skip to main content
article

Design automation for microfluidics-based biochips

Published:01 October 2005Publication History
Skip Abstract Section

Abstract

Advances in microfluidics technology offer exciting possibilities in the realm of enzymatic analysis, DNA analysis, proteomic analysis involving proteins and peptides, immunoassays, implantable drug delivery devices, and environmental toxicity monitoring. Microfluidics-based biochips are therefore gaining popularity for clinical diagnostics and other laboratory procedures involving molecular biology. As more bioassays are executed concurrently on a biochip, system integration and design complexity are expected to increase dramatically. This paper presents different actuation mechanisms for microfluidics-based biochips, as well as associated design automation trends and challenges. The underlying physical principles of eletrokinetics, electrohydrodynamics, and thermo-capillarity are discussed. Next, the paper presents an overview of an integrated system-level design methodology that attempts to address key issues in the modeling, simulation, synthesis, testing and reconfiguration of digital microfluidics-based biochips. The top-down design automation will facilitate the integration of fluidic components with microelectronic component in next-generation system-on-chip designs.

References

  1. Adamson, A. W. 1990. Physical Chemistry of Surfaces, 5th Ed. Wiley, New York.Google ScholarGoogle Scholar
  2. Anderson, J. D. 1995. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, New York.Google ScholarGoogle Scholar
  3. Affymetrix GeneChip®. http://www.affymetrix.com.Google ScholarGoogle Scholar
  4. Batchelor, G. K. 2000. An Introduction to Fluid Dynamics. University Press, Cambridge, England.Google ScholarGoogle Scholar
  5. Brebbia, C. A. 1978. The Boundary Element Method for Engineers. Pentech Press, London, England.Google ScholarGoogle Scholar
  6. Burns, M. A., Johnson, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R., Krishnan, M., Sammarco, T. S., Man, P. M., Jones, D., Heldsinger, D., Mastrangelo, C. H., and Burke, D. T. 1998. An integrated nanoliter DNA analysis device. Science 282, 484--487.Google ScholarGoogle Scholar
  7. Chatterjee, A. N. and Aluru, N. R. 2005. Combined circuit/device modeling and simulation of integrated microfluidic systems. J. Microelect. Syst. 14, 81--95.Google ScholarGoogle Scholar
  8. Chen, J. Z., Darhuber, A. A., Troian, S. M., and Wagner, S. 2004. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab on a Chip 4, 473--480.Google ScholarGoogle Scholar
  9. Cho, S. K., Fan, S. K., Moon, H., and Kim, C. J. 2002. Toward digital microfluidic circuits: Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In Proceedings of IEEE MEMS Conference. IEEE Computer Society Press, Los Alamitos, CA, 32--52.Google ScholarGoogle Scholar
  10. Choi, C.-H., Westin, K. J. A., and Bruer, K. S. 2003. Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 2897--2902.Google ScholarGoogle Scholar
  11. Clough, R. W. 1960. The finite element method in plane stress analysis. In Proceedings 2nd ASCE Conference on Electronic Computation (Pittsburgh, PA). 345--378.Google ScholarGoogle Scholar
  12. CoventorWare#8482;. http://www.coventor.com.Google ScholarGoogle Scholar
  13. Darhuber, A. A., Valention, J. P., Troian, S. M., and Wagner, S. 2003. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J. MicroElectroMechanical Syst. 12, 873--879.Google ScholarGoogle Scholar
  14. Deb, N. and Blanton, R. D. 2000. Analysis of failure sources in surface-micromachined MEMS. In Proceedings of International Test Conference. 739--749. Google ScholarGoogle Scholar
  15. Duffy, D. C., Gillis, H. L., Lin, J., Sheppard, N. F., and Kellogg, G. J. 1999. Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays. Anal. Chem. 71, 4669--4678.Google ScholarGoogle Scholar
  16. Erickson, D. 2005. Towards numerical prototyping of labs-on-chip, modeling for integrated microfluidic devices. J. Microfluidics Nanofluidics, 10.1007/s10404-005-0041-z.Google ScholarGoogle Scholar
  17. Fitzpatrick, D. and Miller, I. 1998. Analog Behavioral Modeling with the Verilog---A Language. Kluwer Academic Publishers, Boston, MA. Google ScholarGoogle Scholar
  18. Gallardo, B. S., Gupta, V. K., Eagerton, F. D., Jong, L. I., Craig, V. S., Shah, R. R., and Abbott, N. L. 1999. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57--60.Google ScholarGoogle Scholar
  19. Grayson, A., Shawgo, R., Johnson, A., Flynn, N., Li, Y., Cima, M., and Langer, R. 2004. A bioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92, 6--21.Google ScholarGoogle Scholar
  20. Harrison, D. J., Fluri, K., Seiler, K., Fan, Z. H., Effenhauser, C. S., and Manz, A. 1993. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895--897.Google ScholarGoogle Scholar
  21. Haus, H. A. and Melcher, J. R. 1989. Electromagnetic Fields and Energy. Prentice-Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  22. Hirsch, C. 1988. Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization. Wiley, New York. Google ScholarGoogle Scholar
  23. Hirt, C. W., Amsden, A. A., and Cook, J. L. 1974. An Arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227--253.Google ScholarGoogle Scholar
  24. Hirt, C. W. and Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201--225.Google ScholarGoogle Scholar
  25. Homsy, A., Koster, S., Eijkel, J. C. T., van den Berg, A., Lucklum, F., Verpoorte, E., and De Rooij, N. F. 2005. A high current density DC magnetohydrodynamic (MHD) micropump. Lab on a Chip 5, 466--471.Google ScholarGoogle Scholar
  26. Hull, H. F., Danila, R., and Ehresmann, K. 2003. Smallpox and bioterrorism: Public-health responses. J. Lab. Clin. Med. 142, 221--228.Google ScholarGoogle Scholar
  27. Ichimura, K., Oh, S., and Nakagawa, M. 2000. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624--1626.Google ScholarGoogle Scholar
  28. Infineon Electronic DNA Chip. http://www.infineon.com.Google ScholarGoogle Scholar
  29. International Technology Roadmap for Semiconductors (ITRS). http://public.itrs.net/Files/2003ITRS/Home2003.htm.Google ScholarGoogle Scholar
  30. Jacobson, S. C., Hergenröeder, R., Koutny, L. B., and Ramsey, J. M. 1994. High-speed separations on a microchip. Anal. Chem. 66, 1114--1118.Google ScholarGoogle Scholar
  31. Jee, A. and Ferguson, F. J. 1993. Carafe: An inductive fault analysis tool for CMOS VLSI circuits. In Proceedings of IEEE VLSI Test Symposium. IEEE Computer Society Press, Los Alamitos, CA, 92--98.Google ScholarGoogle Scholar
  32. Jones, T. B. 1973. Electrohydrodynamic heat pipes. Int. J. Heat Mass Trans. 16, 1045--1048.Google ScholarGoogle Scholar
  33. Jones, T. B. 2002. On the relationship of dielectrophoresis and electrowetting. Langmuir 18, 4437--4443.Google ScholarGoogle Scholar
  34. Jones, T. B., Gunji, M., Washizu, M., and Feldman, M. J. 2001. Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys. 89, 1441--1448.Google ScholarGoogle Scholar
  35. Kahng, A. B., Mandoui, I., Reda, S., Xu, X., and Zelikovsky, A. Z. 2003. Evaluation of placement techniques for DNA probe array layout. In Proceedings of IEEE/ACM International Conference on Computer Aided Design. ACM, New York, 262--269. Google ScholarGoogle Scholar
  36. Karniadakis, G. and Beskok, A. 2001. Microflows: Fundamentals and Simulation. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  37. Kerkhoff, H. G. 1999. Testing philosophy behind the micro analysis system. In Proceedings of SPIE: Design, Test and Microfabrication of MEMS and MOEMS 3680. 78--83.Google ScholarGoogle Scholar
  38. Kerkhoff, H. G. and Acar, M. 2003. Testable design and testing of micro-electro-fluidic arrays. In Proceedings of IEEE VLSI Test Symposium. IEEE Computer Society Press, Los Alamitos, CA. 403--409. Google ScholarGoogle Scholar
  39. Kerkhoff, H. G. and Hendriks, H. P. A. 2001. Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems. J. Elect. Testing: Theory Appl. 17, 427--437. Google ScholarGoogle Scholar
  40. Kolpekwar, A. and Blanton, R. D. 1997. Development of a MEMS testing methodology. In Proceedings of International Test Conference, 923--931. Google ScholarGoogle Scholar
  41. Landau, L. D. and Lifshitz, E. M. 1960. Electrodynamics of Continuous Media, Addison-Wesley, Reading, MA.Google ScholarGoogle Scholar
  42. Laser, R. D. J. and Santiago, J. G. 2004. A review of micropumps. J. Micromech. Microeng. 14, R35--R64.Google ScholarGoogle Scholar
  43. Lauga, E. and Stone, H. A. 2003. Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 55--77.Google ScholarGoogle Scholar
  44. Leal, L. G. 1992. Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis. Butterworth-Heinemann, Boston, MA.Google ScholarGoogle Scholar
  45. Lion, N., Rohner, T. C., Dayon, L., Aranud, I. L., Damoc, E., Youhnovski, I. N., Wu, Z., Roussel, C., Josserand, J., Jensen, H., Rossier, J., Przyblski, M., and Girault, H. 2003. Microfluidic systems in proteomics. Electrophoresis 24, 3533--3562.Google ScholarGoogle Scholar
  46. MacCormack, R. W. and Paullay, A. J. 1972. Computational efficiency achieved by time splitting of finite difference operators, AIAA Paper, 72--154.Google ScholarGoogle Scholar
  47. Mantooth, H. A. and Giegenbaum, M. 1995. Modeling with an Analog Hardware Description Language. Kluwer Academic Publishers, Boston, MA. Google ScholarGoogle Scholar
  48. Manz, A., Harrison, D. J., Verpoorte, E. M. J., Fettinger, J. C., Paulus, A., Ludi, H., and Widmer, H. M. 1992. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems---Capillary electrophoresis on a chip. J. Chromatogr. 593, 253--258.Google ScholarGoogle Scholar
  49. McDonald, P. W. 1971. The computation of transonic flow through two-dimensional gas turbine cascades. ASME Paper 71-GT-89.Google ScholarGoogle Scholar
  50. Maxwell, J. C. 1879. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231--256.Google ScholarGoogle Scholar
  51. Melcher, J. R. and Taylor, G. I. 1969. Electrohydrodynamics: a review of the role of interfacial shear stresses. Ann. Rev. Fluid Mech. 1, 111--146.Google ScholarGoogle Scholar
  52. Melcher, J. R. 1981. Continuum Electromechanics, Section 3.7, The MIT Press, Boston, MA.Google ScholarGoogle Scholar
  53. Mutlu, S., Svec, F., Mastrangelo, C. H., Fretcht, J. M. J., and Gianchandani, Y. B. 2004. Enhanced electro-osmosis pumping with liquid bridge and field effect flow rectification. In Proceedings of IEEE MEMS Conference. 850--853.Google ScholarGoogle Scholar
  54. Nanogen NanoChip®. http://www.nanogen.com.Google ScholarGoogle Scholar
  55. Navier, C. L. M. H. 1823. M'emoire sur les lois du mouvement des fluides. M'emoires de l'Acad'emie Royale des Sciences de l'Institut de France 6, 389--440.Google ScholarGoogle Scholar
  56. Nguyen, N.-T. and Huang, X. 2005. Thermocapillary effect of a liquid plug in transient temperature fields. Japan. J. Appl. Phys. 44, 1139--1142.Google ScholarGoogle Scholar
  57. Paik, P., Pamula, V. K., and Fair, R. B. 2003. Rapid droplet mixers for digital microfluidic systems. Lab on a Chip 3, 253--259.Google ScholarGoogle Scholar
  58. Pan, F., Kubby, J., and Chen, J. 2002. Numeircal simulation of fluid-structure interaction in a MEMS diaphragm drop ejector. J. Micromech. Microeng. 12, 70--76.Google ScholarGoogle Scholar
  59. Pohl, H. A. 1978. Dielectrophoresis: The Behaviour of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, Cambridge, England.Google ScholarGoogle Scholar
  60. Pollack, M. G. 2001. Electrowetting-Based Microactuation of Droplets for Digital Microfluidics. Ph.D. dissertation. Duke University.Google ScholarGoogle Scholar
  61. Pollack, M. G., Fair, R. B., and Shenderov, A. D. 2000. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77, 1725--1726.Google ScholarGoogle Scholar
  62. Pollack, M. G., Shenderov, A. D., and Fair, R. B. 2002. Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip 2, 96--101.Google ScholarGoogle Scholar
  63. Prins, M. W. J., Welters, W. J. J., and Weekamp, J. W. 2001. Fluid control in multichannel structures by electrocapillary pressure. Science 291, 277--280.Google ScholarGoogle Scholar
  64. Probstein, R. F. 1994. Physicochemical hydrodynamics. Wiley, New York.Google ScholarGoogle Scholar
  65. Rudnyi, E. B. and Korvink, J. G. 2002. Review: Automatic Model Reduction for Transient Simulation of MEMS-based Devices. Sensors Update 11, 3--33.Google ScholarGoogle Scholar
  66. Sammarco, T. S. and Burns, M. A. 1999. Thermocapillary pumping of discrete droplets in microfabricated analysis devices. AI Che J. 45, 350--366.Google ScholarGoogle Scholar
  67. Saville, D. A. 1977. Electrokinetic effects with small particles. Ann. Rev. Fluid Mech. 9, 321--337.Google ScholarGoogle Scholar
  68. Schulte, T. H., Bardell, R. L., and Weigl, B. H. 2002. Microfluidic technologies in clinical diagnostics. Clinica Chimica Acta 321, 1--10.Google ScholarGoogle Scholar
  69. Schwartz, J. A., Vykoukal, J. V., and Gascoyne, P. R. C. 2004. Droplet-based chemistry on a programmable micro-chip. Lab on a Chip 4, 11--17.Google ScholarGoogle Scholar
  70. Senturia, S. D. 1998. CAD challenges for microsensors, microactuators, and microsystems. Proc. IEEE 86, 1611--1626.Google ScholarGoogle Scholar
  71. Shapiro, B., Moon, H., Garrell I. R., and Kim, C. J. 2003. Modeling of electrowetted surface tension for addressable microfluidic systems: Dominant physical effects, material dependences, and limiting phenomena. In Proceedings of IEEE MEMS Conference. IEEE Computer Society Press, Los Alamitos, CA, 201--205.Google ScholarGoogle Scholar
  72. Smits, J. G. 1990. Piezoelectric micropump with three valves working peristaltically. Sensors and Actuators A 21, 304--306.Google ScholarGoogle Scholar
  73. Srinivasan, V. 2005. A Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostic Applications, Ph.D. dissertation. Duke University.Google ScholarGoogle Scholar
  74. Srinivasan, V., Pamula, V. K., and Fair, R. B. 2004. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip 4, 310--315.Google ScholarGoogle Scholar
  75. Srinivasan, V., Pamula, V. K., Pollack, M. G., and Fair, R. B. 2003a. A digital microfluidic biosensor for multianalyte detection. In Proceedings of IEEE MEMS Conference. IEEE Computer Society Press, Los Alamitos, CA, 327--330.Google ScholarGoogle Scholar
  76. Srinivasan, V., Pamula, V. K., Pollack, M. G., and Fair, R. B. 2003b. Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In Proceedings of Micro Total Analysis Systems, 1287--1290.Google ScholarGoogle Scholar
  77. Stone, H. A., Stroock, A. D., and Aidari, A. 2004. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann. Rev. Fluid Mech. 36, 381--411.Google ScholarGoogle Scholar
  78. Su, F. and Chakrabarty, K. 2004. Architectural-level synthesis of digital microfluidics-based biochips. In Proceedings of IEEE/ACM International Conference on Computer Aided Design. IEEE Computer Society Press, Los Alamitos, CA, 223--228. Google ScholarGoogle Scholar
  79. Su, F. and Chakrabarty, K. 2005a. Design of fault-tolerant and dynamically-reconfigurable microfluidic biochips. In Proceedings of Design, Automation and Test in Europe (DATE) Conference. 1202--1207. Google ScholarGoogle Scholar
  80. Su, F. and Chakrabarty, K. 2005b. Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In Proceedings of IEEE/ACM Design Automation Conference, ACM, New York, 825--830. Google ScholarGoogle Scholar
  81. Su, F. and Chakrabarty, K. 2005c. Defect tolerance for gracefully-degradable microfluidics-based biochips. In Proceedings of IEEE VLSI Test Symposium. IEEE Computer Society Press, Los Alamitos, CA, 321--326. Google ScholarGoogle Scholar
  82. Su, F., Chakrabarty, K., and Pamula, V. K. 2005a. Yield enhancement of digital microfluidics-based biochips using space and local reconfiguration. In Proceedings of Design, Automation and Test in Europe (DATE) Conference. 1196--1201. Google ScholarGoogle Scholar
  83. Su, F., Ozev, S., and Chakrabarty, K. 2003. Testing of droplet-based microelectrofluidic systems. In Proceedings of IEEE International Test Conference. IEEE Computer Society Press, Los Alamitos, CA, 1192--1200.Google ScholarGoogle Scholar
  84. Su, F., Ozev, S., and Chakrabarty, K. 2004a. Test planning and test resource optimization for droplet-based microfluidic systems. In Proceedings of European Test Symposium. 72--77. Google ScholarGoogle Scholar
  85. Su, F., Ozev, S., and Chakrabarty, K. 2004b. Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays. In Proceedings of IEEE International Test Conference. IEEE Computer Society Press, Los Alamitos, CA, 883--892. Google ScholarGoogle Scholar
  86. Su, F., Ozev, S., and Chakrabarty, K. 2005b. Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sensors J. 5, 763--773.Google ScholarGoogle Scholar
  87. Swart, N. R., Bart, S. F., Zaman, M. H., Mariappan, M., Gilbert, J. R., and Murphy, D. 1998. AutoMM: Automatic generation of dynamic macromodels for MEMS devices. In Proceedings of 11th IEEE International Workshop on Micro Electromechanical Systems (Heidelberg, Germany). IEEE Computer Society Press, Los Alamitos, CA, 178--183.Google ScholarGoogle Scholar
  88. Tezduyar, T. E., Behr, M., Mittal, S., and Liou, J. 1992a. New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure. I. The concept and the preliminary numerical tests, Comput. Meth. Appl. Mech. Eng. 94, 339--351. Google ScholarGoogle Scholar
  89. Tezduyar, T. E., Behr, M., Mittal, S., and Liou, J. 1992b. New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Meth. Appl. Mech. Eng. 94, 353--371. Google ScholarGoogle Scholar
  90. Thompson, J. F. 1984. A survey of grid generation techniques in computational fluid dynamics. AIAA J. 22, 1505--1523.Google ScholarGoogle Scholar
  91. Thorsen, T., Maerkl, S., and Quake, S. 2002. Microfluidic large-scale integration. Science 298, 580--584.Google ScholarGoogle Scholar
  92. Tseng,Y.-T., Tseng, F.-G., Chen, Y.-F. and Chieng, C.-C. 2004. Fundamental studies on micro-droplet movement by Marangoni and capillary effects. Sensors and Actuators A: Physical 114, 292--301.Google ScholarGoogle Scholar
  93. Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. P. 1956. Stiffness and deflection analysis of complex structures. J. Aeronaut. Sci. 23, 805--824.Google ScholarGoogle Scholar
  94. Turowski, M., Chen, Z., and Przekwas, A. 2001. Automated generation of compact models for fluidic microsystems. Anal. Integ. Circuits Signal Proc. 29, 27--36. Google ScholarGoogle Scholar
  95. Valentino, J. P., Troian, S. M., and Wagner, S. 2005. Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide. Appl. Phys. Letters 86, 184101:1--3.Google ScholarGoogle Scholar
  96. Venkatesh, S. and Memish, Z. A. 2003. Bioterrorism: a new challenge for public health. Int. J. Antimicro. Agents 21, 200--206.Google ScholarGoogle Scholar
  97. Verheijen, H. J. J. and Prins, M. W. J. 1999. Reversible electrowetting and trapping of charge: Model and experiments. Langmuir 15, 6616--6620.Google ScholarGoogle Scholar
  98. Verpoorte, E. and De Rooij, N. F. 2003. Microfluidics meets MEMS. Proc. IEEE 91, 930--953.Google ScholarGoogle Scholar
  99. Vykoukal, J., Schwartz, J. A., Becker, F. F., and Gascoyne, P. R. C. 2001. A programmable dielectric fluid processor for droplet-based chemistry. In Proceedings of Micro Total Analysis Systems. 72--74.Google ScholarGoogle Scholar
  100. Wang, Y., Lin, Q., and Mukherjee, T. 2005a. Composable behavioral models and schematic-based simulation of electrokinetic lab-on-a-chips. Accepted for publication in IEEE Trans. CAD. Google ScholarGoogle Scholar
  101. Wang, Y., Lin, Q., and Mukherjee, T. 2005b. A model for laminar diffusion-based complex electrokinetic passive micromixers. Lab On a Chip 5, 877--887.Google ScholarGoogle Scholar
  102. Washizu, M. 1998. Electrostatic actuation of liquid droplets for microreactor applications. IEEE Trans. Industry Appl. 34, 732--737.Google ScholarGoogle Scholar
  103. Wixforth, A. and Scriba, J. 2002. Nanopumps for programmable biochips. GIT Labor-Fachzeitschrift (May), pp. 231--232, (See also http://www.advalytix.de.)Google ScholarGoogle Scholar
  104. Xie, J., Shih, J., Lin, Q., Yang, B., and Tai, Y.-C. 2004. Surface micromachined electrostatically actuated micro peristaltic pump. Lab on a Chip 4, 495--501.Google ScholarGoogle Scholar
  105. Zeng, J., Banerjee, D., Deshpande, M., Gilbert, J., Duffy, D., and Kellogg, G. 2000. Design analyses of capillary burst valves in centrifugal microfluidics. In Micro Total Analysis Systems, Kluwer Academic Publishers, Enschede, The Netherlands, 579--582.Google ScholarGoogle Scholar
  106. Zeng, S., Chen, C.-H., Mikkelson, J. C., and Santiago, J. G. 2001. Fabrication and characterization of electroosmotic micropumps. Sens. Act. B (Chemical) 79, 107--114.Google ScholarGoogle Scholar
  107. Zeng, J. and Korsmeyer, F. T. 2004. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip 4, 265--277.Google ScholarGoogle Scholar
  108. Zhang, T., Chakrabarty, K., and Fair, R. B. 2002. Microelectrofluidic Systems: Modeling and Simulation, CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  109. Zoval, J. V. and Madou, M. J. 2004. Centrifuge-based fluidic platforms. Proc. IEEE 92, 140--153.Google ScholarGoogle Scholar

Index Terms

  1. Design automation for microfluidics-based biochips

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader