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ABSTRACT

Methods for the representation of complex data structures in APL,
a programming language based on rectangular arrays and a multiplicity
of functions, are presented. Data structures considered are: strings
and sets, stacks and queues, tables, linked lists, and LISP-like struc~
tures. The material provides insight into the nature of data structures
and should aid in establishing future reguirements for primal and base
languages,

INTRODUCTION

Modern computing systems tend to be complex compared with the simple
word-oriented machines of fifteen vears ago. Today, we hear of privie-
leged operations, supervisor/problem states, interrupts, sophisticated
1/0, etc., In spite of this, the primal language for using the computer
{i.e., assembler language) has remained essentially the same - except
for a few bells and whistles. Problem solvers and programmers, however,
wish to use the machine in another way: with a higher~level language
such as ALGOL, FORTRAN, or PL/I. Thusfar, the compiler has been the
bridge between the languages of the user and the language of the computer,
Because compiler and compilation costs are high and problem solvers and
machine designers seem to be going in opposite directions, several
researchers -~ namely: Bashkow, Sasson, and Kronfeldl, Melbourne and
Pugmirez, SugimtnBy and Weber? - have proposed and developed systems
that directly execute the statements of a higher-level language. Recent
advances in microprogramming and writable control store (e.g., see Husson™)
indicate that the architecture of a computer using a higher-level
language as a primal language is indeed feasible from both performance
and cost standpoints.
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The recent povularity of APL% has resulted in at least one APL
machine (see Thurber and Myrna®) and led several researchers to con-~
jecture on the possibility of implementing APL (or a subset of it} as
a primal language. APL 1s also in widespread use as a problem solving
language and the number of APL enthusiasts {in ail areas of computer
science) is growing rapidly. For both applications, the key question
is: "How do we represent complex data structures in APL, a language
based on rectangular arravs and a multiplicity of appropriate functions?”
The answers should help to establish future requirements for primal
and base languages.

This topic is the subject of this paper. The material should
provide new insicghts into the nature and storage of complex data
structures. Obviously, most of the concepts are already known. Yet,
there is much benefit in providing a unified treatment of this important
area of computer technology. The concepts, and functions as well, are
presented by order of increasing complexity. In other words, the first
few functions are relatively simple whereas the latter ones, especially
those on LISP, are fairly obscure, using recursive functions and related
technigues.,

THE APL SYSTEM

Statements and Funetions

The APL terminal system7 combines Iverson’'s 1anquag98 and the
concept of time sharing to form an effective system for interactive
computing. Input to APL takes one of two principle forms: statements
in the APL language and system commands. System commands are used to
address the APL terminal system itself and provide miscellaneous services
that are outside the scope of the language itself. Statements in the
APL language fall into 3 categories:

1. Specification statements such as
A+2x%3+4

2. Branch statements, such as
+LOOP+2

3., Punction definitions, such as
VR«X PLUS ¥

ReX+Y
v

Moreover, the system operates in two modes: the execution mode and
the definition mode. In the execution mode, statements are executed

®
APL staﬂdg for A Programming Language based on the bock by K.E. Iverson,
A Programmng Language, Wiley, 1962,
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immediately, In the definition mode, statements are stored as part
of a function definition. System commands and functions can only be
entered in the execution mode.,

Specification and branch statements permit expressions as arguments.
Expressions can be composed of constants, variables, wonadic and dyadic
functions, and parentheses in the usual sense. A right-to-left order
of execution has been adopted. Table 1 contains the primitive scalar
functions contained in APL. They also apply to array arguments on an
element-by-element basis. Thus

410 18 ++ 1 2 3xb 5 6
eto,
Composite Functions
The extension of the scalayr dvadic functions to arravs are termed
composite functions. Three functions fall into this category: reduction,
inner product, and outer product. Reduction is written:

®/A

where @ is a dyvadic function and A is an array. Thus if V<3 2 9 1 4,
then

194> +/V

Reduction also applies to rank-n arrays along a single coordinate and
effectively reduces the number of coordinates by one.

Inner pyoduct, which is related to the ordinary matrix product, is
written

Af.gB

where f and g are dyadic functions and 4 and B are arrays. The matrix
product of conformable matrices 4 and B is denoted by

A+ . %B

The outer product resembles the familiar cartesian product and is
written

Ae.fB

where 4 and B are arrays and f is again a dvadic function. If 4«1 2 3
and B+t 8 10, then 4¢,+B vields the matrix:

7 9 11
8 10 12
9 11 13
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Monadic form £B £ Dyadic form AfB
Definition Name Name Definition
or example or example
+B <« 0+B Plus + | Plus 2+3.,2 +> 5,2
~B «+ 0-B Negative - | Minus 2-3.2 «» 1.2
xB +» (B>0)-(B<0) Signum x | Times 2x3,2 +=> 6.4
tB «> 1:B Reciprocal : | Divide 2:¢3.2 > 0.625
B ] rBJ LB Ceiling [ | Maximum 3[7 > 7
3.14 4 3
T3.14 |73 | Th Floor L | Minimum 3L7 <> 3
*B «> (2,71828..)*B|Exponential | x | Power 2%3 <> 8
@xl «> N <> xa} Natural @ | Logarithm A®B <«-» Log B base 4
logarithm AeB <~ (@B)te4
| 73,14 <« 3.14 Magnitude I | Residue Case | AlB
A=0 B-(]A4)xLBzx|4A
A=0,B20!8B
A=0,B<0] Domain error
10 «» 1 Factorial ' | Binomial A'B <« (1B):(!A)x!B-4
'B «> Bx!B-1 coefficient |215 «-» 10 315 «» 10
or !B «» Gamma(B+1)
?B <=+ Random choice|{Roll ? | Deal A Mixed Function (See
from 1B Table 3.8)
OB <« Bx3,14159, ., |Pi times o | Circularx See Table at left
~1 - 0 ~0 -1 Not ~
A | And AlBlarslave|ans|aws
{(-4)0B A ACB v | Or 010} 0 0 1 1
(1-B*2)%.5 |01 (1-B%2)%.5 ~ | Nand 0111 o© 1 1 0
Arcsin B | 1| Sine B » | Nor 1]01 0 1 1 0
Arccos B | 2| Cosine B 1111 1 1 0 0
Arctan B |3 | Tangent B
(T14B#*2)*.5 | 4| (14Bx2)%.5 < | Less Relations
Arcsinh B | 5| Sinh B < | Not greater Result is 1 if the
Arccosh B |6 Cosh B = | Equal relation holds, ©
Arctanh B | 7| Tanh B > { Not less if it does not:
> | Greater 3<7 +» 1
Table of Dyadic o Functions = | Not Equal 7<3 <> 0

Table 1. Primitive Scalar Fumctions*
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MWxed Punctions

The mixed functions in APL are designed for use with arvays and
provide a variety of useful operations, such as:

Generating a vector of integers,

Finding the index of an element in a vector.
Determining the size or shape of an array.
Raveling an array or scalar to form a vector.
Catenating vectors and rank-n arravs.
Selecting or dropping elements of an array.
Sequencing elements of a vector.
Compressing and expanding an array.
Reversal, rotation, and transposition.

Set functions.

Base value and representation functions,
Random numbey generation.

Mixed functions are summarized in Table 2,
Indexing
A subscript in APL is termed an index and may be a scalar or an

array, If V<« 73965143, then V36 1]«> 9 1 7. Similarly,
ifF A+ 22027 3 1, i.e.,

)

VIAJ+ 3 4

g 7

then

Also, if B« 2u4p 73986514 3, i.e.,

H

then B[2:3] = 4, B[:2] 31, and B[2;1 =5 1 & 3,

Miscel laneous Comments

Since this paper contains a number of APL programs, several comments
are necessary. First, the user’s input is indented six spaces and the
computer types beginning in the left hand margin. Next, if the last
operation in a statement is not a branch or specification, then the
result is typed at the terminal. Thus,

A+10

A+3
13
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Name 8ign! |Definition or example?
Size 0 A oP <« U oF <+ 3 4 05 «> 10
Reshape Vo 4 Reshape 4 to dimension V 3 Upl2 <> [
120E <+ 112 0pF <+ 10
Ravel , A LA =+ (x/od)pd JE 112 n,5 «» 1
Catenate v,V FP,12 <+ 2 3 5 7 1 2 YT LUTHISY e TPHTST
Vi A4l P27 <=3 Plu 3 2 11 «»7 5 3 2
Index3 4 MLA: 4] El1 3;3 2 1] <> 3 2 1
> 11 10 9
Al 4. . El1, <> 1 2 3 U ABCD
Y FLs1] <> 1 5 9 "ABCUDEFGHTIJKL'(E] <~ EFGH
J TJKL
Index 1.8 First § integers 4 o> 1 2 3 4
generator® 10 <> an empty vector
Index of? Vi4 Least index of 4 P13 <=2 5 1 2 5
in vV, or 1+oV PiE +»> 3 5 4 5§
4 Lyl < 1 5 5 5 5
Take V44 }Take (drop) IV[I]’first 2 34X <> 4BC
elements on coordinate PEG
Drop Vi A I. (Last if V[I]<0) 24P <> 5 7
Grade up? M The permutation which A3 5 3 2 «»> 4 1 3 2
}would order 4 (ascend-
Grade down®| 94 ing or descending) Y3 5 3 2 <> 2 1 3 4
1 3
Compress?® V)4 10 1 0/P <+ 2 5 1 0 1 0/E <> 5 7
g 11
1 0 1/01]E <> 1 2 3 b o> 1 0 14F
g 10 11 12
A BCD
Expand’ 7\ 4 10 1\12 <> 1 0 2 101 1 1\X <> E FGH
I JKIL
DCBA IJKL
Reverse’ b4 bX <> HGFE bL1]X <> ©X <~ EFGH
LKJT P «» 7 5 3 2 ABCD
BCDA
Rotate® AbA 30P «> 7 2 3 5 <> 1¢P 1 0 T106X <> EFGH
LIJK
AET
AT Coordinate T of 4 2 18X <> BFJ
becomes coordinate CGK
Transposge VII] of result 1 18F <+ 1 6 11 DHL
&4 Transpose last two coordinates QE <> 2 1QF
o1 10
Membership | 4€4 pHeY <+ oW EeP <> 1 0 1 0
Pe1l4 <> 1 1 0 0 0 0 0 0
Decode Viv 1002 7 7 6 «» 1776 24 60 6011 2 3 «-= 3723
Encode Vrs 24 60 6073723 +» 1 2 3 60 6073723 = 2 3
Deal 3 575 W?Y ++ Random deal of W elements from 17
Table 2. Primitive Mixed Functions’
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Restrictions on argument ranks are indicated by: 5§ for

scalar, vV for vector, M for matrix, 4 for Any. Except as

the first argument of S514 or S[4]1, a scalar may be used

instead of a vector. A one-element array may replace any

scalar.

Arrays used 12 3 4 ABCD

in exanples: P <> 2 3 5 7 E «> 5 6 7 8 X <= FEFGH
9 10 11 12 ITJKL

Function depends on index origin.
Elision of any index selects all along that coordinate.

The function is applied along the last coordinate; the
symbols £, %, and © are equivalent to /, \, and ¢,
respectively, except that the function is applied along the
first coordinate. If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar 5.

Notes to Table 2.

* Tables 1 and 2 and the above notes are reproduced from:

Falkoff, A.D., and K.E. Iverson, APL\360 User’s Manual, Yorktown Heights,
N.Y., IBM Corporation, Watson Research Center, 1968 (Also available as
IBM form #GH20-0683-1)

Also, the function header statement needs further explanation. Consider,

VRe)X ABC Y313d

The del (V) puts the APL system into the execution mode. R specifies

an explicit result; ABC is the name of the function; X and Y are dummy
variables (arguments); and I and J are local variables. Lastly, the guad
symbol (J) or the quote-quad symbol (M) indicates input or output -
depending on how it is used. A+{] denotes input and [l+4 denotes output.

STRINGS AND SETS

The most primitive type of data structure, othey than a scalar

numeric data item, is the string ~ taken in this case to be a seguence
of characters. In APL, a character string is stored as a vector so
that a list of strings is stored as a rwo-dimensional array or an extra
long vector. A set is stored in a similar manney but is restricted to
either character or numeric data,

Subs tring

APL.

The SUBSTR function in PL/I, for example, is easily constructed in
The function uses a string name, an offset, and a length as follows:
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SUBSTR{NME, LOC, LEN)

and is simulated in APL as shown in Figure 1.

value of the substring.

The function returns the

VSUBSTRI ]V
vV R«S SUBSTR 4
[1] ReS[ 1+A011+10402]]
v

C«'TEA FOR TWO!

¢ SUBSTE 5 3
FOR

¢ SUBSTR 1 2
TE

Fig. 1 Substring

Alphabetic Sort

An amazingly simple APL program can be constructed to sort strings

that are stored as a two-dimensional array.
represents a distinct string as depicted in Figure 2.

Bach row of the matrix

The function uses

the base value function to compute an index for each row and then uses
the grade up function to compute the permutation of indices that would

order the rows in ascending seguence,

VSORTL[IIV
V R+S50RT 438

[1] S« ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"

[2] ReAl A(2+p5)18514 ;]
v

DATA
TEA FOR TWO
ALL COWS EAT GRASS
IMFPOSSIBLE
SIGPLAN NEWS
MAGIC SQUARE

SORT DATA
ALL COWS EAT GRASS
IMPOSSIBLE
MAGIC SQUARE
SIGPLAN NEWS
L TEA FOR TWO

Fig. 2 BAlphabetic sort =374~



Pattern Matching and Replacement

The ability to search a given string for a sequence of characters had
its foundations in Markov algorithms and is an important feature of the
SNOBOL language. In SNOBOL, pattern matching and replacement has the
general form:

STR PAT = REPL

where STR is the string reference, PAT is the pattern, and REPL is the
replacement string., In the above skeleton, any of the constructs, except
the string referxence, can be omitted as reguired by a particular applica-
tion. Two APL functions are presented in Pigure 3. The firxst, FIND,
gives the index of the first occurrence of one string in another. The
second, REPLACE, replaces one seguence of characteys with another. In
the latter case, a dummy function WITH iz used to give the function the
appearance of being a statement in a problem-oriented language, i.e.,

STR REPLACE A WITH B

VFINDL[IOV
¥ P«(C FIND D
(1] Pe(A/T13( 14100)(C+,C)0 . =D)11

YWITHI[I1V
V R+<A WITH B
(1]  U135V+B
{27 R+A

VREPLACELO]V
YV R«STR REPLACE A:I:;J
(1] >((p8TRY2T«14,{A<«,A) FIND(STR+«,STR))/L1
[2] >0 ,0R+STR
(3] L1:R«STR{1I-11,U135V,STR[J+1{pSTR)~J« 1+I+pA]
v

TXT+'ALL COWS EAT GRASS!

TXT REPLACE 'EAT' WITH 'CHEW!
ALL COWS CHEW GRASS

TXT REPLACE ‘'COWS' WITH !
ALL EAT GRASS

Pig, 32 Pattern matching and replacement
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Set Union and Intersection
The membership function in APL, written
AeB
returns the value 1 if 4 is an element of B. The result has the same
structure as the left arqument. Thus 'TEA FOR IW0'e' ' yields the wvector

00010001000, The membership function is used in the union and
intersection functions given in Figure 4.

vuNronlLiv
Y R<U UNION V
[11] Bel (~Vel+ U)/Ve,V
v

VINTERS[IIV
Y R+l INTERS V
(11 R«{UeV)/U

YABDGH' INTERS 'BGL'

183 7 UNION 3 4 5
i 3 7 4 5

Fig. 4 Set union and intersection

Charactey Translation

One of the most frequent problems in terminal—oriented systems
involves a character translation based on the type of terminal on the
other end of the telephone line, BAlthough the operation is trivial
conceptuatlly, it is often curmbersome unless the computer has an appropriate
instruction., Figure 5 lists an appropriate THANS function that utilizes
the indexing facilities in APL.

STACKS AND QUEUES

Storage is maintained dynamically in APL and this feature is particularly
useful for implementing stacks and queues., In each case, the object is
represented as a vector but in contradistinction to most implementations,

a ligt pointer is not required. Stack and queue functions use the take
and drop functions in APL which are useful for operating on a list without
decomposing it,

~376



VIRANST 1]V
V B+TRANS A341 ;42
1] Al«’~oinle_Vare ' "[Jl70%x2p  ~buwotca  “<<znory?
[27] A1 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123u56789 !
[3] B+«A2[A114]
YV

TRANS ‘'m~eq- Op-m~yo!
TEA FORE TWO

TRANS "2 o[ T 110e?
IMPOSSTBLE

Fig. 5 Character translation

Queues

A queue is a data structure in which additions are made at one end
and deletions are made at the other. It is frequently referred to as a
FIF0 list. Figure 6 contains functions for QUE and DEQUE, respectively.

VQUELO]IvY
Vv QUE A

1] QeQ, A

VDEQUEL[I]Y
V R<+DEQUE
(1] R+14Q
(21 Qe14Q

Q+10

QUE us5
QUE 2
QUE T17.1
DEQUE

45
DEQUE

QUE 119
_ DEQUE
17.1

Fig. 6 Queue functions
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Stacks

A stack is a structure in which entries are made at the same end
using a last-in-first-out algorithm. Stack functions are given in
Figure 7.

VPUSHITIIV
Vv PUSH A4
1] STACK+A ,STACK

VPULLLOJIV
V E<PULL
[1] R+14+5TACK
[2] STACK+13¥STACK

STACK+1 0

PUSH 45
PUSH 2
PUSH T17.1
PULL

T17.1
PULL

PUSH 119
PULL
119

Fig. 7 Stack functions

TABLES

A table is a set of ordered pairs (ks v;) with unique first components
k;. Here the k;'s are taken to be numeric values while the values can be
numeric values or character strings. An entry v, is said to be associated
with the key k;. Table lockup involves determin ng, for a key kz, the
table entry (k;, v;) where

Kl = kg

The process makes available the required value vy
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Numerice Values

A numeric table is stoxed as an {(n%2) matrix where the first column
represents the keys and the second column represents the wvalues., Given
a key K and a table T, it is easily determined if that key is found in
the table; in fact it is expressed as

KeTl ;1]
replacement, deletion, addition, and fetch functions are given in Figure 8.
Variable Length Character Values

Table management using wvariable-length character values represents
more of a problem but is easily solved in APL, The kevs are stored as a
vector ID of numeric values. Character values are stored as a continuous
string TEXT of characters. B2 supplementary vector START is also used
to denote the position of each entry in TFXT corresponding to an element
of ID and a wvector LENGTH that gives the length of each variable-length
entry. Consider the entries:

Key Value
37 'TEA FOR TWO!
3 YALL COWS EAT GRASS?
50 ' IMPOSSIBLE'
14 'SIGPLAN NEWS'®
159 'MAGIC SQUARE?®

If these walues were entered seguentially, they would be stored as
follows:

D

37 3 50 14 159
START

0 11 29 39 51 63
LENGTH

i1 18 10 12 12
TEXT

TEA FOR TWOALL COWS EAT GRASSIMPOSSIBLESIGPLAN NEWSMAGIC SQUARE

Functions to store, fetch, and delete entries are given in Figure 9,

LINKED LISTS

Linked lists commonly exist in two forms: unidirectional lists and
bidirectional lists, represented as follows:
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1]

[1]
[2]
[3]

v

v

v

v

%

v

v

VCHECK[[]IV
L+T CHECK X
L«KeP{ ;1]

YINDEX[[]V
I+7T TNDEX K
I«70 ;111X

YREPLACELDIV

REPLACE V

+{TABLE CHECK VI{11)/L1
+>0,p0«'XEY NOT IN TABLE!®
L1:TABLELITABLE INDEX VI11:270+vVI2]

vADDL1IV

ADD V

~(~TABLE CHECK VI11)/L1
+0,00« ' DUPLICATE KEY?
L1:TABLE«TABLE ,[1] V

VFETCHITIV

BE«FETCH K

+~{TABLE CHECK XK)/L1
+0,p0«'XEY NOT IN TABLE!
L1:R<TABLE[TABLE INDEX X;2]

VDELETE[ O]V

DELETE KT

+{TABLE CHECK K)/L1

+0,00«'XEY NOT IN TABLE'
L1:TABLE«(((I-1),2)4TABLE) ,[13((-((14pTABLE)~I«TABLE INDEX K)),2)+TABLE

Fig. 8 Functions for use with tables with numeric wvalues
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UV WO 0N W W00 R W

LY U W 00N W

67

TABLE
34
67
32

112
55

REPLACE 8 75

TABLE
34
57
75

112

55

ADD 13 0

TABLE
34
67
75

112
55
0

FETCH 2

FETCH u5

KEY NOT IN TABLE

Gy TN W

DELETE 9

TABLE
34
67
75
55
0

DELETE u1

KEY NOT IN TABLFE

Fig., 8

{Continued)
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vINIrralv

v INIT
[1] ID«LENGTH«TEX T+ 0
[21] START<+,0
v
VSTORE[[1]V
Vv STORE ;I;A
[1] "ENTER INTEGER ID FOLLOWED BY TEXT ON THE NEXT LINE'
[2] >(0=I+[1)/0
[3] »(0=pA<[1)/0
R LENGTH+LENGTH ,p4
[5] ID«ID, I
[8] START<START ,0 TEXT«TEXT,
[7] 2
v
VEETCHI[1]V
vV PETCH LIST;IND,;I;L
[1] L+pIND«IDA LIS« ,LIST
[2] +{1=v /IND>pID)/ERR
3] I+0
fy] LOOP:»(L<I«I+13/0
[5] TEXTLSTARTLINDL I 1)+ LENGTHL IHDII]]]
L6l (et
[7] +LOQOP
(8] FERR:"INVALID ID’
v
VDELETE[[1]Y
V DELETE KEY I
(11 >{{pID)zI«ID\KEY) /GO
[2] +0,p0« " INVALID ID?
(3] CGOTEXT<«TEXTI\STARTLI]],PEXTL I+ 1 {(pTEXT)-J«START{ I I1+LENGTHLI]]
[y ID«ID[(1IT-1],ID[IT+1{pID)-I]
51 START«STARTI I -13 ,{(START[ T+ (pSTART )~-IT1)~-LENGTH[T])
[6] LENGTH«LENGTHII-1] ,LENGTH{ I +1{(pLENGTH)-1]
\
Fig. 9 Punctions for use with tables with variable-length values
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INIT
STORE
ENTER INTEGER ID FOLLOWED BY TEXT ON THE NEXT LINE
(1:
37
TEA FOR TWO
0
3
ALL COWS EAT GRASS

M
e

50
ITMPOSSIBLE
E

14

SIGPLAN NEWS
1

159
MAGIC SQUARE
K
0
FETCH 14 3

SIGPLAN NEWS

ALL COWS EAT GRASS

ID
37 3 50 1y 159
DELETE 14
FETCH 14
INVALID ID
FETCH 50
IMPOSSIBLE

Fig, 9 {(Continued)
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Data MM4WMWM%(§ata wm%mmmm@ Data —

midirectional List

WWWW"% 1 |pata { %wwwm«M4% ] [ pata { WMWFM”WJ% 1D&ta 1 —t

Bidirectional list

In APL, the data part of a linked-list is stored as numeric or character
data, as required. Pointer data is stored as a numeric array with indices
to preceding and succeeding nodes, as reguired,

nidirectional Iists

Consider the numeric list

| 45 1 = Wﬁj:ﬁt“*'ﬁ’{jva_OJ

It is represented in APL as:

LIsT = 45 2

a1 3

T14 0

Adding a node after the second one is depicted as follows:
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ST e ] [Cal ]

and in APL as:

LIST = | 45
81

14
50

W O B o

Thus, deletions and additions are made without reguiring that other data
items be moved, Figure 10 gives functions for listing, adding, and deleting
node elements. Although boundarv conditions have not been satisfied in all
cases to preserve clarity of exposition, the functions demonstrate the
flexibility inherent in APL and the effective use of dynamic storage.

Bidirectional Lists

Bidirectional lists are similar to their unidirectional counterparts
but contain backward pointers as shown previously. Backward pointers
facilitate deletion and require only that the location of the node to be
deleted be known. The list:

o | 45 | 8l | —df—s 75 | 0

is represented in APL as:
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VLISTL]VY

V ReLIST L3I;J
t1] T+
[2] LOOP:»(L[J;21=0)/PRINT
37 I«T,J«L{J 2]
(4] +LOOP
(5] PRINT:R+L[I;1]

Y

VINSERT[[I1V
v INSERT W
[11 a N[1] NODE AFTER WHICH NEW NODE SHOULD BE INSERTED
[2] a N[2] NEW NODE
raj LIml1d;2]«14p00+L,017 NL23,L0N[2]:2]

VINDEXOFL[11V
V B+«INDEXOF A
[1] R+«L[:1714

VPRED[ 11V
vV RE<«PRED T
(117 R«L[ ;2111

VDELETEL]V
Vv DELETE N
[17 a N[(1] NODE TO BE DELETED
[27 a N[{2] PRECEDING NODE
[3] LINC2]):23«LlN[1];:2]

VAPPEND[1Y
V APPEND A:I1;J
17 T
[21 Li:+({I+L[J<«I;21)=0)/L1
[3] L+L,[11(4,0)
[4] L{J:2]«14pL
v

Fig, 10 Manipulation of unidirectional linked lists

~386~



z

45 2
81 <!
Ty 0
LIST I
b5 81 1y
INSERT 2 50
L
45 2
81 y
T1u 0
50 3
LIST I
45 81 50 14
INDEXOF 81
2
PRED 3
Ly
PRED INDEXOF 50
2
DELETE 2 1
LIST L
45 50 1
APPEND 25
LIST L
45 50 14 25
FPig. 10 {Continued)
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o | 45 | 2
1 8l | 3
1 2 75 | 0

o | as| ol 81 bl 0

25 l{

and in APL as:

45
81
75
23

LIST =

B | e | e ] 0D

G | O3] dn | RS

Sample APL functions for bidirectional linked lists are given as Figure 11.

LISP-LIKE STRUCTURES

The LISP language, developed by McCazthyg and discussed by Hopgeodlo and

Katzanll, presents data structures that are more complicated to represent
and to effectively process,
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VLISTL1Y
V R«LIST Ll

11 TeJ+1
[21 LOOP:-»(LLJ3;31=0)/PRINT
3] I<T , J+L1J33]
[y +LOOF
[51] PRINT :R<L[ T ;2]
\
VAPPENDLI]V
Y APPEND A1 ;J
{11 T+1
[27 Li:»({(I«LlJ«I3;31)=20)/L1
£31] <L, 011 J,4,0
4] LIJ33]«1tpL
v
VINSERTL[]]V
Vv INSERT NI
[17 an N[11 NODE AFTER WHICH NEW NODE SHOULD BE INSERTED
{21 a N[2] NEW NODE
[3] »>(LIN[1]331=0)/L1
[u] APPEND N[ 2]
s3] >0
[6] LA:L[L0T 31 310«L[Nl1]):3]«I«14pL<L,[1] N, LTNT1]1:3]
v
VINDEXOF[[1]V
V R+«INDEXOF A
L4113 R«L[ ;2114
\
VPREDL[I]V
V R«PRED I
[11] R«L[ 33117
Y
VDELETEL[]]V
Vv DELETE T
f11] o I INDEX OF NODE T0O BE DELETED
[21 LLIL[I;11331+«L0I;3]
[3] +{L[1331=0)/0
[u] LLL[I;31;11«L[I31]
v
Fig, 11 Manipulation of bidirectional linked lists
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L

0 u5 2

1 81 o
APPEND 75
L

0 45 2

1 8l 3

275 0
INSERT 2 25
z

0 45 2

1 81 e

b 75 0

2 25 3
LIST L

45 81 25 75
INDEXOF 75

3
PRED 3
b
APPEND 90
L
0 45 2
1 81 Y
4 75 5
2 25 3
3 90 0
LIST L

45 81 25 75 S0
DELETE INDEXOF 25
LIST L

5 81 75 90

Pig, 11 {(Continued)
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let the LISP registey, deplcted as

car | cdr

be represented in APL as a matrix of the form

l type | index i car

l type {index | car

where
type structure
0 composite symbol
1 atomic synmbol
2 null symbol

Atomic symbols are stored as single characters in a character array.
Composite symbols are stored as a rank-3 array - in this case named LIST.
The character array is appropriately named DATA. Thus the LISP representa-
tion of

+A*+CDE

and depicted as

would be stored in the APL version as:
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DATA

+Ax+CDE
LIST
1 1
o 2
i 2
0 3
0 y
2 0
1 3
0 5
o 7
0 B
1 7
2 0
1 4
0 8
1 5
0 3
i 6
2 0

APL functions (Figure 12) are developed to perform the following
LISP-lime operations:

print

cons

car

cdr

atom

nil

enter data

@ ®

@

@

@

w3 Y U s DO B
@

@

CONCLUSIONS

Although the preceding discussion is not, and is not meant to be, &
complete treatment of data structures and associated processing, it is
perhaps indicative of the functions that programmers actually program and
of structures that language designers consider, There is no intent here to
debate whether the data structures provided in APL are sufficiently
primitive to build more complicated structures or whether the APL primitive
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VENTER[[1]W
V R<ENTER A
17 Rel ,pDATA+DATA A

veconstnlv
Vv R+A CONS B
[1] Re14pLIST+LIST,[1] A,L0.5] B

VCARLI]V
Vv R+CAR I
[11] R«LISTLIs13]

VCDRT(IV
vV R<«CDR T
[117 R«LIST(I323]

vNILLO1VY
V R<NIL
[11 B+« 2 0

VATOMLI]V
vV R+ATOM V
(11 R+1=14V

VINITLOIY
v INIT
[1]  DATA«10
21 LIST+« 0 2 2 pO0

Fig., 12 Manipulation of LISP-like structures
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VPRINTLIIV

Y RE<PRINT 4
[1] +{1=p,A) /L1
[2] +{2=p ,A)/L2
3] +0,pR+'DOMAIN ERROR IN PRINT?
(47 L1:»0,pR«LPRINT 4
[5] L2:»>(0=144)/L3
[&] +{1=144)/L5
(71 +o R+ 0
[87 L[3:+0,pR«LPRINT Al2]
[97 L[5:+0pR«DATALAL2]]

v

VLPRINTIIIV

Y R<«LPRINT A
[a3 >((LISTIA31:1]=1)YALISTLA4;2;1]=1)/L1
{27 >{((LIST[A321:1]=0)ALISTLA2510=1)/L2
[3] >{({(LIS8T[A31:1]=1)ALIST[A;2:11=0)/L3
fu] S {({(LITST[A3131]0=0)ALIST[A;2;11=0)/LHK
[5] S{({(LI8T[A:1311=1)A0I8T[A;2;11=2)/L5
[6] S{({LISTIA31:11=0)ALISTLA32:11=2)/L6
[71] +p R<+10
rgl] L1:+0,pR«DATALLISTIA:132)],DATALLISTIA32;2]]
[9] L2:>0,pR«(LPRINT LISTLA;1:21),DATALLISTIA252]]
[10] L3:+0,pR«DATATLIST[A;13;2]11,0LPRINT LIST[A;2;2]
(117 Lu:+0,0R<«(LPRINT LISTL[A;1:2]1),LPRINT LISTLA;232]
[192] L5:20,pR+«DATALLIST[A;1,2]]
[13] LB:»0,pR«LPRINT LIST[A;1;2]

Fig. 12 (Continuation 1)
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PRINT 1

+A*+CDE

CAR 1

PRINT CAR 1

PRINT CDR 1

Ax+CDE
FPRINT CAR 3
*+0D0
ATOM CAR 4
1
PRINT CAR &
*
INIT
I+«(ENTER '+%') CONS COMP (ENTER 'X') CONS COMP
(ENTER 'Y') CONS NIL
PRINT I
+XY
LIST
1 1
2 0
1 2
0 1
1 3
0 2
DATA
X+
Fig. 12 {Continuation 2)
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LOC+(ENTER '%') CONS COMP (COMP I) CONS COMP
(ENTER 'Z') CONS NIL

PRINT LOC
*+XY7
LIST
1 1
2 0
1 2
0 1
1 3
0 2
1 4
2 0
0 3
0 u
1 5
o0 5
DATA
TX47 %

Fig, 12 {Continuation 3
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functions are sufficiently vich, It cannot be ignored, however, that the
functions presented are amazingly simple - that is, considering the amount
of programming that ordinarily would be required in assewbler language or
most other languages. It seems that we as language designers should be as
interested in the base language upon which sophisticated structures can be

bullt as we are on the data structures themselves. In this way, our labors
may affect, significantly, the computing machines of tomorrow.
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