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DSL. To aid the DSL developer, we identify patterns in the decision, analysis, design, and
implementation phases of DSL development. Our patterns improve and extend earlier work on
DSL design patterns. We also discuss domain analysis tools and language development
systems that may help to speed up DSL development. Finally, we state a number of open
problems.
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Abstract

Domain-specific languages (DSLs) are languages tailored to a specific
application domain. They offer substantial gains in expressiveness and
ease of use compared with general-purpose programming languages in
their domain of application. DSL development is hard, requiring both
domain knowledge and language development expertise. Few people have
both. Not surprisingly, the decision to develop a DSL is often postponed
indefinitely, if considered at all, and most DSLs never get beyond the
application library stage.

Although many articles have been written on the development of par-
ticular DSLs, there is very limited literature on DSL development method-
ologies and many questions remain regarding when and how to develop
a DSL. To aid the DSL developer, we identify patterns in the decision,
analysis, design, and implementation phases of DSL development. Our
patterns improve and extend earlier work on DSL design patterns. We
also discuss domain analysis tools and language development systems that
may help to speed up DSL development. Finally, we state a number of
open problems.

1 Introduction

1.1 General

Many computer languages are domain-specific rather than general-purpose. Do-
main-specific languages (DSLs) are also called application-oriented [118], special-
purpose [148, p. xix], task-specific [108], specialized [15, p. 17|, or application
[99] languages. So-called fourth-generation languages (4GLs) [99] are usually
DSLs for database applications. Little languages are small DSLs that do not
include many features found in general-purpose programming language (GPLs)
[14, p. 715].

DSLs trade generality for expressiveness in a limited domain. By providing
notations and constructs tailored toward a particular application domain, they



Table 1: Some widely used domain-specific languages.

DSL Application domain  Level

BNF Syntax specification n.a.

Excel Spreadsheets 57  (version 5)
HTML Hypertext web pages 22 (version 3.0)
BTEX Typesetting n.a.

Make Software building 15

MATLAB  Technical computing n.a.

SQL Database queries 25

VHDL Hardware design 17

Java General-purpose 6 (comparison only)

Table 2: Language level vs. productivity as measured in function points (FP).
Level Productivity average
per staff month (FP)

1-3 5-10
4-8  10-20
9-15 16-23
16-23 15-30
24-55 30-50
> 55 40-100

offer substantial gains in expressiveness and ease of use compared with GPLs for
the domain in question, with corresponding gains in productivity and reduced
maintenance costs. Also, by reducing the amount of domain and programming
expertise needed, DSLs open up their application domain to a larger group of
software developers compared to GPLs. Some widely used DSLs with their
application domains are listed in Table 1. The third column gives the language
level of each DSL as given in [79]. Language level is related to productivity as
shown in Table 2, also from [79]. Apart from these examples, the benefits of
DSLs have often been observed in practice and are supported by quantitative
results such as those reported in [72, 11, 79, 89, 66], but their quantitative
validation in general as well as in particular cases is hard and an important
open problem. Therefore, the treatment of DSL development in this article will
be largely qualitative.

The use of DSLs is by no means new. APT, a DSL for programming numeri-
cally controlled machine tools, was developed in 1957-1958 [116]. BNF, the well-
known syntax specification formalism, dates back to 1959 [6]. Domain-specific
visual languages (DSVLs), such as visual languages for hardware description
and protocol specification, are important, but beyond the scope of this survey.

We will not give a definition of what constitutes an application domain and



what does not. Some consider Cobol to be a DSL for business applications, but
others would argue this is pushing the notion of application domain too far.
Leaving matters of definition aside, it is natural to think of DSLs in terms of
a gradual scale with very specialized DSLs such as BNF on the left and GPLs
such as C++ on the right. (The language level measure of [79] is one attempt
to quantify this scale.) On this scale, Cobol would be somewhere between BNF
and C++, but much closer to the latter. Similarly, it is hard to tell if command
languages like the Unix shell or scripting languages like Tcl are DSLs. Clearly,
domain-specificity is a matter of degree.

In combination with an application library, any GPL can act as a DSL.
The library’s Application Programmers Interface (API) constitutes a domain-
specific vocabulary of class, method, and function names that becomes available
by object creation and method invocation to any GPL program using the library.
This being the case, why were DSLs developed in the first place? Simply because
they can offer domain-specificity in better ways:

e Appropriate or established domain-specific notations are usually beyond
the limited user-definable operator notation offered by GPLs. A DSL
offers appropriate domain-specific notations from the start. Their impor-
tance should not be underestimated as they are directly related to the
productivity improvement associated with the use of DSLs.

e Appropriate domain-specific constructs and abstractions cannot always be
mapped in a straightforward way to functions or objects that can be put
in a library. Traversals and error handling are typical examples [19, 66,
27]. A GPL in combination with an application library can only express
these constructs indirectly or in an awkward way. Again, a DSL would
incorporate domain-specific constructs from the start.

e Use of a DSL offers possibilities for analysis, verification, optimization,
parallelization, and transformation in terms of DSL constructs that would
be much harder or unfeasible if a GPL had been used, because the GPL
source code patterns involved are too complex or not well-defined.

e Unlike GPLs, DSLs need not be executable. There is no agreement on this
in the DSL literature. For instance, the importance of non-executable
DSLs is emphasized in [150], but DSLs are required to be executable in
[48]. We discuss DSL executability in Section 1.2.

Despite their shortcomings, application libraries are formidable competitors to
DSLs. It is probably fair to say that most DSLs never get beyond the ap-
plication library stage. These are sometimes called domain-specific embedded
languages (DSELSs) [76]. Even with improved DSL development tools, applica-
tion libraries will remain the most cost-effective solution in many cases, the more
so since the advent of component technologies such as COM and CORBA [133]
has further complicated the relative merits of DSLs and application libraries.
For instance, Microsoft Excel’s macro language is a DSL for spreadsheet appli-
cations which adds programmability to Excel’s fundamental interactive mode.



Using COM, Excel’s implementation has been restructured into an application
library of COM components, thereby opening it up to GPLs such as C++, Java
and Basic, which can access it through its COM interfaces. This process of com-
ponentization is called automation [31]. Unlike the Excel macro language, which
by its very nature is limited to Excel functionality, GPLs are not. They can
be used to write applications transcending Excel’s boundaries by using com-
ponents from other “automated” programs and COM libraries in addition to
components from Excel itself.

In the remainder of this section we discuss DSL executability (Section 1.2),
DSLs as enablers of reuse (Section 1.3), the scope of this article (Section 1.4),
and DSL literature (Section 1.5).

1.2 Executability of DSLs

DSLs are executable in various ways and to various degrees, even to the point
of being non-executable. Accordingly, depending on the character of the DSL
in question, the corresponding programs are often more properly called spec-
ifications, definitions, or descriptions. We identify some points on the “DSL
executability scale”:

e DSL with well-defined execution semantics (Excel macro language, HTML).

e Input language of an application generator [33, 129]. Examples are AT-
MOL [51], a DSL for atmospheric modeling, and Hancock [19], a DSL for
customer profiling. Such languages are also executable, but they usually
have a more declarative character and a less well-defined execution seman-
tics as far as the details of the generated applications are concerned. The
application generator is a compiler for the DSL in question.

e DSL not primarily meant to be executable, but nevertheless useful for
application generation. The syntax specification formalism BNF is an
example of a DSL with a purely declarative character that can also act as
an input language for a parser generator.

e DSL not meant to be executable. Examples are domain-specific data
structure representations [150]. Just like their executable relatives, such
non-executable DSLs may benefit from various kinds of tool support such
as specialized editors, prettyprinters, consistency checkers, analyzers, and
visualizers.

1.3 DSLs as enablers of reuse

The importance of DSLs can also be appreciated from the wider perspective of
the construction of large software systems. In this context the primary contri-
bution of DSLs is to enable reuse of software artifacts [17]. Among the types of
artifacts that can be reused via DSLs are language grammars, source code, soft-
ware designs, and domain abstractions. Later sections provide many examples
of DSLs; here we mention a few from the perspective of reuse.



In his definitive survey of reuse [92], Krueger categorizes reuse approaches
along the following dimensions: abstracting, selecting, specializing, and inte-
grating. In particular, he identifies application generators as an important
reuse category. As already noted, application generators often use a DSL as
their input language, thereby enabling programmers to reuse semantic notions
embodied in the DSL without having to perform a detailed domain analysis
themselves. Examples include BDL [16] that generates software to control con-
current objects and Teapot [30] that produces implementations of cache coher-
ence protocols. Krueger identifies definition of domain coverage and concepts
as a difficult challenge for implementors of application generators. We identify
patterns for domain analysis in this article.

DSLs also play a role in other reuse categories identified by Krueger. For
example, software architectures are commonly reused when DSLs are employed
because the application generator or compiler follows a standard design when
producing code from a DSL input. For example, GAL [139] enables reuse of a
standard architecture for video device drivers. DSLs implemented as application
libraries clearly enable reuse of source code. Prominent examples are Haskell-
based DSLs such as Fran [50]. DSLs can also be used for formal specification of
software schemas. For example, Nowra [126] specifies software manufacturing
processes and SSC [28] deals with subsystem composition.

Reuse may involve exploitation of an existing language grammar. For exam-
ple, Hancock [19] piggybacks on C while SWUL [25] extends Java. Moreover,
the success of XML for DSLs is largely based on reuse of its grammar for specific
domains. Less formal language grammars may also be reused when notations
used by domain experts, but not yet available in a computer language, are real-
ized in a DSL. For example, Hawk [96] uses a textual form of an existing visual
notation.

1.4 Scope of this article

There are no easy answers to the “when and how” question in the title of this
article. The previously mentioned benefits of DSLs do not come for free:

e DSL development is hard, requiring both domain and language develop-
ment expertise. Few people have both.

e DSL development techniques are more varied than those for GPLs, requir-
ing careful consideration of the factors involved.

e Depending on the size of the user community, development of training ma-
terial, language support, standardization, and maintenance may become
serious and time-consuming issues.

These are not the only factors complicating the decision to develop a new DSL.
Initially, it is often far from evident that a DSL might be useful or that de-
veloping a new one might be worthwhile. This may become clear only after
a sizable investment in domain-specific software development using a GPL has



been made. The concepts underlying a suitable DSL may emerge only after a
lot of GPL programming has been done. In such cases, DSL development may
be a key step in software reengineering or software evolution [13].

To aid the DSL developer, we provide a systematic survey of the many
factors involved by identifying patterns in the decision, analysis, design, and
implementation phases of DSL development (Section 2). Our patterns improve
and extend earlier work on DSL design patterns, in particular [131]. This is dis-
cussed in Section 2.6. The DSL development process can be facilitated by using
domain analysis tools and language development systems. These are surveyed
in Section 3. Finally, conclusions and open problems are given in Section 4.

1.5 Literature

We give some general pointers to the DSL literature. More specific references are
given at appropriate points throughout this article rather than in this section.
Until recently, DSLs received relatively little attention in the computer science
research community and there are few books on the subject. We mention [99], an
exhaustive account of 4GLs, [18], a two-volume collection of articles on software
reuse including DSL development and program generation, [108], which focuses
on the role of DSLs in end-user programming, [117], a collection of articles on
little languages (not all of them DSLs), and [9], which treats scripting languages
(again, not all of them DSLs). Domain analysis, program generators, generative
programming techniques, and intentional programming (IP) are treated in [43].
Domain analysis and the use of XML, DOM, XSLT, and related languages
and tools to generate programs are discussed in [34]. Domain-specific language
development is an important element of the software factories method [68].

Proceedings of recent workshops and conferences partly or exclusively de-
voted to DSLs are [83, 113, 49, 73, 74, 75, 97]. Several journals have published
special issues on DSLs [152, 101, 102]. Many of the DSLs used as examples
in this article were taken from these sources. A special issue on end-user de-
velopment is [132]. A special issue on program generation, optimization, and
platform adaptation is [106]. There are many workshops and conferences at
least partly devoted to DSLs for a particular domain, for example, description
of features of telecommunications and other software systems [61]. The anno-
tated DSL bibliography [48] (78 items) has limited overlap with the references
in this article because of our emphasis on general DSL development issues.

2 DSL Patterns

2.1 Pattern classification

The following DSL development phases can be distinguished: decision, analysis,
design, implementation, and deployment. In practice, DSL development is not a
simple sequential process, however. The decision process may be influenced by
preliminary analysis, which in turn may have to supply answers to unforeseen



questions arising during design, and design is often influenced by implementation
considerations.

We associate classes of patterns with each of the above development phases
except deployment, which is beyond the scope of this article. The decision phase
corresponds to the “when”-part of DSL development, the other phases to the
“how”-part. Decision patterns are common situations that potential developers
may find themselves in for which successful DSLs have been developed in the
past. In such situations, use of an existing DSL or development of a new one
is a serious option. Similarly, analysis patterns, design patterns, and implemen-
tation patterns are common approaches to, respectively, domain analysis, DSL
design, and DSL implementation. Patterns corresponding to different DSL de-
velopment phases are independent. For a particular decision pattern virtually
any analysis or design pattern can be chosen, and the same is true for design
and implementation patterns. Patterns in the same class, on the other hand,
need not be independent, but may have some overlap.

We discuss each development phase and the associated patterns in a separate
section. Inevitably, there may be some patterns we have missed.

2.2 Decision

Deciding in favor of a new DSL is usually not easy. The investment in DSL
development (including deployment) has to pay for itself by more economical
software development and/or maintenance later on. As mentioned in Section
1.1, a quantitative treatment of the tradeoffs involved is difficult. In practice,
short-term considerations and lack of expertise may easily cause indefinite post-
ponement of the decision. Obviously, adopting an existing DSL is much less
expensive and requires much less expertise than developing a new one. Find-
ing out about available DSLs may be hard, since DSL information is scattered
widely and often buried in obscure documents. Adopting DSLs that are not
well-publicized might be considered too risky, anyway.

To aid in the decision process, we identify the decision patterns shown in
Table 3. Underlying them are general, interrelated concerns such as:

e improved software economics,

e enabling of software development by users with less domain and program-
ming expertise, or even by end-users with some domain but virtually no
programming expertise [108, 132].

The patterns in Table 3 may be viewed as more concrete and specific subpatterns
of these general concerns. We briefly discuss each decision pattern in turn.
Examples for each pattern are given in Table 4.

Notation The availability of appropriate (new or existing) domain-specific
notations is the decisive factor in this case. Two important subpatterns are:



Table 3: Decision patterns.
Pattern Description

Notation Add new or existing domain notation
Important subpatterns:
e Transform visual to textual notation
e Add user-friendly notation to existing API

AVOPT Domain-specific Analysis, Verification, Optimiza-
tion, Parallelization, and Transformation

Task automation Eliminate repetitive tasks

Product line Specify member of software product line

Data structure Facilitate data description

representation

Data structure Facilitate complicated traversals

traversal

System front-end Facilitate system configuration

Interaction Make interaction programmable

GUI construction Facilitate GUI construction

e Transform visual to textual notation There are many benefits to
making an existing visual notation available in textual form, such as eas-
ier composition of large programs or specifications, and enabling of the
AVOPT decision pattern discussed next.

e Add user-friendly notation to an existing API or “turn an API into
a DSL”.

AVOPT Domain-specific Analysis, Verification, Optimization, Parallelization,
and Transformation of application programs written in a GPL are usually not
feasible, because the source code patterns involved are too complex or not well-
defined. Use of an appropriate DSL makes these operations possible. With
continuing developments in chip-level multiprocessing (CMP), domain-specific
parallelization will become steadily more important [93]. This pattern overlaps
with most of the others.

Task automation Programmers often spend time on GPL programming tasks
that are tedious and follow the same pattern. In such cases, the required code
can be generated automatically by an application generator (compiler) for an
appropriate DSL.

Product line Members of a software product line [147] share a common ar-
chitecture and are developed from a common set of basic elements. Use of a DSL
may often facilitate their specification. This pattern has considerable overlap
with both the task automation and system front-end patterns.



Table 4: Examples for the decision patterns in Table 3.

Pattern DSL Application domain

Notation MSC [123] Telecom system specification

e Visual-to-textual =~ Hawk [96] Microarchitecture design
MSF [66] Tool integration

e API-to-DSL

AVOPT

Task automation

Product line
Data structure
representation

Data structure
traversal

System front-end

Interaction

GUI construction

Verischemelog [78]
SPL [153]
SWUL [25]
AL [69]
ATMOL |[51]
BDL [16]
ESP [04]
OWL Light [44]
PCSL [27]
PLAN-P [138]
Teapot [30]
Facile [120]
JAMOOS [60]
lava [125]
PSL-DA [55]
RoTL [100]
SHIFT [2]
SODL [104]
GAL [139]
ACML [63]
ASDL [146]
DiSTiL [128]
FIDO [91]
ASTLOG [42]
Hancock [19]
S-XML [35, 54]
TVL [66]
Nowra [126]
SSC [28]
CHEM [14]
FPIC [85]
Fran [50]
Mawl [3]

Hardware design

Digital signal processing
GUI construction
Software optimization
Atmospheric modeling
Coordination
Programmable devices
Web ontology
Parameter checking
Network programming
Cache coherence protocols
Computer architecture
Language processing
Software testing
Database applications
Traffic control

Hybrid system design
Network applications
Video device drivers
CASE tools

Language processing
Container data structures
Tree automata
Language processing
Customer profiling
XML processing

Tool integration
Software configuration
Software composition
Drawing chemical structures
Picture drawing
Computer animation
Web computing

Service Combinators [29] Web computing

AUI [121]
HyCom [115]

User interface construction
Hypermedia applications




Table 5: Analysis patterns.

Pattern Description
Informal The domain is analyzed in an informal way.
Formal A domain analysis methodology is used.

Extract from code “Mining” of domain knowledge from legacy GPL
code by inspection or by using software tools, or a
combination of both.

Data structure representation Data-driven code relies on initialized data
structures whose complexity may make them difficult to write and maintain.
Such structures are often more easily expressed using a DSL.

Data structure traversal Traversals over complicated data structures can
often be expressed better and more reliably in a suitable DSL.

System front-end A DSL based front-end may often be used for handling a
system’s configuration and adaptation.

Interaction Text or menu based interaction with application software often
has to be supplemented with an appropriate DSL for the specification of compli-
cated or repetitive input. For example, Excel’s interactive mode is supplemented
with the Excel macro language to make Excel “programmable”.

GUI construction This is often done using a DSL.

2.3 Analysis

In the analysis phase of DSL development, the problem domain is identified and
domain knowledge is gathered. Inputs are various sources of explicit or implicit
domain knowledge, such as technical documents, knowledge provided by do-
main experts, existing GPL code, and customer surveys. The output of domain
analysis varies widely, but consists basically of domain-specific terminology and
semantics in more or less abstract form. There is a close link between domain
analysis and knowledge engineering, which is only beginning to be explored.
Knowledge capture, knowledge representation, and ontology development [45]
are potentially useful in the analysis phase.

The analysis patterns we have identified are shown in Table 5. Examples are
given in Table 6. Most of the time, domain analysis is done informally, but some-
times domain analysis methodologies are used. Examples of such methodologies
are DARE (Domain Analysis and Reuse Environment) [57], DSSA (Domain-
Specific Software Architectures) [134], FAST (Family-Oriented Abstractions,
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Table 6: Examples for the analysis patterns in Table 5. References and appli-
cation domains are given in Table 4. The FODA and FAST domain analysis
methodologies are discussed in the text.

Pattern DSL Analysis methodology
Informal All DSLs in Table 4
except:
Formal GAL FAST commonality analysis
Hancock FAST
RoTL Variability analysis (close to
FODA’s)
Service Combinators FODA (only in this article—
see text)
Extract from code = FPIC Extracted by inspection from
PIC implementation
Nowra Extracted by inspection from
Odin implementation
PCSL Extracted by clone detection
from proprietary C code
Verischemelog Extracted by inspection from

Verilog implementation

Specification, and Translation) [147], FODA (Feature-Oriented Domain Analy-
sis) [86], ODE (Ontology-based Domain Engineering) [53], or ODM (Organiza-
tion Domain Modeling) [124]. To give an idea of the scope of these methods, we
explain the FODA and FAST methodologies in somewhat greater detail. Tool
support for formal domain analysis is discussed in Section 3.2.

The output of formal domain analysis is a domain model consisting of

e a domain definition defining the scope of the domain,
¢ domain terminology (vocabulary, ontology),
e descriptions of domain concepts,

e feature models describing the commonalities and variabilities of domain
concepts and their interdependencies.

How can a DSL be developed from the information gathered in the analysis
phase? No clear guidelines exist, but some are presented in [139, 137]. Variabil-
ities indicate precisely what information is required to specify an instance of a
system. This information must be specified directly in, or be derivable from,
a DSL program. Terminology and concepts are used to guide the development
of the actual DSL constructs corresponding to the variabilities. Commonalities
are used to define the execution model (by a set of common operations) and
primitives of the language. Note that the execution model of a DSL is usually

11



much richer than that for a GPL. On the basis of a single domain analysis many
different DSLs can be developed, but all share important characteristics found
in the feature model.

For the sake of concreteness, we apply the FODA domain analysis methodol-
ogy [86] to the service combinator DSL discussed in [29]. The latter’s goal is to
reproduce human behavior while accessing and manipulating web resources such
as reaction to slow transmission, failures, and many simultaneous links. FODA
requires construction of a feature model capturing commonalities (mandatory
features) and variabilities (variable features). More specifically, such a model
consists of

e a feature diagram representing a hierarchical decomposition of features
and their character, that is, whether they are mandatory, alternative, or
optional,

e definitions of the semantics of features,

e feature composition rules describing which combinations of features are
valid or invalid,

e reasons for choosing a feature.

A common feature of a concept is a feature present in all instances of the concept.
All mandatory features whose parent is the concept are common features. Also,
all mandatory features whose parents are common are themselves common. A
variable feature is either optional or alternative (one-of, more-of). Nodes in the
feature diagram to which those features are attached are called variation points.

In the case of our example DSL, the domain consists of resources, brows-
ing behavior, and services (type, status and rate). Resources can be atomic or
compound, access to the resource (service) can be through a URL pointer or a
gateway, and browsing behavior can be sequential, concurrent, repetitive, lim-
ited by accessing time, or rate. Service has a rate and status (succeeded, failed,
or nonterminating). A corresponding feature diagram is shown in Figure 1. The
first step in designing the DSL is to look into variabilities and commonalities in
the feature diagram. Variable parts must be specified directly in or be derivable
from DSL programs. It is clear that type of service (URL pointer or gateway)
and browsing behavior have to be specified in DSL programs. Service status
and service rate will be examined and computed while running a DSL program.
Therefore, both will be built into the execution model. Type of resource (atomic
or compound) are actually types of values that exist during the execution of a
DSL program. The basic syntax proposed in [29]

S ::= url(String) // basic services
gateway get (Stringt)

gateway post (String+)

index(String, String)

St 7 82 // sequential execution
S1 |’ 82 // concurrent execution

12



resources service service rate

pgiﬁtlér gateway

atomic compound | | sequential rate limit

concurrent time limit nonterminating

tables

HTML multipart
document data

Figure 1: Feature diagram for web browsing.

| timeout (Real, S) // timeout combinator

| limit (Real, Real, S) // rate limit combinator
| repeat (S) // repetition

| stall // nontermination

| fail // failure

closely resembles our feature diagram. The syntax can later be extended with
abstractions and binding.

Another domain analysis methodology is FAST (Family-Oriented Abstrac-
tions, Specification, and Translation) [37]. FAST is a software development
process applying product line architecture principles, so it relates directly to
the product line decision pattern. A common platform is specified for a family
of software products. It is based on the similarities and differences between
products. The FAST method consists of the following activities: domain quali-
fication, domain engineering, application engineering, project management, and
family change.

During domain engineering, the domain is analyzed and then implemented
as a set of domain-specific reusable components. The purpose of domain anal-
ysis in FAST is to capture common knowledge about the domain and guide
reuse of the implemented components. Domain analysis involves the following
steps: decision model definition, commonality analysis, domain design, applica-
tion modeling language design, create standard application engineering process

13



Table 7: Design patterns.
Pattern Description

Language exploita- DSL uses (part of) existing GPL or DSL
tion Important subpatterns:
e Piggyback: Existing language is partially used
e Specialization: Existing language is restricted
e Extension: Existing language is extended
Language invention A DSL is designed from scratch with no commonality
with existing languages

Informal DSL is described informally

Formal DSL is described formally using an existing seman-
tics definition method such as attribute grammars,
rewrite rules, or abstract state machines

design, and develop application engineering design environment. An impor-
tant task of domain analysis is commonality analysis, which identifies useful
abstractions that are common to all family members. Commonalities are the
main source of reuse, thus the emphasis is on finding common parts. Besides
the commonalities, variabilities are also discovered during commonality analy-
sis. Variabilities indicate potential sources of change over the lifetime of the
family. Commonalities and variabilities in FAST are specified as a structured
list. For every variable property the range of variability as well as binding time
are specified. Commonality analysis is later used in designing an application
modeling language (AML), which is used to generate a family member from
specifications.

2.4 Design

Approaches to DSL design can be characterized along two orthogonal dimen-
sions: the relationship between the DSL and existing languages, and the formal
nature of the design description. This dichotomy is reflected in the design pat-
terns in Table 7 and the corresponding examples in Table 8.

The easiest way to design a DSL is to base it on an existing language.
Possible benefits are easier implementation (see Section 2.5) and familiarity for
users, but the latter only applies if users are also programmers in the existing
language, which need not be the case. We identify three patterns of design based
on an existing language. First, we can piggyback domain-specific features on part
of an existing language. A related approach restricts the existing language to
provide a specialization targeted at the problem domain. The difference between
these two patterns is really a matter of how rigid the barrier is between the DSL
and the rest of the existing language. Both of these approaches are often used
when a notation is already widely known. For example, many DSLs contain
arithmetic expressions which are usually written in the infix-operator style of
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Table 8: Examples for the design patterns in Table 7. References and application
domains are given in Table 4.

Pattern DSL

Language exploitation

e Piggyback ACML, ASDL, BDL, ESP, Facile, Hancock,
JAMOOS, lava, Mawl, PSL-DA, SPL, SSC, Teapot

e Specialization OWL-Light

e Extension AUI, DiSTiL, FPIC, Fran, Hawk, HyCom, Nowra,

PLAN-P, SWUL, S-XML, Verischemelog
Language invention AL, ASTLOG, ATMOL, CHEM, GAL, FIDO, MSF,
RoTL, Service Combinators, SHIFT, SODL, TVL

Informal All DSLs in Table 4 except:
Formal ATMOL, ASTLOG, BDL, FIDO, GAL, OWL-Light,
PLAN-P, RoTL, Service Combinators, SHIFT,
SODL, SSC
mathematics.

Another approach is to take an existing language and extend it with new
features that address domain concepts. In most applications of this pattern the
existing language features remain available. The challenge is to integrate the
domain-specific features with the rest of the language in a seamless fashion.

At the other end of the spectrum is a DSL whose design bears no relationship
to any existing language. In practice, development of this kind of DSL can
be extremely difficult and is hard to characterize. Well-known GPL design
criteria such as readability, simplicity, orthogonality, the design principles listed
by Brooks [26], and Tennent’s design principles [135] retain some validity for
DSLs. However, the DSL designer has to keep in mind both the special character
of DSLs as well as the fact that users need not be programmers. Since ideally the
DSL adopts established notations of the domain, the designer should suppress
a tendency to improve them. As stated in [151], one of the lessons learned from
real DSL experiments is:

Lesson T2: You are almost never designing a programming lan-
guage.

Most DSL designers come from language design backgrounds. There
the admirable principles of orthogonality and economy of form are
not necessarily well-applied to DSL design. Especially in catering
to the pre-existing jargon and notations of the domain, one must be
careful not to embellish or over-generalize the language.

Lesson T2 Corollary: Design only what is necessary. Learn to
recognize your tendency to over-design.

Once the relationship to existing languages has been determined, a DSL de-
signer must turn to specifying the design before implementation. We distinguish
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Language invention Language exploitation
Extension Specialization Piggyback

Figure 2: The DSLs from Table 8 in the design pattern plane.

between informal and formal designs. In an informal design the specification is
usually in some form of natural language probably including a set of illustrative
DSL programs. A formal design would consist of a specification written using
one of the available semantic definition methods [127]. The most widely used
formal notations include regular expressions and grammars for syntax specifi-
cations, and attribute grammars, rewrite systems and abstract state machines
for semantic specification.

Clearly, an informal approach is likely to be easiest for most people. A
formal approach should not be discounted, however. Development of a formal
description of both syntax and semantics can bring problems to light before the
DSL is actually implemented. Furthermore, formal designs can be implemented
automatically by language development systems and tools, thereby significantly
reducing implementation effort (Section 3).

As mentioned in the beginning of this section, design patterns can be charac-
terized in terms of two orthogonal dimensions: language invention or language
exploitation (extension, specialization, or piggyback), and informal or formal
description. Figure 2 indicates the position of the DSLs from Table 8 in the
design pattern plane. We note that formal description is used more often than
informal description when a DSL is designed using the language invention pat-
tern. The opposite is true when a DSL is designed using language exploitation.

2.5 Implementation
2.5.1 Patterns

When an (executable) DSL is designed, the most suitable implementation ap-
proach should be chosen. This may be obvious, but in practice it is not, mainly
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Table 9: Implementation patterns for executable DSLs.

Pattern

Description

Interpreter

Compiler/appli-
cation generator

Preprocessor

Embedding

Extensible compiler/
interpreter

Commercial Off-
The-Shelf (COTS)
Hybrid

DSL constructs are recognized and interpreted us-
ing a standard fetch-decode-execute cycle. This ap-
proach is appropriate for languages having a dy-
namic character or if execution speed is not an is-
sue. The advantages of interpretation over compila-
tion are greater simplicity, greater control over the
execution environment, and easier extension.

DSL constructs are translated to base language con-
structs and library calls. A complete static analysis
can be done on the DSL program/specification. DSL
compilers are often called application generators.
DSL constructs are translated to constructs in an ex-
isting language (the base language). Static analysis
is limited to that done by the base language proces-
sor. Important subpatterns:

e Macro processing: Expansion of macro definitions.
e Source-to-source transformation: DSL source code
is transformed (translated) into base language source
code.

e Pipeline: Processors successively handling sublan-
guages of a DSL and translating them to the input
language of the next stage.

e Lexical processing: Only simple lexical scanning
is required, without complicated tree-based syntax
analysis.

DSL constructs are embedded in an existing GPL
(the host language) by defining new abstract data
types and operators. Application libraries are the
basic form of embedding.

A GPL compiler/interpreter is extended with
domain-specific optimization rules and/or domain-
specific code generation. While interpreters are usu-
ally relatively easy to extend, extending compilers
is hard unless they were designed with extension in
mind.

Existing tools and/or notations are applied to a spe-
cific domain.

A combination of the above approaches.
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Table 10: Examples for the implementation patterns in Table 9. References and
application domains are given in Table 4.

Pattern DSL
Interpreter ASTLOG, Service Combinators
Compiler/appli- AL, ATMOL, BDL, ESP, Facile, FIDO, Hancock,

cation generator JAMOOS, lava, Mawl, PSL-DA, RoTL, SHIFT,
SODL, SPL, Teapot

Preprocessor

e Macro processing S-XML

e Source-to-source ~ ADSL, AUI, MSF, SWUL, TVL

transformation

e Pipeline CHEM

e Lexical processing SSC

Embedding FPIC, Fran, Hawk, HyCom, Nowra, Verischemelog
Extensible compiler/ DiSTiL

interpreter

Commercial Off- ACML, OWL-Light
The-Shelf (COTS)
Hybrid GAL, PLAN-P

because of the many DSL implementation techniques that have no useful coun-
terpart for GPLs. These DSL-specific techniques are less well-known, but can
make a big difference in the total effort that has to be invested in DSL devel-
opment. The implementation patterns we have identified are shown in Table 9.
We discuss some of them in more detail. Examples are given in Table 10.

Interpretation and compilation are as relevant for DSLs as for GPLs, even
though the special character of DSLs often makes them amenable to other, more
efficient, implementation methods, such as preprocessing and embedding. This
viewpoint is at variance with [131], where it is argued that DSL development
is radically different from GPL development, since the former is usually just a
small part of a project and hence DSL development costs have to be modest.
This is not always the case, however, and interpreters and compilers/application
generators are widely used in practice.

Macros and subroutines are the classical language extension mechanisms
used for DSL implementation. Subroutines have given rise to implementation
by embedding, while macros are handled by preprocessing. A recent survey of
macros is given in [22]. Macro expansion is often independent of the syntax of
the base language and the syntactical correctness of the expanded result is not
guaranteed, but is checked at a later stage by the interpreter or compiler. This
situation is typical for preprocessors.

C++ supports a language-specific preprocessing approach: template metapro-
gramming [143, 142]. It uses template expansion to achieve compile-time gen-
eration of domain-specific code. Significant mileage has been made out of tem-

18



plate metaprogramming to develop mathematical libraries for C++ which have
familiar domain notation using C++ user-definable operator notation and over-
loading, but also achieve good performance. An example is Blitz++ [144].

In the embedding approach, a DSL is implemented by extending an existing
GPL (the host language) by defining specific abstract data types and operators.
A domain-specific problem then can be described with these new constructs.
Therefore, the new language has all the power of the host language, but an
application engineer can become a programmer without learning too much of
it. To approximate domain-specific notations as closely as possible, the em-
bedding approach can use any features for user-definable operator syntax the
host language has to offer. For example, it is common to develop C++ class
libraries where the existing operators are overloaded with domain-specific se-
mantics. Although this technique is quite powerful, pitfalls exist in overloading
familiar operators to have unfamiliar semantics. Although the host language in
the embedding approach can be any general-purpose language, functional lan-
guages are often appropriate, as shown by many researchers [77, 84]. This is due
to functional language features such as lazy evaluation, higher-order functions,
and strong typing with polymorphism and overloading.

Extending an existing language implementation can also be seen as a form
of embedding. The difference is usually a matter of degree. In an interpreter or
compiler approach the implementation would usually only be extended with a
few features, such as new data types and operators for them. For a proper em-
bedding, the extensions might encompass full-blown domain-specific language
features. In both settings, however, extending implementations is often very dif-
ficult. Techniques for doing so in a safe and modular fashion are still the subject
of much research. Since compilers are particularly hard to extend, much of this
work is aimed at preprocessors and extensible compilers allowing addition of
domain-specific optimization rules and/or domain-specific code generation. We
mention user-definable optimization rules in the CodeBoost C++ preprocessor
[8] and in the Simplicissimus GCC compiler plug-in [122], the IBM Montana
extensible C++ programming environment [130], user-definable optimization
rules in the GHC Haskell compiler [111], and exploitation of domain-specific
semantics of application libraries in the Broadway compiler [70]. Some extensi-
ble compilers, such as OpenC++ [32], support a metaobject protocol. This is an
object-oriented interface for specifying language extensions and transformations
[88].

The COTS-based approach builds a DSL around existing tools and nota-
tions. Typically this approach involves applying existing functionality in a
restricted way, according to domain rules. For example, the general-purpose
Powerpoint tool has been applied in a domain-specific setting for diagram edit-
ing [150]. The current prominence of XML-based DSLs is another instance of
this approach [63, 110]. For an XML-based DSL, grammar is described using
a DTD or XML scheme, where nonterminals are analogous to elements and
terminals to data content. Productions are like element definitions, where the
element name is the left-hand side and the content model is the right-hand side.
The start symbol is analogous to the document element in a DTD. Using a DOM
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parser or SAX (Simple API for XML) tool, parsing comes for free. Since the
parse tree can be encoded in XML as well, XSLT transformations can be used
for code generation. Therefore, XML and XML tools can be used to implement
a programming language compiler [59].

Many DSL endeavors apply a number of these approaches in a hybrid fash-
ion. Thus the advantages of different approaches can be exploited. For instance,
embedding can be combined with user-defined domain-specific optimization in
an extensible compiler, and the interpreter and compiler approach become in-
distinguishable in some settings (see next section).

2.5.2 Implementation trade-offs

Advantages of the interpreter and compiler/application generator approaches
are:

e DSL syntax can be close to the notations used by domain experts,
e good error reporting is possible,

e domain-specific analysis, verification, optimization, parallelization, and
transformation (AVOPT) is possible,

while some of its disadvantages are:

e the development effort is high because a complex language processor must
be implemented,

e the DSL is more likely to be designed from scratch, often leading to inco-
herent designs compared with exploitation of an existing language,

e language extension is hard to realize because most language processors are
not designed with extension in mind.

However, these disadvantages can be minimized or eliminated altogether when
a language development system or toolkit is used, so that much of the work
of language processor construction is automated. This presupposes a formal
approach to DSL design and implementation. Automation support is discussed
further in Section 3.

We now turn to the embedded approach. Its advantages are:

e development effort is modest because an existing implementation can be
reused,

e it often produces a more powerful language than other methods since many
features come for free,

e host language infrastructure can be reused (development and debugging
environments: editors, debuggers, tracers, profilers etc.),

e user training costs might be lower since many users may already know the
host language.
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Disadvantages of the embedded approach are:

e syntax is far from optimal because most languages do not allow arbitrary
syntax extension,

e overloading existing operators can be confusing if the new semantics does
not have the same properties as the old,

e bad error reporting because messages are in terms of host language con-
cepts instead of DSL concepts,

e domain-specific optimizations and transformations are hard to achieve,
so efficiency may be affected, particularly when embedding in functional
languages [84, 126].

Advocates of the embedded approach often criticize DSLs implemented by
the interpreter or compiler approach in that too much effort is put into syntax
design, whereas the language semantics tends to be poorly designed and cannot
be easily extended with new features [84]. However, the syntax of a DSL is
extremely important and should not be underestimated. It should be as close
as possible to the notation used in a domain.

In the functional setting, and in particular if Haskell is used, some of these
shortcomings can be reduced by using monads to modularize the language imple-
mentation [77]. Domain-specific optimizations can be achieved using approaches
such as user-defined transformation rules in the GHC compiler [111] or a form
of whole-program transformation called partial evaluation [80, 36]. In C++,
template metaprogramming can be used and user-defined domain-specific opti-
mization is supported by various preprocessors and compilers. See the references
in Section 2.5.1.

The decision diagram on how to proceed with DSL implementation (Fig-
ure 3) shows when a particular implementation approach is more appropriate.
If the DSL is designed from scratch with no commonality with existing languages
(invention pattern), the recommended approach is to implement it by embed-
ding, unless domain-specific analysis, verification, optimization, parallelization,
or transformation (AVOPT) is required, a domain-specific notation must be
strictly obeyed, or the user community is expected to be large.

If the DSL incorporates (part of) an existing language, one would like to
reuse (the corresponding part of) the existing language’s implementation as
well. Apart from this, various implementation patterns may apply, depending
on the language exploitation subpattern used. A piggyback or specialization
design can be implemented using an interpreter, compiler/application genera-
tor, or preprocessor, but embedding or use of an extensible compiler /interpreter
are not suitable, although specialization can be done using an extensible com-
piler/interpreter in some languages (Smalltalk, for instance). In the case of
piggyback, a preprocessor transforming the DSL to the language it piggybacks
on is best from the viewpoint of implementation reuse, but preprocessing has
serious shortcomings in other respects. A language extension design can be
implemented using all of the above-mentioned implementation patterns. From

21



yes Interpreter, compiler/application

Is AVOPT required? generator, preprocessor or

extensible compiler/interpreter
are recommended

Must domain-specific ves
notations be
strictly obeyed?

Will user community yes . . .
be large Compiler/application generator

(good error-reporting or interpreter implementation
needed, ...)? patterns are recommended

Is the DSL designed using the
language exploitation
design pattern?
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Embedding implementation
pattern is recommended

Figure 3: Implementation guidelines.



the viewpoint of implementation reuse, embedding and use of an extensible
compiler/interpreter are particularly attractive in this case.

If more than one implementation pattern applies, the one having the high-
est ratio of benefit (see discussion in this section) to implementation effort is
optimal, unless, as in the language invention case, AVOPT is required, a domain-
specific notation must be strictly obeyed, or the user community is expected to
be large. As already mentioned, a compiler/application generator scores worst
in terms of implementation effort. Less costly are (in descending order): inter-
preter, preprocessing, extensible compiler/interpreter, and embedding. On the
other hand, a compiler/application generator and interpreter score best as far
as benefit to DSL users is concerned. Less benefit is obtained from (in descend-
ing order): extensible compiler/interpreter, embedding, and preprocessing. In
practice, such a cost-benefit analysis is rarely performed, and the decision is
driven only by implementor experience. Of course, the latter should be taken
into account, but it is not the only relevant factor.

2.6 Comparison with other classifications

We start by comparing our patterns with those proposed in [131]. Closely
following [58], Spinellis distinguishes three classes of DSL patterns as shown in
Table 11. The specific patterns for each class are summarized in Tables 12, 13,
and 14. Most patterns are creational. The piggyback pattern might be classified
as creational as well, since it is very similar to language extension. This would
leave only a single pattern in each of the other two categories.

First, it should be noted that Spinellis’s patterns do not include traditional
GPL design and implementation techniques, while ours do, since we consider
them to be as relevant for DSLs as for GPLs. Second, Spinellis’s classification
does not correspond in an obvious way to our classification in decision, analysis,
design, and implementation patterns. The latter are all basically creational, but
covering a wider range of creation-related activities than Spinellis’s patterns.

The correspondence of Spinellis’s patterns with ours is shown in Table 15.
Since our patterns have a wider scope, many of them have no counterpart in
Spinellis’s classification. These are not shown in the right-hand column. We
have retained the terminology used by Spinellis whenever appropriate.

Another classification of DSL development approaches is given in [150],
namely, full language design, language extension, and COTS-based approaches.
Since each approach has its own pros and cons, the author discusses them with
respect to three kinds of issues: DSL specific, GPL support, and pragmatic
support issues. Finally, the author shows how a hybrid development approach
can be used.
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Table 11: Pattern classification proposed by Spinellis.

Pattern class

Description

Creational pattern
Structural pattern
Behavioral pattern

DSL creation
Structure of system involving a DSL
DSL interactions

Table 12: Creational patterns.

Pattern

Description

Language extension

Language specialization

Source-to-source transfor-
mation

Data structure representa-
tion

Lexical processing

DSL extends existing language with new
datatypes, new semantic elements, and/or
new syntax.

DSL restricts existing language for purposes of
safety, static checking, and/or optimization.
DSL source code is transformed (translated)
into source code of existing language (the base
language).

Data-driven code relies on initialized data
structures whose complexity may make them
difficult to write and maintain. These struc-
tures are often more easily expressed using a
DSL.

Many DSLs may be designed in a form suit-
able for recognition by simple lexical scanning.

Table 13: Structural patterns.

Pattern

Description

Piggyback

System front-end

DSL has elements, for instance, expressions in
common with existing language. DSL proces-
sor passes those elements to existing language
processor.

A DSL based front-end may often be used for
handling a system’s configuration and adapta-
tion.

Table 14: Behavioral patterns.

Pattern

Description

Pipeline

Pipelined processors successively handling
sublanguages of a DSL and translating them
to input language of next stage.
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Table 15: Correspondence of Spinellis’s patterns with ours. Since our patterns
have a wider scope, many of them have no counterpart in Spinellis’s classifica-
tion. These are not shown in the right-hand column.

Spinellis’s pattern

Our pattern

Creational: language extension

Creational: language specializa-
tion
Creational:
transformation

source-to-source

Creational: data structure repre-
sentation
Creational: lexical processing

Design: language exploitation
(extension)

Design: language exploitation
(specialization)

Implementation: preprocessing
(source-to-source transforma-
tion)

Decision: data structure repre-
sentation
Implementation: preprocessing

Structural: piggyback Design: language exploitation
(piggyback)

Structural: system front-end Decision: system front-end

Behavioral: pipeline Implementation: preprocessing
(pipeline)

3 DSL Development Support

3.1 Design and implementation support

As we have seen, DSL development is hard, requiring both domain knowledge
and language development expertise. The development process can be facili-
tated by using a language development system or toolkit. Some systems and
toolkits that have actually been used for DSL development are listed in Table
16. They have widely different capabilities and are in widely different stages of
development, but are based on the same general principle: they generate tools
from language descriptions [71]. The tools generated may vary from a consis-
tency checker and interpreter to an integrated development environment (IDE)
consisting of a syntax-directed editor, a prettyprinter, an (incremental) consis-
tency checker, analysis tools, an interpreter or compiler/application generator,
and a debugger for the DSL in question (assuming it is executable). As noted
in Section 1.2, non-executable DSLs may also benefit from various kinds of tool
support such as syntax-directed editors, prettyprinters, consistency checkers,
and analyzers. These can be generated in the same way.

Some of these systems support a specific DSL design methodology, while
others have a largely methodology-independent character. For instance, Sprint
[36] assumes an interpreter for the DSL to be given and then uses partial eval-
uation to remove the interpretation overhead by automatically transforming a
DSL program into a compiled program. Other systems, such as ASF+SDF [23],
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Table 16: Some language development systems and toolkits that have been used

for DSL development.

System

Developer

ASF+SDF [23]
AsmL [62]
DMS [12]
Draco [109]
Eli [67]

Gem-Mex [1]
InfoWiz [107]
JTS [10]
Khepera [52]
Kodiyak [72]
LaCon [87]

LISA [105]
metafront [21]
Metatool [33]
POPART [149]
SmartTools [4]
smgn [90]
SPARK [5]
Sprint [36]
Stratego [145]
TXL [38]

CWI/University of Amsterdam

Microsoft Research, Redmond

Semantic Designs, Inc.

University of California, Irvine

University of Colorado, University of Paderborn,
Macquarie University

University of I”Aquila

Bell Labs/AT&T Labs

University of Texas at Austin

University of North Carolina

University of Minnesota

University of Paderborn

(LaCon uses Eli as back-end — see above)
University of Maribor

University of Aarhus

Bell Labs

USC/Information Sciences Institute
INRIA Sophia Antipolis

Intel Compiler Lab/University of Victoria
University of Calgary

LaBRI/INRIA

University of Utrecht

University of Toronto/Queen’s University
at Kingston

Table 17: Development support provided by current language development sys-
tems and toolkits for DSL development phases/pattern classes.

Development phase/ Support provided
Pattern class

Decision None

Analysis Not yet integrated — see
Section 3.2

Design Weak

Implementation Strong
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Table 18: Examples of DSL development using the systems in Table 16.

System used  DSL Application domain
ASF+SDF Box [24] Prettyprinting
Risla [46] Financial products
AsmL UPnP [141] Networked device protocol
XLANG [136] Business protocols
DMS (Various) [12] Program transformation
(Various) [12] Factory control
Eli Maptool [82] Grammar mapping
(Various) [112] Class generation
Gem-Mex Cubix [95] Virtual data warehousing
JTS Jak [10] Syntactic transformation
LaCon (Various) [87] Data model translation
LISA SODL [104] Network applications
SmartTools LML [110] GUI programming
BPEL [39] Business process description
smgn Hoof [90] Compiler IR specification
IMDL [90] Software reengineering
SPARK Guide [98] Web programming
CML2 [114] Linux kernel configuration
Sprint GAL [139] Video device drivers
PLAN-P [138] Network programming
Stratego Autobundle [81] Software building

CodeBoost [8] Domain-specific C++ optimization
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DMS [12], and Stratego [145], would not only allow an interpretive definition
of the DSL, but would also accept a transformational or translational one. On
the other hand, they might not support partial evaluation of a DSL interpreter
given a specific program.

The input to these systems is a description of various aspects of the DSL to
be developed in terms of specialized metalanguages. Depending on the type of
DSL, some important language aspects are syntaz, prettyprinting, consistency
checking, analysis, execution, translation, transformation, and debugging. It so
happens that the metalanguages used for describing these aspects are them-
selves DSLs for the particular aspect in question. For instance, DSL syntax
is usually described in something close to BNF, the de facto standard for syn-
tax specification (Table 1). The corresponding tool generated by the language
development system is a parser.

Although the various specialized metalanguages used for describing language
aspects differ from system to system, they are often (but not always) rule based.
For instance, depending on the system, the consistency of programs or scripts
may have to be checked in terms of attributed syntax rules (an extension of
BNF), conditional rewrite rules, or transition rules. See, for instance, [127] for
further details.

The level of support provided by these systems in various phases of DSL
development is summarized in Table 17. Their main strength lies in the imple-
mentation phase. Support of DSL design tends to be weak. Their main assets
are the metalanguages they support, and in some cases a meta-environment to
aid in constructing and debugging language descriptions, but they have little
built-in knowledge of language concepts or design rules. Furthermore, to the
best of our knowledge, none of them provides any support in the analysis or
decision phase. Analysis support tools are discussed in Section 3.2.

Examples of DSL development using the systems in Table 16 are given in
Table 18. They cover a wide range of application domains and implementation
patterns. The Box prettyprinting metalanguage is an example of a DSL devel-
oped with a language development system (in this case ASF+SDF) for later
use as one of the metalanguages of the system itself. This is common prac-
tice. The metalanguages for syntax, prettyprinting, attribute evaluation, and
program transformation used by DMS were all implemented using DMS, and
the Jak transformational metalanguage for specifying the semantics of a DSL
or domain-specific language extension in the Jakarta Tool Suite (JTS) was also
developed using JTS.

3.2 Analysis support

The language development toolkits and systems discussed in the previous section
do not provide support in the analysis phase of DSL development. Separate
frameworks and tools for this have been or are being developed, however. Some
of them are listed in Table 19. We have included a short description of each
entry, largely taken from the reference given for it. The fact that a framework
or tool is listed does not necessarily mean it is in use or even exists.
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Table 19: Some domain analysis frameworks and tools.

Analysis frame-
work or tool

Description

Ariadne [124]

DARE [57]

DOMAIN [140]

FDL [47]

ODE editor [53]

ODM support framework enabling domain practi-
tioners to collaboratively develop and evolve their
own semantic models, and to compose and customize
applications incorporating these models as first-class
architectural elements.

Supports the capture of domain information from ex-
perts, documents, and code in a domain. Captured
domain information is stored in a domain book that
will typically contain a generic architecture for the
domain and domain-specific reusable components.
DSSA [134] support framework consisting of a col-
lection of structured editors and a hypertext/media
engine that allows the user to capture, represent, and
manipulate various types of domain knowledge in a
hyper-web. DOMAIN supports a “scenario-based”
approach to domain analysis. Users enter scenarios
describing the functions performed by applications in
the domain of interest. The text in these scenarios
can then be used (in a semi-automated manner) to
develop a domain dictionary, reference requirements,
and domain model, each of which are supported by
their own editor.

The Feature Description Language (FDL) is a tex-
tual representation of feature diagrams, which are a
graphical notation for expressing assertions (propo-
sitions, predicates) about systems in a particular
application domain. These were introduced in the
FODA [86] domain analysis methodology. (FDL is
an example of the visual-to-textual transformation
subpattern in Table 3.)

Ontology editor supporting ODE — see also [45].
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Table 20: Summary of DSL development phases and corresponding patterns.

Development phase Pattern
Decision Notation
(Section 2.2) AVOPT

Task automation
Product line
Data structure representation
Data structure traversal
System front-end
Interaction
GUI construction
Analysis Informal
(Section 2.3) Formal
Extract from code
Design Language exploitation
(Section 2.4) Language invention
Informal
Formal
Implementation Interpreter
(Section 2.5) Compiler /application generator
Preprocessor
Embedding
Extensible compiler /interpreter
COTS
Hybrid

As noted in Section 2.3, the output of domain analysis consists basically of
domain-specific terminology and semantics in more or less abstract form. It
may range from a feature diagram (see FDL entry in Table 19) to a domain
implementation consisting of a set of domain-specific reusable components (see
DARE entry in Table 19), or a theory in the case of scientific domains. An
important issue is how to link formal domain analysis with DSL design and
implementation. The possibility of linking DARE directly to the Metatool meta-
generator (that is, application generator generator) [33] is mentioned in [56].

4 Conclusions and Open Problems

DSLs will never be a solution to all software engineering problems, but their
application is currently unduly limited by a lack of reliable knowledge available
to (potential) DSL developers. To help remedy this situation, we distinguished
five phases of DSL development and identified patterns in each phase, except
deployment. These are summarized in Table 20. Furthermore, we discussed
language development systems and toolkits that can be used to facilitate the
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development process, especially its later phases.

Our survey also showed many opportunities for further work. As indicated
in Table 17, for instance, there are serious gaps in the DSL development support
chain. More specifically, some of the issues needing further attention are:

Decision Can useful computer-aided decision support be provided? If so,
its integration in existing language development systems or toolkits (Table 16)
might yield additional advantages.

Analysis Further development and integration of domain analysis support
tools. As noted in Section 2.3, there is a close link with knowledge engineering.
Existing knowledge engineering tools and frameworks may be useful directly or
act as inspiration for further developments in this area. An important issue is
how to link formal domain analysis with DSL design and implementation.

Design and implementation How can DSL design and implementation be
made easier for domain experts not versed in GPL development? Some ap-
proaches are (not mutually exclusive):

e Building DSLs in an incremental, modular, and extensible way from pa-
rameterized language building blocks. This is of particular importance for
DSLs, since they change more frequently than GPLs [20, 150]. Progress
in this direction is being made [1, 36, 77, 103].

e A related issue is how to combine different parts of existing GPLs and
DSLs into a new DSL. For instance, in the Microsoft .NET framework
many GPLs are compiled to the Common Language Runtime (CLR) [64].
Can this be helpful in including selected parts of GPLs into a new DSL?

e Provide “pattern aware” development support. The Sprint system [36], for
instance, provides partial evaluation support for the interpreter pattern
(see Section 3.1). Other patterns might benefit from specialized support
as well. Embedding support is discussed separately in the next paragraph.

e Reduce the need for learning some of the specialized metalanguages of lan-
guage development systems by supporting description by example (DBE)
of selected language aspects like syntax or prettyprinting. The user-
friendliness of DBE is due to the fact that examples of intended behav-
ior do not require a specialized metalanguage, or only a small part of
it. Grammar inference from example sentences, for instance, may be vi-
able, especially since many DSLs are small. This is certainly no new idea
[41, 108], but it remains to be realized. Some preliminary results are
reported in [40].

e How can DSL development tools generated by language development sys-
tems and toolkits be integrated with other software development tools?
Using a COTS-based approach, XML technologies such as DOM and
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XML-parsers have great potential as a uniform data interchange format
for CASE tools. See also [7, 34].

Embedding GPLs should provide more powerful support for embedding DSLs,
both syntactically and semantically. Some issues are:

e Embedding suffers from the very limited user-definable syntax offered by
GPLs. Perhaps surprisingly, there is no trend toward more powerful user-
definable syntax in GPLs over the years. In fact, just the opposite has
happened. Macros and user-definable operators have become less popular.
Java has no user-definable operators at all. On the other hand, some of
the language development systems in Table 16, such as ASF+SDF and
to some extent Stratego, support metalanguages featuring fully general
user-definable context-free syntax. Although these metalanguages cannot
compete directly with GPLs as embedding hosts as far as expressiveness
and efficiency are concerned, they can be used to express a source-to-
source transformation to translate user-defined DSL syntax embedded in
a GPL to appropriate API calls. See [25] for an extensive discussion of
this approach.

e Improved embedding support is not only a matter of language features,
but also of language implementation, and in particular of preprocessors
or extensible compilers allowing addition of domain-specific optimization
rules and/or domain-specific code generation. See the references given in
Section 2.5.1 and [65, 119]. Alternatively, the GPL itself might feature
domain-specific optimization rules as a special kind of compiler directive.
Such compiler extension makes the embedding process significantly more
complex, however, and its cost-benefit ratio needs further scrutiny.

Estimation

e Last but not least: In this article our approach toward DSL development
has been qualitative. Can the costs and benefits of DSLs be reliably
quantified?
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