyadic functions to arrays are termed
composite fhnctions° Three functions fall into this category: reductions
inner products and outer product° Reduction is written:

~/A

where ® is a dyadic function and A is an array. Thus if V+3 2 9 1 4s
then

19+-+ + /V

Reduction also applies to rank-n arrays along a single coordinate and

effectively reduces the number of coordinates by one.
Inner products which is related to the ordinary matrix product¢ is

written

Af°gB

where f and g are dyadic functions and A and B are arrays° The matrix
product of conformable matrices J and B is denoted by

A + o xB

The outer product resembles the familiar cartesian product and is

written

Ao.~

where A and B are arrays and f is again a dyadic function. If A÷I 2 S
and B÷6 8 10, then Ao.+B yields the matrix:

7 9 11
8 10 12
9 11 13

-369-

Monadic form fS

Definition Name
or example

+B ++ 0 +B

-B ÷÷ 0-B

×s ÷+ (~>0)-(S<0)

÷B +÷ 1¢B

B < LB
3 o ~ 4 3

- 3 14 -4

*B + ÷ (2°71828° o)*B

® * N ÷÷ N +÷ *@N

I-3. 14 ÷+ 3o 14

~0 + + 1
~B + + B x ~ B - I

or IS ÷+ Gamma(B+l)

?B +÷ Random choice
from ~ B

OB + + B x 3 o 14159. o .

~1 +÷ 0 ~0 ÷+1

Plus

Negative

Signum

Reciprocal

Ceiling

Floor

Exponential

Natural
logarithm

Magnitude

Factorial

Rol i

Pi times

Not

(-A)o.B
(1-B.2)*o5

Arcsin B
Arccos B
Arctan B

(-1+B.2).o5
Arcsinh B

A AoB

0 (1 - B , 2) * o 5
1 Sine B
2 Cosine B
3 Tangent B

4 (1+B.2).o5
5 Sinh B

Arccosh B 6 Cosh B

Arctanh B 7 I Tanh B

Table of Dyadic o Functions

Dyadic foz~ ifB

Name Definition
or example

Plus

Minus

Time s

Divide

Maximum

Mi n imum

Power

Logarithm

Re s idue

2 + 3 ° 2 +-+ 5 ° 2

2 - 3 . 2 + > - 1 o 2

2 X 3 o 2 +.÷ 6 ° 4

2 ¢ 3 . 2 + ÷ 0 ° 6 2 5

3 [7 ++ 7

3 L 7 + + 3

2 * 3 + ÷ 8

Binomial

zoef ficient

Deal

]irculaz

%nd
)r
{and
{or

]ess
~ot greater
~qual
~ot less
~reater
~ot Equal

A®B +÷ Log B base A
A÷B ÷+ (® B) ÷ ® A

Case ~ A IB

A B-(IA) B÷IA
A = 0 , B _ > 0 B
A = 0 ~ B < 0 | D o m a i n e r r o r

A~B ÷÷ (~B)÷(~A)×!B-A
2 [5 ÷+ i0 3 ! 5 +÷ 10

A Mixed Function (See
Table 3°8)

See Table at left

1
0
o

0

Relations
Result is 1 if the
relation holdst 0
if it does not:

3_<7 ÷+ 1
7_<3 ÷+ 0

Table l o Primitive Scalar Functions

- 3 7 0 -

Mixed Functions

The mixed functions in APL are designed for use with arrays and

provide a variety of useful operations~ such as:

Generating a vector of integers,~

Finding the index of an element in a vector°
Determining the size or shape of an array.
Raveling an array or scalar to form a vector~
Catenating vectors and rank-n arrays.
Selecting or dropping elements of an array.

Sequencing elements of a vector°
Compressing and expanding an array°

Reversals rotation~ and transpositions
Set functions

Base value and representation functions.
Random number generation°

Mixed functions are summarized in Table 2°

Inde~r£ng

A subscript in APL is termed an index and may be a scalar or an
array~ If V + -7 3 9 6 5 1 4 3~ then V[3 6 1]+-~ 9 1 -7. Sim/larly~
if J + 2 2p2 7 3 1~ i~e.~

then

9 -7

Also~ if B + 2 4p -7 3 9 6 5 1 4 3~ i-oe.t

B = 7 3 9

5 1 4

then B[2;3] : 4, B[;2] -- 3 I, and B[2;] : 5 1 4 3.

Miscel laneo~ Comments

Since this paper contains a number of APL programs t several comments

are necessary, Firsts the user's input is indented six spaces and the
computer types beginning in the left hand margins Next, if the ~ast

operation in a statement is not a branch or specifications then the

result is typed at the terminal. Thus,

A÷IO

A+3
13

-371-

Name S i g n I D e f i n i t i o n o r e x a m p l e 2

Size

Reshape

Ravel

Catenate

Index S 4

l l n d e x
g e n e r a t o r s

Index of s

T a k e

p r o p
G r a d e u p 5

G r a d e d o w n s

Compress 5

E x p a n d 5

Reverse s

R e t a t e 5

Transpose

M e m b e r s h i p

Decode

Encode

Deal 3

pA

VpA

~A

V,V

VEAl

MEA;A]

A[A;o o

o . ~ ; d]

iS

ViA

V+A

V+A
~xA

VA

V/A

V\A

~4

ACA

v~A

~A

A6A

gi V

VTS

p P + + 4 p};,' + + 3 4

R e s h a p e A t o d i m e n s i o n Y
12pE ++ ~ 12 0pE ++ ~ 0
~A + + (x / p i) p i ~E + + L 1 2

p 5 + + l 0

3 4p ~ 12 + + E

p , 5 + + "i

P,I 2 + + 2 3 5 7 1 2

1
.P[2] + + 3 P[4 3 2 1] ++7 5 3 2

El1 3;3 2 1] ++ 3 2 1

1 1 10 9
E[1;] ++ 1 2 3 4 ABCD

E[;1] ++ 1 5 9 'ABCDEFGHIJKL~[E] ++ EFGH

IJKL
14 ++ 1 2 3 4

0 ++ a n e m p t y v e c t o r

5 1 2 5
PiE ++ 3 S 4 5

S 5 5 5

P t 3 + + 2

4 414 + + 1

2 3iX ++ iBC

EFG
2+P ++ 5 7

First S integers

L e a s t i n d e x o f A

i n Ve o r l+pV

43 5 3 2 ++ 4 1 3 2

~3 5 3 2 +'+ 2 1 3 4

T a k e (d r o p) IV[I] f i r s t
e l e m e n t s o n c o o r d i n a t e
£o (L a s t i f VIII<O)
T h e p e r m u t a t i o n w h i c h
w o u l d o r d e r J (a s c e n d -
i n g o r d e s c e n d i n g)

1 3
1 0 1 O/P ++ 2 5 1 0 1 O/E ÷+ 5 7

9 11
1 0 1/[1]E ++ 1 2 3 4 ++ 1 0 lIE

9 10 11 12

A BCD
1 0 1\12 ++ 1 0 2 1 0 1 1 I\X ++ E FGH

f JKL
D CBA IJKL

¢x + + H a F E ¢[~]x + ÷ ex + + EFaH
LKJI ~P ++ 7 5 3 2 ABCD

B CDA
3%P ++ 7 2 3 5 ++ -1¢P 1 0 -lqbX ÷+ EFGH

LIJK

S?S

Coordinate I of A
becomes coordinate

VII] of result

AEI

2 lkX ++ BFJ

CGK
1 lkE ++ 1 6 11 DHL

Transpose last two coordinates @E ++ 2 i@E

1 0
pWcY ++ pW EeP ++ 1 0 1 0

P < 1 4 + ,1 1 0 0 0 0 0 0
10±1 7 7 6 ++ 1776

24 60 60T3723 ++ 1 2 3

24 60 6 0 1 1 2 3 ++ 3 7 2 3

60 6 0 T 3 7 2 3 ++ 2 3

W?Y ÷+ Random deal of W elements from i Y

Table 2o Primitive Mixed Functlons

-372-

lo R e s t r i c t i o n s o n a r g u m e n t r a n k s a r e i n d i c a t e d b y : S f o r
s c a l a r , V f o r v e c t o r , M f o r m a t r i x ~ i f o r Any° E x c e p t a s
t h e f i r s t a r g u m e n t o f Si.A o r S I A l , a s c a l a r may b e u s e d
i n s t e a d o f a v e c t o r ° A o n e - e l e m e n t a r r a y may r e p l a c e a n y
s c a l a r °

2o A r r a y s u s e d 1 2 3 ~
i.n e x a m p l e s ~ P +÷ 2 3 5 7 S' +-~ 5 6 7 8

9 10 1 t 12
3o F u n c t i o n d e p e n d s o n i n d e x o r i g i n s

ABCP
X + ÷ EFGH

IJKL

4° E l i s i o n o f a n y . i n d e x s e l e c t s a l l a l o n g t h a t c o o r d i n a t e °

5° The f u n c t i o n i s a p p l i e d a l o n g t h e l a s t c o o r d i n a t e ; t h e
s y m b o l s t , %, a n d e a r e e q u i v a l e n t t o /~ \~ a n d ©~
r e s p e c t i v e l y ~ e x c e p t t h a t t h e f u n c t i o n i s a p p l i e d a l o n g t h e
f i r s t c o o r d i n a t e ° I f I S] a p p e a r s a f t e r a n y o f t h e s y m b o l s ~
t h e r e l e v a n t c o o r d i n a t e i s d e t e r m i n e d b y t h e s c a l a r So

Notes to Table 2.

* Tables 1 and 2 and the above notes are reproduced from:

Falkoff~ AoDo, and KoEo Iverson~ APL\360 User's M~ual~ Yorktown Heights~

NoYo~ IBM Corporations Watson Research Centers 1968 (Also available as

IBM form #GH20-0683-1)

Also~ the function header statement needs further explanation. Consider~

VR+X ABC Y;I;J

The del (V) puts the APL system into the execution mode. R specifies

an explicit result; ABC is the name of the function; X and Y are dummy
variables (arguments); and I and J are local variables. Lastly, the quad

symbol (~]) or the quote-quad symbol (~) indicates input or output -
depending on how it is used. A~{~ denotes input and []+A denotes output°

STRINGS AND SETS

The most primitive type of data structure, other than a scalar
numeric data item, is the string - taken in this case to be a sequence

of characters° In APL, a character string is stored as a vector so
that a list of strings is stored as a two~dimensional array or an extra
long vector. A set is stored in a similar manner but is restricted to

either character or numeric data°

Subs tring

The SUBSTR function in PL/I, for examples is easily constructed in
APLo The function uses a string name~ an offset~ and a length as follows:

-3'73-

SUBSTR(NHE~ LOC~ kiN)

and is simulated in APL as shown in Figure Io
value of the substring.

~t%e function r e t u r n s t h e

Ill

FOR

TE

?SUBSTR[~]V
V R+S SUBSTR A

R+S[-I+A[I]+ tA[233
V

C+ ~ TEA FOR TWO
C SUBSTR 5

C SUBSTR i 2

Fig. 1 Subs tring

Alphabetic Sort

An amazingly simple APL program can be constructed to sort strings
that are stored as a two-dimensional array° Each row of the matrix

represents a distinct string as depicted in Figure 2o The function uses
the base value function to compute an index for each row and then uses
the grade up function to compute the permutation of indices that would

order the rows in ascending sequence°

[I]
[2]

VSORr[~]V
V R÷SORT A~S

S÷ ~ ABCDEFGHIJKLMNOPQRSTUVWXYZOI23q56789'
R+A[~(2+pS)ikSiA~]

V

DA TA
TEA FOR TWO
ALL COWS EAT GRASS
IMPOSSIBLE
SIGPLAN NEWS
MAGIC SQUARE

SORT DATA
ALL COWS EAT GRASS
IMPOSSIBLE
MAGIC SQUARE
SIGPLAN NEWS
TEA FOR TWO

Figs 2 Alphabetic sort -374-

Pattern Matching and Replacement

The ability to search a given string for a sequence of characters had
its foundations in Markov algorit/~ms and is an i~r?ortant feature of the
SNOBOL language° In SNOBOL~ pattern matching and replacement has the
general form:

STR PAT = REPL

where STR is the string references PAT is the pattern~ and REPL is the
replacement string° In the above skeletons any of the constructss except
the string reference~ can be omitted as required by a particular applica-

tion. Two APL fnnctions are presented in Figure 3o The firsts FINDs
gives the index of the first occurrence of one string in another. The
seconds REPLACE, replaces one sequence of characters with another~ In
the latter case, a dummy function WITH is used to give the function the
appearance of being a statement in a problem-oriented languaget ioeo,

STR REPLACE A WITH B

[i]

VFIND[n]V
V P÷C FIND D

P÷(A/[i](-I+IpC)%(C÷,C)o~=D)11
V

Eli
[9]

VWITH[O]V
V R÷A WITH B

~ 1 3 5 Z ÷ B
R÷A

2

[I]
[23
[33

VREPLACE[D]V
V R÷STR REPLACE A;I;J

+((pSTR)>_I+I+, (A÷,A) FIND(STR÷,STR))/LI
+0 ~ pR~-STR

LI:R÷STR[iI-I]~Ui35_V,STR[J+i(pSTR)-J÷-I+I+pA]
V

TXT÷'ALL COWS EAT GRASS'

TXT REPLACE 'EAT' WITH 'CHEW'
ALL COWS CHEW GRASS

ALL
TXT REPLACE 'COWS ~ WITH ~'

EAT GRASS

Fig° 3 Pattern matching and replacement

-375-

Set Union and Intersection

The membership function in APL~ written

A~B

returns 'the value 1 if A is an element of B~ The result has the same
structure as the left argument° Thus ~TEA FOR TWO~ ~ ~ yields the vector
0 0 0 1 0 0 0 1 0 0 0o The membership function is used in the union and

intersection functions given in Figure 4o

[i]

VUHfONE~]V
V R+U UNION V

R÷Uo(~VcU+oU)/V+oV
V

VfNTERS[O]V
V R+U INTERS V

R+(U~V)/U
V

ABDGH ' INTERS ~ BGL

BG
i 3 7 UNION 3 4 5

i 3 7 4 5

Fig° 4 Set union and intersection

C~naracter Trans lation

One of the most frequent problems in terminal-oriented systems
involves a Character translation based on the type of terminal on the
other end of the telephone lines Although the operation is trivial
coneeptuatlly~ it is often cumbersome unless the computer has an appropriate

instruction° Figure 5 lists an appropriate TRANS function that utilizes
the indexing facilities in APLo

STACKS AND QUEUES

Storage is maintained dynamically in APL and this feature is particularly
useful for implementing stacks and queues~ In each cases the object is

represented as a vector but in contradistinction to most implementations,
a list pointer is not required~ Stack and queue functions use the take
and drop functions in APL which are useful for operating on a list without
decomposing ito

- 3 7 6 -

[1]
[2]
[3]

vz'~A~vs[O]v
V B+.TRANS A ; A I ; A 2

ii+~ -a±n[c_VA I o ~ ~ D I TO* ?p [~+uwD+cA°'-<~=_>>.v
A2 +~ ABCDEFGHIJKLMNOPQRSTUVWXYZOi23456789
B+A 2 [A I ~.A]

V

TRANS ~e~-_op-~wo ~
TEA FOR TWO

TRANS ~ l * O [[l ± ~ e ~
IMPOSSIBLE

Fig° 5 Character translation

Queues

A queue is a data structure in which additions are made at one end
and deletions are made at the other. It is frequently referred to as a

FIFO l{sto Figure 6 contains functions for QUE and DEQUE, respectively~

Eli

[i]
[23

45

2

-17ol

VQUE[U]V
V QUE A

Q+Q ~A
V

VDEQUE[~]V
V R+DEQUE

R+I+Q
Q÷i+Q

V

Q÷io

QUE 45
QUE 2
QUE -17 ~ I
DEQUE

DEQUE

QUE I19
DEQUE

Fig~ 6 Queue functions

-377-

Stacks

A stack is a structure in which entries are made at the same end

using a last-in-first-out algorithm° Stack functions are given in

Figure 7 o

[13

Ill
[23

17ol

2

119

VPUSH[~]V
V PUSH A

STACK+A ~STACK
V

VPULL[D3V
V R+PULL

R+l +STACK
STA CK+I +STACK

V

STACK+ I 0

PUSH 4 5

PUSH 2
PUSH -17 ° i

PULL

PULL

PUSH 119
PULL

Fig. 7 Stack functions

TABLES

A table is a set of ordered pairs (k£~ v£) with unique first components
ki~ Here the ki's are taken to be numeric values while the values can be
numeric values or character strings° An entry V i is said to be associated
with the key ki~ Table lookup involves determiningr for a key klt the
table entry (ki~ ui) where

k I = k i

The process makes available the required value Vl

- 3 7 8 -

Numerate Values

A num~eric table is stored as an {n×2) matrix where the first column

represents tAe keys and the second column represents the values° Given
a key K and a table T~ it is easily determined if that key is found in
the table; in fact it is expressed as

K{T[~i]

Replacement~ deletions addition~ and fetch functions are given in Figure 8.

Varic~ble Length Character Values

Table management using variable-length character values represents

more of a problem but is easily solved in APLo The keys are stored as a
vector ID of numeric values ~ Character values are stored as a continuous
string TEXT of characters° A supplementary vector START is also used
to denote the position of each entry in TEXT corresponding to an element
of ID and a vector LENGTH that gives the length of each variable-length

entry. Consider the entries:

Key Value

37 'TEA FOR TWO'
3 'ALL COWS EAT GR/igS ~

50 ' IMPOSSIBLE'
14 ' SIGPLAN NEWS

159 VMAGIC SQUARE

If these values were entered sequentially~ they would be stored as

fol lows :

ID
37 3 50 14 159

START
0 11 29 39 51 63

LENGTH
11 18 10 12 12

TEXT
TEA FOR T~/OALL COWS EAT GRASSIMPOSSIBLESIGPLAH HEWSMAGIC SQUARE

Functions to stores fetch~ and delete entries are given in Figure 9.

LINKED LISTS

Linked lists commonly exist in two forms: unidirectional lists and

bidirectional lists ~ represented as follows

-379-

[i]

ill

[i]
[2]
[3]

[1]
[2]
[3]

[i3
[2]
[3]

Ill
[2]
[33

VCHECKf~]V
V L+T CHECK K

L+KcT[~i]
V

VINBEX[D]V
V I+T INDEX K

I+T[~iJIK
V

VREPLACE[D]V
V REPLACE V

+(TABLE CHECK V[i])/Li
+O~pD÷~KEY NOT IN TABLE T

LI:TABLE[TABLE INDEX V[i]~2]+V[2]
v

VAmD[S]V
ADD V
+(-TABLE CHECK V[I]) /L I
40~p[~+~DUPLICATE KEY ~

LI:TABLE+TABLE~[i] V
v

VFETCH[~]V
V R÷FETCH K

->(TABLE CHECK K)/Li
+O,pD÷~KEY NOT IN TABLE T

LI:R+TABLE[TABLE INDEX K~2]
V

VDELETE[U]?
V DELETE K~I

+(TABLE CHECK K)/Li
+O~pD÷~KEY NOT IN TABLE T

LI:TABLE+(((I-i)~2)+TABLE)~[I]((-((I+pTABLE)-I+TABLE INDEX K))~2)+TABLE
V

Figo 8 Functions for use with tables with numeric values

- 3 8 0 -

TABLE
3 34
2 67
8 32
9 1 1 2
5 55

REPLACE 8 75

TABLE
3 34
2 67

8 75

9 112
5 55

ADD 13 0

TABLE

3 34

2 67
8 75
9 112

5 55
13 0

FETCH 2
67

FETCH 45

KEY NOT IN TABLE

DELETE 9

TABLE
3 34
2 67

8 75

5 55
13 0

DELETE 41
KEY NOT IN TABLE

Fig, 8 (Continued)

-381-

[1]
[2]

[13
E2]
I s]
[4]
[5]
[6]
[7]

[1]
[2]
[3]

I s]
E6]
[7]
[8]

[1]
[2]
[3]
[4]
[5]
[,s]

V

v

VZNITE0]V
INIT
ID÷LEffGTH÷TEXT÷tO
START+gO

V

VSTORE[O]V
STORE~I~A
~ENTER INTEGER ID FOLLOWED
+(O:I+D)/o
+(O:pA+~)/O
LENGTH+LENGTH~pA
ID÷ID~I
START÷STARTopTEXT+TEXToA
+2

BY TEXT ON THE NEXT LINE T

VSETOH[g]V
V FETCH LIST~IND~I~L

L+pIND÷IDtLIST÷~LIST
+(I=v/IND>pID)/ERR
I+O

LOOP:+(L<I÷I+i)/O
TEXT[START[IND[I]]+tLENGTH[IND[I]]]

+LOOP
ERR:~!NVALID ID ~

V

VDELETEE~]V
V DELETE KEY~I

+((pID)aI÷IDtKEY)/GO
+O,pD÷~INVALID ID ~

GO:TEXT÷TEXT[~START[I]],TEXT[J+~(pTEXT)-J÷START[I]+LENGTH[I]]
ID+ID[tI-L],ID[I+~(pID)-I]
START÷START[tI-1]~((START[I+~(pSTART)-I])-LENGTH[I])
LENGTH+LENGTN[tI-1],LENGTH[I+t(pLENGTH)-I]

V

Fig. 9 Functions for use with tables with variable-length values

-382-

INIT
STORE

ENTER INTEGER ID FOLLOWED BY TEXT ON THE NEXT LINE
[] :

37

TEA FOR TWO
C]

3
ALL COWS EAT GRASS
[! :

5O
IMPOSSIB LE

14
SIGPLAN NEWS

159

MAGIC SQUARE

0

FETCH 14 3
SIGPLAN NEWS

ALL COWS EAT GRASS

ID
37 3 50 14 159

DELETE 14
FETCH 14

INVALID ID
FETCH 50

IMPOSSIBLE

Fig. 9 (Continued)

-383-

.... _~! ~o~ol ~ ::7---~I ~ ~o~ol

Unidirectional List

]

Data ~---~

Bidirectional L{8 t

In APL~ the data part of a linked-list is stored as numeric or character
data~ as required. Pointer data is stored as a numeric array with indices
to preceding and succeeding nodes~ as required.

Unidirectional Lists

Consider the numeric list

It is represented in APL as:

LIST =

fn_Lt_

Adding a node after the second one is depicted as follows~

-384-

4s I 81 t

50 •

and in APL as:

LIST =

Thust deletions and additions are made without requiring that other data

items be moved° Figure l0 gives functions for listing~ adding~ and deleting
node elements° Although boundary conditions have not been satisfied in all
cases to preserve clarity of expositions the functions demonstrate the
flexibility inherent in APL and the effective use of dynamic storage.

Bidirectional Lists

Bidirectional lists are similar to their unidirectional counterparts
but contain backward pointers as shown previously° Backward pointers
facilitate deletion and require only that the location of the node to be

deleted be known° The list:

is represented in APL as:

-385-

VLISTE~]V
V R÷LIST L~I;J

[1] I+J+l
[2] LOOP:+(L[J~2]:O)/PRINT
[33 I+I~J÷L[J~2]
[43 +LOOP
[5] PRINT:R+L[I~I]

V

[13
[2]
[3]

[13

[13

[1]
[2]
[3]

VINSERT[~]V
V INSERT N

N[i] NODE AFTER WHICH NEW NODE SHOULD BE INSERTED
N[2] NEW NODE

L[N[i];2]+i+~L+L~[I] N[2]~L[N[i]~2]
V

VINDEXOF[~]V
V R÷INDEXOF A

R+L[; 1] IA
V

VPRED[~]V
V R+PRED I

V

VDELETE[D]V
V DELETE N

N[[] NODE TO BE DELETED
N[2] PRECEDING NODE

L[N[2]~2]+L[N[I]~2]
V

VAPPEND[~]V
V APPEND i~I~J

[13 I+1
[2] LI:÷((I~L[J+I~2])~O)/L1
[3] L+L~[1](A~O)
[4] L[J~2]+I+pL

V

Fig° i0 Manipulation of unidirectional linked lists

-386-

45

81
-lq

4 5

45

81
-14
5O

45

2

4

2

L
2

3
0

LIST L

81 -14
INSERT 2 50
L

2
4
0
3

LIST L
81 50 -14

INDEXOF 81

PRED 3

PRED INDEXOF 50

DELETE 2 1
LIST L

45 50 -14
APPEND 95
LIST L

45 50 -14 95

Fig. i0 (Continued)

-387-

LIST = ~_i4 ~ i 2

Again~ an additional node is depicted schematically as~

Io I

E ,

C_

and in APL as:

LIST ~ 0

[2

, 75~0 _

Sample APL functions for bidirectional linked lists are given as Figure llo

LISP-LIKE S TRUCTUB]gS

The LISP languages developed by McCarthy 9 and discussed by Hopgood I0 and
Katzanll~ presents data structures that are more complicated to represent
and to effectively process,

-388-

VLIST[D]V
V R÷LIST L~I~J

[1] I÷J÷l
[2] LOOP:+(L[J;3]=O)/PRINT
[3] I+oI~J+L[J~3]
[4] +LOOP
[5] PRINT:R÷L[I~2]

V

VAPPEND[[]]V
V APPEND A~I~J

[1] I÷1
[9] Li:+((I+L[J+I~3])zO)/L1
[33 L+L~[i] J,A~O
[43 LEJ~3]+I+pL

V

[i]
[2]
[3]
[4]
I s]
[6]

[lJ

[I]

[13
[23
[33
[4]

VI~SERT[~]V
V INSERT N~.I

A if[l] NODE AFTER WHICH NEW NODE SHOULD BE INSERTED
N[2] NEW NODE

+(L[N[I];3]~O)/Li
APPEND N[2]
÷0

LI:L[L[I~3]~I]÷L[ff[i]~3]÷I÷i+pL+L~[I] N~L[N[I];3]
V

VINDEXOF[~]V
V R÷INDEXOF A

R÷L[~2]IA
V

VPRED[~]V
V R÷PRED I

R+L[;3]II
V

VDELETEE~]V
V DELETE I

I INDEX OF NODE TO BE DELETED
L[L[I~f]~3]÷L[I;3]
+(S[I~3]=O)/O
L[L[I~3];f]÷L[I;I]

V

Fig. ii Manipulation of bidirectional linked lists

-389-

45

3

4

45

45

L
0 45 2

1 81 0

APPEND 75
L

0 45 2

1 81 3
2 75 0

iNSERT 2 25

L
0 45 2
1 81 4

4 75 0

2 25 3
LIST L

81 25 75

INDEXOF 75

PRED 3

APPEND 90
L

0 45 2

1 81 4
4 75 5

2 25 3

3 90 0
LIST L

81 25 75 90

DELETE INDEXOF 25
LIST L

81 75 90

Figs ii (Continued)

-390-

Let the LISP register, depicted as

be represented in APL as a matrix of the form

/ ty~e l index I car

cdr

where

t yy~_e structure
0 composite symbol
1 atomic symbol
2 null symbol

Atomic symbols are stored as single characters in a character array°
Composite symbols are stored as a rank-3 array - in this case named LISTo
The character array is appropriately named DATA. Thus the LISP representa-

tion of

+A*+CDE

and depicted as

would be stored in the APL version as:

-391-

DATA
+A*+CDE

LIST
1 1

0 2

1 2
0 3

0 4
2 0

1 3
0 5

0 7
0 6

1 7

2 0

1 4
0 8

1 5

0 9

1 6
2 0

APL functions (Figure 12) are developed to perform the following

LISP-lime operations

1 ~ print

2 o cons
3 o car
4 o cdr
5 o atom

6 o nil
7~ enter data

CONCLUS IONS

Alt~hough the preceding discussion is notf and is not meant to beF a

complete treatment of data structures and associated processing~ it is
perhaps indicative of the functions that programmers actually program and
of structures that language designers consider, There is no intent here to

debate whether the data structures provided in APL are sufficiently
primitive to build n~re complicated structures or whether the APL primitive

-392-

Eli

[l]

El]

[l]

[i]

[i]

V R+ENTER A
R+I ~ pDATA+DATA ~A

V

v cotJs [D J v
V B+A COHS B

R+I+pLIST+LIST,,[I] A~[0°5] B
V

VOA£[[]Jv
V R+CAR I

R+LIST[I~I ~]
V

yoDel@Jr
V R+CDR I

R+LIST[I;2~]
V

vNIS[DJv
V R÷NIL

R+ 2 0
V

VATOM[DJV
V R+ATOM V

R÷I:i+V
V

VINIT[D]V
V INIT

[i] DATA÷tO

[2] LIST+ 0 2 2 p O
V

Fig° 12 Manipulation of LiSP-like structures

-393-

[i]
[2]
[3]
[4]
[5]
[6]
[7]
Is]
[9]

VrRft, T2[~] V
V R÷PRINT A

+(l : p ~A) /L1
÷ (2 : p ~ J) / L 2
÷O~pR ÷~DOMAI~'7 ERROR

LI;÷OopR÷LPRI'NT J
L2 :÷(0:I+A)/L3
÷(1:1+A)/L5
+p R÷ I 0

L3:+OopR÷LPRINT A[2-]
L5 :÷OpR+DATA[A[2]]

V

IN PRINT ~

[13
[23
E33
[43
[53
[e3
[7]
[s3
[93
[i o]
I l l]
[123

VLPRIflT[[]]V
R÷LPRINT A
÷((LIST[A ,~ i .~ I] :i)^LIST[A
÷((LIST[A ~ i ~ I] :O)^LIST[A
+((LIST[A i i ; I] :I)^LIST[A
+((LIST[A i1~ l]=O)ALIST[A
.+((LIST[A ~I ~i]=I)ALIST[A
+((LIST[A ~ I11]=O)ALI-ST[J
÷pR÷10

L1 :÷0, pR÷DATA[LIST[A ~ I ~ 2]
L2:÷O~pR+(LPRIzVT LIST[At1
L3 :÷0 ~ p R÷DA TA [LIST[A ~ I ~ 2]
L,4:÷0~pR÷(LPRINT LIST[All
L5 :÷0opR÷DATA[LIST[A ~1~23

[13] L6:÷O~pR÷LPRINT LIST[A~11
V

~211]=1)/L1
~2;1]=1) /L2
1211] :0) /L3
12~1] :0) /L4
1211] :2) /L5
~2~1] :2) /L6

] ~DATA[LIST[A ~ 2 ~2]]
2]) ,DATA[LIST[A ~ 2 ~ 2]]

]~LPRINT LIST[A~2~2]
12])oLPRINT LIST[A~219]
]
23

Fig° 12 (Continuation i)

-394-

PRINT 1
+A*+CDE

CAR 1
1 1

+
PRINT CAR 1

PRINT CDR 1
A*+CDE

PRINT CAR 3
*+CDE

ATOM CAR 4

PRINT CAR 4

INIT

I÷(ENTER ~+~) CONS COMP (ENTER ~X ~) CONS COMP
(ENTER ~Y~) CONS NIL

+XY
PRINT I

LIS T
1 1
2 0

1 2
0 1

1 3
0 2

DA TA
YX+

Fig~ 12 (Continuation 2)

-395-

*+XYZ

LOC+(ENTER ~*~) CONS COMP (COMP I) CONS COMP
(ENTER ~Z ~) CONS NIL

PRINT LOC

L I S T
1 i
2 0

1 2
0 1

1 3
0 2

i 4
2 0

0 3
0 q

i 5
0 5

DA TA
YX+Z*

Fig. 12 (Continuation 3)

--396-

functions are sufficiently rich° It cannot be ignored, hc~ever~ that the

functions presented are amazingly simple - that is~ considering the amount
of progr~ing t~at ordinarily would be required in assembler language or

most other languages° It seems that we as language designers should be as
interested in the base language upon which sophisticated structures can be
built as we are on the data structures themselves° In this ways our labors
may affect, significantly~ the computing machines of tomorrow°

REFERENCES

io Bashkow~ ToRo ~ Ao Sasson~ and A~ Kronfeld~ ~System design of a FORTRAN
machine ~ '~ IEEE Tro~sactions on Electronic Computers ~ EG-16 (August~ 1967)
p~ 485-499°

2o Melbourne~ AoJo~ and JoM~ Pugmire~ "A small computer for the direct
processing of FORTRAN statements~ ~' Computer Jou~al~ 8(1968) , pc 24-27°

3o Sugimto~ Ms ~ ~'PL/I reducer and direct processors" Proceedings of the 24th
ACgf National Conference ~ (1969) ~ pc 519-538°

4o Weber~ H o ~ HA microprogrammed implementation of EULER on IBM 360/30~"
Co~nications of the AOM, (September~ 1967)~ p. 549-558°

5o Husson~ So ~ Microprogranming: Principles and Practices~ Englewood Cliffs
NoJo~ Prentice-Hall, Inco, 1970o

6~ Z?~urber~ K.Jo and JoW~ Myrna~ "System design of a cellular APL computers '~
IEEE Transactions on Computers, VOlo c-19~ Number 4 (Aprils 1970)
pc 291-30 3o

7o Katzan~ H o ~ APL Pro~a2mSng and Comguter Techniques ~ New York~ Van
Nostrand Reinhold Coo ~ 1970o

8o Iverson~ K~Eo ~ J Programming Lang~ge~ New York, John Wiley and Sons,

Inco ~ 1962o

9o McCarthy~ J~t et aloe LISP Io5 Progrommer~s Manuals Cambridge~ Mass~
The M~I.T~ Press~ 1962o

i0 ~ Hopgood~ FoR.Ao ~ Co.oiling Techniques ~ New York, American Elsevier
Publishing Company~ Inco~ 1969.

iio Katzan~ H o~ Advanced Programming: Progrmnming and Operating Systems
New York~ Van Nostrand Reinhold Coo ~ 1970o

-397-

