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ABSTRACT 
Aspect-oriented programming (AOP) describes a range of 
techniques that enable the separation, organisation and 
composition of various programming concerns that cannot be 
adequately encapsulated using the principal decomposition 
mechanisms available to modern programming languages.  
 
Naturally, most AOP-related research is focussed on its 
application to the development of computer software. However, 
we believe that it is worthwhile considering whether AOP and 
cognate techniques might be usefully adapted and made available 
as a means for an end-user to   organise, represent and compose 
information in computer systems that support application domains 
in which scattering and tangling are present.  
 
Music is notoriously rich in deeply tangled relationships. 
Moreover, there is no universally accepted representation of 
music that simultaneously represents all dimensions of interest to 
the composer. Consequently, different music representations 
effectively impose their own ontology and dominant 
decomposition. 
 
In this paper we describe an approach to the organisation, 
representation and composition of musical materials, based on 
MDSOC. Our approach extends MDSOC by adding a dynamic 
hyperspace, in a sense described in Section 3, and by allowing 
users to write detailed composition expressions using an 
extensible set of compositors. We introduce the concept of 
composition history, enabling symmetric composition to be 
related to joinpoints, demonstrating a way to combine symmetric 
and asymmetric aspect approaches. 
 

Categories and Subject Descriptors  
D.2.2 [Software Engineering]: Design Tools and Techniques - 
Object-oriented design methods, Aspect-oriented design; D.2.1 
[Software Engineering]: Requirements / Specifications - 
Methodologies, Separation of Concerns; D.2.3 [Software 
Engineering]: Coding Tools and Techniques; D.3.3 
[Programming Languages]: Language Constructs and Features - 
Aspects; J.5 [Computer Applications]: Performing Arts - Music 
 
General Terms 
Design, Languages, Human Factors. 
 
Keywords 
Aspect-oriented programming, Multi-dimensional Separation of 
Concerns, music composition, music representation.  
 
1. INTRODUCTION 
Aspect-Oriented Programming (AOP) [26] and cognate 
techniques [1, 30, 37] aim, in various ways, to assist in managing 
the organisation and composition of software components that 
appear at multiple, possibly unrelated, loci within the structure of 
a software system. Such elements are said to crosscut the system’s 
structure. Approaches to AOP vary. Some approaches, such as 
Composition Filters [1] and Adaptive Programming [29], support 
the separation and composition of specific concern types. Other 
approaches, such as Hyper/J [49] , AspectJ [50], and Caesar [32] 
are of more general-purpose nature.  Two key approaches to 
general-purpose AOP are symmetric and asymmetric [18]. In 
general, symmetric AOP, such as Multi-Dimensional Separation 
of Concerns (MDSOC) [37] , which is the main subject of this 
paper, is concerned with the identification and encapsulation of 
discrete software units that together represent the implementation 
of a particular concern. Symmetric approaches enable such units 
to be composed together to form complete software systems. In 
contrast, Asymmetric AOP implementations, such as AspectJ [50] 
and derivative dynamic aspects systems such as  AspectS [24], 
largely consider the augmentation of a base program, through the 
application of encapsulated crosscutting concerns at specified 
points in a program’s static structure, or dynamic execution graph. 
 
Scattered through the AOSD literature are claims that the same 
ideas could be applied more widely than just to object-orientation 
[13], and indeed more widely than software concerns [37]. To the 
best of our knowledge, the present programme of work, alluded to 
in [20-22] and detailed here, is the first to apply ideas from AOP 
to music representation and composition. 
 

  



 

In a similar way to software, problems of crosscutting appear to 
exist, at various levels, in music [20-22].  It is common experience 
that music is not simply a stream of random notes. Rather, when 
listening to music, we rely, to a great extent, upon the perception 
of repetition and variation of musical material [33]. Therefore, in 
composing a piece of music, composers tend to utilise a finite set 
of musical resources that are variously combined and transformed 
to achieve a balance between novelty and repetition and form a 
coherent musical whole [3, 27, 42-44, 50]. The processes of 
musical composition can be usefully seen to involve the 
multidimensional scattering and tangling of musical ideas and 
transformational and combinatorial processes. At a level of 
abstraction, the perceived “musical surface” can be viewed as the 
result of the composer’s tacit weaving together of a “tangled web” 
[10, 34] of musical structures and dimensions. 
 
Music, as typically conceived of and represented, is 
multidimensional in that it contains multiple types of information, 
some of which are presented simultaneously. There are a number 
of musical dimensions, such as the principal perceptual 
dimensions of pitch, rhythm, loudness and timbre [31], which are 
inherent in music. Other dimensions may overlay these 
dimensions; harmony for example is a higher-level organisation of 
pitch. Additionally, musical information may be transformed or 
filtered to produce new, but related material. Transformation 
therefore presents another dimension. A music composer is also 
concerned with the ways in which musical structures are 
combined to form new structures. Moreover, structures across 
various simultaneously presented dimensions of musical concern 
may form polyarchies (overlapping hierarchies) of arbitrary depth 
[27]. 
 
Since the pioneering experiments of the 1950’s [23], researchers 
and practitioners from diverse scientific and artistic communities 
have explored the application of computers to a varied range of 
musical activities. Composers have used and developed music-
based programming language extensions to assist in the processes 
of musical composition [14, 36, 40]. The approach of each system 
influences its underlying musical ontology and the design of its 
musical representation. While computer systems generally 
demand a formal and precise representation of the data upon 
which they operate, the lack of consensus on what music is and 
how it is structured contributes to a “challenging” array of 
representational problems [9]. These problems are further 
complicated by the multidimensional nature of musical 
information and the requirement to represent task related 
viewpoints of musical data across the tangle of relationships that 
exist between various musical elements and dimensions. 
 
While the composition of software systems, and musical works 
are clearly different, we suggest, that there are strong similarities 
between the kinds of crosscutting that occur in software structure, 
and those that occur in the structuring of musical materials.  We 
believe, therefore, that it is worthwhile investigating ways in 
which Aspect Oriented techniques may be usefully adapted and 
applied to the computational representation of music for the 
purposes of musical composition. 
 
Our approach involves developing new computer mediated tools 
to allow composers to deal more flexibly with cross-cutting 
musical concerns. Our approach starts with the application of 
AOSD ideas directly to musical materials and processes rather 
than their conventional application to software units such as 
methods and fields. This ultimately leads to musical tools in 
which, motivated by the same reasons as AOSD, musical 

materials are organised differently from existing musical 
applications and are embodied within software that deals 
explicitly with the separation and composition of concerns in the 
application domain. Moreover, the end-user of such applications 
interacts through the exposed “aspect-oriented” model.  
 
In this paper, we describe a computational representation of music 
that facilitates the organisation of discrete musical ideas and their 
composition into higher-level units. In the first section we outline 
our general representation of musical information, and describe 
some of the ways in which new musical information may be 
obtained through the composition of a finite set of musical 
elements. In the second section we describe a domain-specific 
approach to the symmetric organisation of this musical 
representation, inspired by the work of Ossher et al [37]. The 
contributions of this paper are in applying aspect-oriented 
concepts to the concerns of an application domain, and exposing 
AOP to the end-user. We also suggest composition history as a 
way in which symmetric and asymmetric approaches may be 
usefully combined. 
 
2. REPRESENTATION OF MUSICAL 
INFORMATION 
In order to deal with crosscutting musical concerns, rather than 
the classes, methods and attributes that are the primitive elements 
of object-oriented programming concerns, we need to focus on 
ways of representing and weaving fundamental musical building 
blocks. In our representation, a Music Unit contains a single type 
of musical information, such as pitch or rhythm. Music Units are 
the lowest level of granularity that may be expressed using our 
approach. Of course, reductio ad absurdam, a music unit could 
contain a single pitch or rhythmic value, but we would argue that 
composers think in terms of higher level composites of such 
values, for example, a melodic line, cell, tone row, chord 
progression or rhythmic pattern [5, 6, 38, 43, 46, 47]. Either case 
can, without loss of generality, be represented using a sequence of 
values, since a sequence may contain just a single value. 
Consequently a music unit represents an ordered sequence of 
ordered sequences of values. This enables simultaneous 
structures, such as chords, to be expressed. While not all 
simultaneous values may be meaningful, the approach does not 
impose any constraints. Moreover, the semantics of the musical 
values stored in a music unit are neither defined nor constrained 
by the approach. 
 
All the values within all sets in the ordered sequence relate to a 
single musical type. For example, a Music Unit may contain a 
sequence of pitches or chords, a rhythmic pattern, or a sequence 
of musical transformations such as pitch transposition, rhythmic 
augmentation etc. A music unit may be populated by an 
algorithmic generative process, or from a data source, such as a 
MIDI file.  
 
In general, musical types are not restricted to a single 
representation. For example, a music unit representing pitch may 
contain a mixture of values that represent pitch in a variety of 
ways, such as frequency, MIDI note number (an integer in the 
range 0-127), symbolic note name (eg, ‘C4’) etc. [10, 40]. 
However, for simplicity, in this paper we use consistent 
representations within a music unit type. 
 



 

2.1 Composed Music Units 
Music Units are not inherently associated with other Music Units. 
A Composed Music Unit (CMU) is a container [19] that has been 
formed by composing together particular Music Units. For 
example, pitch and rhythm music units might be composed 
together into a CMU that represents a melody. A Music Unit type 
appears only once in each CMU. Since CMUs contain Music 
Units, CMUs may be composed with other CMUs.  
 
2.1.1 CMU Representation 
Each CMU may be considered as containing a dictionary of 
indexable ordered collections, each collection representing a 
Music Unit. The dictionary key to each collection is the name of 
the Music Unit type that it represents. Each element of the ordered 
collection is accessible through an index (I) and, as described 
above, each element contains a sequence of values (S). 
 
In addition to musical information, a CMU may contain code 
fragments that are used to transform the musical information in 
some way. Transformations are represented as code fragments, in 
the music unit type #transform.  In order to help visualise the 
representation, consider the following simple examples. 
 
A populated CMU, containing only a #pitch music unit consisting 
of the notes of a C major triad (the notes C,E and G), occurring  in 
sequence, is shown in Fig 1.  
 

Type Sequence 
#pitch I 1 2 3 

S ‹C› ‹E› ‹G› 
 

Figure 1. Pitches of C major triad in sequence 
 
A populated CMU containing a single C Major triad, occurring 
simultaneously, is shown in Table 2 
 

Type Sequence 
#pitch I 1 

S ‹C,E,G› 
 

Figure 2. Pitches of C major triad in unison 
 

A populated CMU containing two music unit types, #pitch and 
#rhythm, respectively consisting of the notes of a C major triad 
occurring in sequence and a rhythmic pattern1 is shown in table 3. 
Here numeric values in the #rhythm music unit type indicate the 
duration of a pitch. Note that because music units are correlated 
by index, a CMU represents a homorhythmic structure. In other 
words, CMUs do not support multiple simultaneous rhythmic 
figures. 

                                                
1 The detailed representation of pitches and rhythm values is 
outside the scope of this paper 

 
Type Sequence 
#pitch I 1 2 3 

S ‹C› ‹E› ‹G› 
 

#rhythm I 1 2 3 
S ‹4› ‹8› ‹8› 

 

Figure 3. Pitches of C major triad, with rhythmic 
values, in sequence 

 
2.2 Composing CMUs 
CMUs may be composed together to produce new CMUs. Since 
the term composition is heavily overloaded in the context of 
software and music, we refer to the process of composing the 
musical and programmatic data from selected CMUs into a single 
CMU as weaving. Processes that perform weaving are termed 
weavers. 
 
2.2.1 Weaving 
The weaving of CMUs is achieved by merging, according to the 
logic implemented by a weaver, the ordered collections of 
matching music unit types. Usually, music unit types are matched 
by name. Thus, for example, the information from the pitch type 
of one CMU is woven with the pitch information of another.  
However, in principle, this matching may be overridden. For 
example, a composer may wish a sequence of rhythmic values to 
be interpreted as pitch values. In this case, the #pitch music unit of 
one CMU might be woven with the #rhythm music unit of 
another. 
 
The weaving of CMUs may be specified by a composition 
expression that specifies the CMUs to be woven, and the weavers 
required to achieve the desired weave. Two of the simplest, and 
possibly musically most useful, weavers are sequential and 
parallel. 
 
2.2.1.1 Sequential Weaving 
Sequential weaving appends to the ordered collection of each of 
the types being composed. Figure 4 shows two CMUs, CMU1 and 
CMU2 and the result of the sequential composition of these 
CMUs. 
 

CMU1 
Type Sequence 
#pitch I 1 2 

S ‹C› ‹D› 
 

 
CMU2 

Type Sequence 
#pitch I 1 2 

S ‹E› ‹F› 
 

 
CMU1 and CMU2 composed in sequence 
Type Sequence 
#pitch I 1 2 3 4 

S ‹C› ‹D› ‹E› ‹F› 
 

Figure 4: Sequential Composition of CMUs 
 
In sequential composition, all the music unit types that exist in the 
CMUs being sequentially woven together are represented in the 
resulting CMU. The following example shows the sequential 
weaving of two CMUs, CMU1 and CMU2, and that the result is 
actually of their parallel composition. 



 

 
CMU1 

Type Sequence 
#pitch 

 

I 1 2 3 4 
S ‹C› ‹D› ‹E› ‹F› 

 
CMU2 

Type Sequence 
#rhythm 

 

I 1 2 3 4 
S ‹1› ‹2› ‹2› ‹1› 

 
CMU1 and CMU2 composed in sequence 
Type Sequence 
#pitch I 1 2 3 4 

S ‹C› ‹D› ‹E› ‹F› 
 

#rhythm 
 

I 1 2 3 4 
S ‹1› ‹2› ‹2› ‹1› 

Figure 5: Sequential Composition of multiple types 
 
The semantics of sequential weaving are that the set of music unit 
types contained in the resultant CMU is the union of all music unit 
types in the composed CMUs. Each music unit type in the 
resultant CMU contains a concatenation of the sequences of the 
same music unit type from the composed CMUs. These 
relationships are shown formally in figure 6. 
 
If  where A and B are CMUs and the symbol ‘+’ 
represents sequential weaving, then the set of music unit types 
T(C) in the resultant CMU C is the union of the music unit types 
in A and B. 
 

 
 

And each music unit is composed sequentially 
 

 
 
where   
s(c,t) is the sequence stored for music unit type t in CMU c. 
^ indicates sequence concatenation. 
 

Figure 6. Formal Expression of Sequential Weaving 
 
There is no requirement for there to be the same number of 
elements in the ordered collections of different music unit types.  
An interesting result is, therefore, that the composition of a pitch 
sequence with a rhythmic sequence may be achieved through 
sequential composition rather than the possibly more intuitive 
parallel composition.   
 
2.2.1.2 Parallel Weaving 
Parallel weaving correlates indexes between the collections of the 
music units being composed, and adds to the set found at each 
index. Figure 7 shows two CMUs, CMU1 and CMU2, and the 
result of their parallel weaving. 
 

CMU1 
Type Sequence 
#pitch 

 

I 1 2 3 
S ‹C› ‹E› ‹G› 

 
CMU2 

Type Sequence 
#pitch 

 

I 1 2 3 
S ‹E› ‹G› ‹B› 

 
CMU1 and CMU2 composed in parallel 
Type Sequence 
#pitch 

 

I 1 2 3 
S ‹C,E› ‹E,G› ‹G,B› 

Figure 7. Parallel Composition of CMUs 
 
The semantics of parallel weaving are that the resultant CMU 
contains the union of the set of all music unit types in the 
composed CMUs. Each resultant music unit collection contains an 
indexed sequence of sets. Each such set contains the index-
correlated set of values from the composed music units. This is 
shown formally in Figure 8. 
 
 
If  C = A // B where A and B are CMUs, and the symbol ‘//’ 
represents parallel composition, then the set of types T(C) in the 
resultant CMU C is the union of the types in A and B. 
 

 
 
And each type is composed in parallel such that 
 

 

 
where   
  T(c) is the set of type in CMU c 
  s(c,t) is the sequence stored for music unit type t in CMU c. 
  m(c,t,i) is the sequence stored for type music unit type t  in CMU 
c at sequence index i 
  #s is the number of elements in the ordered sequence s. 
 

Figure 8. Formalism for Parallel weaving 
 

2.3 Applying Transformations 
We have stated earlier that in addition to musical data, a CMU 
may contain transformational processes. The value of a CMU is 
obtained by executing each of the transformations found in its 
#transform music unit to yield a new CMU that contains no 
#transform type.  
 
For example, a CMU containing a transformation and its 
evaluation are shown in Figure 10. 
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CMU1 

Type Sequence 
#pitch I 1 2 3 4 

S ‹C› ‹D› ‹E› ‹F› 
 

#rhythm I 1 2 3 4 
S ‹2› ‹4› ‹4› ‹2› 

 

#transform I 1 
S ‹R_AUGMENT (3)› 

 

 
Evaluation of CMU1 

Type Sequence 
#pitch I 1 2 3 4 

S ‹C› ‹D› ‹E› ‹F› 
 

#rhythm I 1 2 3 4 
S ‹6› ‹12› ‹12› ‹6› 

 

Figure 10. Evaluation of a CMU 
 
The execution of the R_AUGMENT(3) transformation, in this 
example, causes the elements of the #rhythm music unit to be 
lengthened (augmented) by tripling their value.  
 
If the #transform collection contains multiple transformations, 
then they are executed in sequence. 
 
Transformations are not restricted to operating on a single type. 
Rather, transformations have unrestricted access to the entire 
CMU. Thus, for example, we might define a transform 
DROP_ALTERNATE that removes every other entry from all the 
music units in the CMU. 
 

CMU1 
Type Sequence 
#pitch I 1 2 3 4 

S ‹C› ‹D› ‹E› ‹F› 
 

#rhythm I 1 2 3 4 
S ‹2› ‹4› ‹4› ‹2› 

 

#transform I 1 
S ‹R_AUGMENT (3), 

DROP_ALTERNATE› 
 

 
Evaluation of CMU1 

Type Sequence 
#pitch I 1 3 

S ‹C› ‹E› 
 

#rhythm I 1 3 
S ‹6› ‹12› 

 

Figure 11. Evaluation of multiple transformations 
 
Musical composition processes, such as Counterpoint, Fugue [39] 
and Serial Composition [38], often involve musical 
transformations, such as the reversal of pitch and / or rhythm 
sequences. These kinds of transformation are easily implemented 
using this approach. 
  
If a CMU contains no #transform collection, or an empty 
#transform collection, then the value of the CMU is the CMU 
itself. 
 
In the remainder of this paper, we will notate the evaluation of a 
CMU C as @C. 

2.4 Composing Units with Transformations 
As discussed in 2.3, evaluation applies the transformations in the 
#transform collection to the woven elements from its component 
CMUs.  
 
There are several possible results from composing CMUs that 
contain transformations, depending upon whether or not the 
CMUs are evaluated prior to composition. 
 
To illustrate this, consider the composition of two CMUs, A and 
B in which CMU A contains a pitch sequence PA and a 
transformation TA and CMU B contains a pitch sequence PB and 
a transformation TB. Figures 12-17 show variations on the 
composition of CMU A and CMU B that can be achieved using 
evaluation. 
 

Type Sequence 
#pitch I 1 2 

S ‹PA› ‹PB› 
 

#transform I 1 2 
S ‹TA› ‹TB› 

 

Figure 12. Sequential Composition A + B 
 

Type Sequence 
#pitch I 1 2 

S ‹TB(TA(PA)› ‹TB(TA(PB))› 
 

Figure 13. Value of @(A + B) 
 

Type Sequence 
#pitch I 1 2 

S ‹TA(PA)› ‹PB› 
 

#transform I 1 
S ‹TB› 

 

Figure 14. Composed CMU (@A + B) 
 

Type Sequence 
#pitch Index 1 2 

Set ‹TB(TA(PA)› ‹TB(PB))› 
 

Figure 15. Value of (@A + B) 
 

Type Sequence 
#pitch I 1 2 

S ‹PA› ‹TB(PB)› 
 

#transform I 1 
S ‹TA› 

 

Figure 16. Composed CMU (A + @B) 
 

Type Sequence 
#pitch Index 1 2 

Set ‹ TA(PA)› ‹TA(TB(PB))› 
 

Figure 17. Value of (A + @B) 
 

Type Sequence 
#pitch I 1 2 

S ‹TA(PA)› ‹TB(PB)› 
 

Figure 18. Composed CMU @A + @B 
 
To help make these ideas more concrete, consider the example 
implementations for the PA, PB, TA and TB units shown in 
Figure 20. The TRANSPOSE transformation shift pitches by an 
amount specified by its parameter. If the parameter is negative, 
then the pitch is shifted down. 



 

 
CMU Unit Implementation 

 
A 

PA 
 

 TA 
 

TRANSPOSE(3) 

 
B 

PB 
 

 TB 
 

TRANSPOSE(-7) 

Figure 19. Example unit implementations. 
 
As we discussed in the introduction, musical compositions often 
use several musical ideas that are variously combined. Figure 20 
illustrates the values of CMUs woven with the various weaving 
expressions discussed above. Each CMU value represents a 
particular variation that may be obtained from the composition of 
the two CMUs A and B. Note however that various structural 
characteristics of the results remain constant. We can see, for 
instance, that a group three ascending pitches is always followed 
by a group of four descending pitches, and that the ‘distance’ 
between pitches in each group remains constant.  
 

Weaving 
Expression 

CMU Value 

@(A + B) 

 
@A + B 

 
A + @B 

 
@A + @B 

 
Figure 20. Weaving results 

 
3. ORGANISING MUSICAL MATERIALS 
The foregoing has introduced the concept of Composed Music 
Units as composable containers that aggregate musical and 
transformational information. However, each CMU exists in 
isolation; it is not possible to specify a relationship to any 
particular musical dimension or concern. One of the main 
difficulties in building music representations is that there is no 
single, all-encompassing, musical ontology. Rather, particular 
music systems impose their own ontology on the composer. 
 
A similar problem exists in software engineering. In object-
oriented software development, for example, the unit of 
decomposition, namely the Class, is imposed upon the software 
developer as the fundamental structuring mechanism. Multi-
Dimensional Separation of Concerns [7] is an AOP technique that 
enables software code fragments to be logically related. Software 
systems may then be composed by reference to these logical 
groupings. Thus the dominance of the class decomposition is 
overcome. 
 
Like Subject Oriented Programming (SOP) [16] and Mixins [35], 
MDSOC, as applied to software, is concerned with the separation 
and composition of program fragments [8]. Similarly, in our work, 

we want to be able to compose fragments containing both 
multidimensional musical data and algorithmic transformations 
into higher-level components.  Moreover, we want to be able to 
organise the fragments and composed units without imposing any 
particular musical ontology.   
 
Non-musicians might wonder why musicians would want to do 
this. Aspect Oriented Music Representation (AOMR) offers 
composers capabilities not easily obtainable otherwise. These 
capabilities lie particularly in rapidly carrying out and fine-tuning 
wide-ranging musical "what if" experiments. Existing tools allow 
composers to perform limited what-if experiments. By contrast, 
AOMR allows musical what-if experiments to range over any 
musical dimensions or concerns, and to cross-cut low level details 
in one dimension with high level abstractions in another. Changes 
can be applied over arbitrarily specifiable scopes - not just scopes 
based on temporal intervals or voices. This is particularly useful, 
because while music is experienced in time, it is generally not 
composed in a left-to-right fashion. Composers seem to work with 
different levels of abstraction simultaneously and with incomplete 
ideas in various musical dimensions [48]. The notion of thematic 
unity means that composers are often very economical about the 
materials they use, but deeply concerned with exploring 
interesting ways in which they can be combined and transformed. 
Musicians also tend to problem seek rather than just problem 
solve [25] which  makes what-if experiments, whether tacit or 
explicit, vital. AOMR may not be well suited for all musical tasks, 
any more than AOP for all programming, but it offers advantages 
not readily available otherwise. 
 
We have therefore used MDSOC as a basis for our approach. 
There are, however, some distinctive requirements of musical 
composition. Firstly, while the ordering of composition in 
software is sometimes irrelevant, it must be possible to exert 
precise control over the ordering of composition of music units of 
the corresponding types. Secondly, unlike the MDSOC approach 
to software composition, (music) units may appear multiple times 
within a composition. Finally, units may be transformed as part of 
the composition. 
 
In this section, we describe our extensions to MDSOC for use in 
composing CMUs. We stress that it is not anticipated that the end-
user of our system will interact directly with the MDSOC-like 
formalisms described in this section. Rather, the representation 
described here will be used internally within our system. The user 
will be presented with a UI that facilitates the construction of the 
artefacts described. 
 
3.1 Hyperspaces  
Our approach to organising musical materials is based upon the 
MDSOC approach to software composition [37]. In a similar way 
to MDSOC, in our approach, discrete CMUs are organised into a 
hyperspace. Each unit is named and associated with a dimension 
and a concern in that dimension. The dimensions and their 
concerns that are contained by the hyperspace are entirely 
arbitrary, enabling the composer to classify each unit according to 
their particular structuring preferences. Each unit implementation 
appears only once in the hyperspace. 
 
In the following examples, we use the Hyperspace shown in 
Figure 21. For simplicity of exposition, each unit in this 
hyperspace contains only a single type, though in general, this is 
not the case.  
 



 

Dimension Concern Unit  Unit Implementation 
Phrase1 Melody A #pitch 

 
Phrase1 Rhythm R #rhythm  

 
Phrase1 Melody B #pitch 

 
Phrase2 Melody B #pitch 

 
Figure 21. Example Hyperspace 

 
3.2 Hyperslices 
A hyperslice is an abstract slice through the hyperspace and is 
expressed as set of regular expressions that may be used to match 
dimension.concern. 
 
For example, the hyperslice specification  
 
 “.*”.”Melody”  
 
matches all units from all dimensions that are in the “Melody” 
concern. In our example hyperspace, this would yield three 
CMUs; Phrase1.Melody.A, Phrase1.Melody.B and 
Phrase2.Melody.B 
 
3.3 Hypermodules 
A hypermodule is a specification that is used to construct, through 
weaving, a new CMU from units within the hyperspace.  
 
For example, consider a CMU that represents the musical snippet 
shown in Figure 22. 
 

 
Figure 22. A musical snippet 

 
By referring to the hyperspace in figure 21, such a CMU might be 
composed by the following hypermodule specification  

Musicunit: Intro1 
Hyperslices: Phrase1.* 
Relationships: 
  mergeByName; 

 Composition:  
  “.*A” + “.*B” + ”.*R”; 

This hypermodule specification composes a CMU called “Intro1”, 
as specified in the Musicunit specification. 
The Hyperslice specification defines the hyperslices from which 
the CMUs to be composed will be drawn. 
 
The Relationships specification specifies the general composition 
strategy. The composition strategy describes how names will be 
matched in the composition expression. The  “mergeByName” 
composition strategy used here indicates that units drawn from the 

hyperslice are to correspond to those in the composition 
expression if the names of the units match.  
 
The Composition specification contains an expression that defines 
how the CMUs are to be woven together. The expression contains 
CMU names to be matched from the hyperslice and operators 
representing weavers. For example, ‘+’ represents a sequential 
weaver, while ‘//’ represents a parallel weaver. 
  
In this example, the composition expression A + B + R is resolved 
as follows: 
 
The hyperslice specification includes only those units in the 
Phrase1 dimension. Namely  
 
 Phrase1.Melody.A 
 Phrase1.Melody.B  
and  Phrase1.Rhythm.R. 
 
Matching these against the composition expression  
 
 “.*A” + “.*B” + ”.*R” 
 
yields 
 
Phrase1.Melody.A + Phrase1.Melody.B +  
Phrase1.Rhythm.R 
 
A second CMU may be composed using the following 
hypermodule specification 
 

Musicunit: Intro2 
Hyperslices: Phrase1.*, Phrase2.* 
Relationships: 

  overrideByName; 
 Composition: 

  “.*A” + “.*B” + ”.*R”; 
 
In this specification, the overrideByName relationship indicates 
that in the event that multiple matches are found for a unit in the 
hyperslice, then the last found unit should be used. The search 
order is dictated by the order in which hyperslices are specified. 
 
Consequently, the composition expression in this hypermodule is 
resolved as follows: 
 
The hyperslice includes all units in all concerns from the Phrase1 
and Phrase2 dimensions, in this order. Namely  
 Phrase1.Melody.A, 
 Phrase1.Melody.B,  
 Phrase1.Rhythm.R  
and  Phrase2.Melody.B. 
 
 “*.A” can only be matched by Phrase1.Melody.A 

“*.B” can be matched by Phrase1.Melody.A and 
Phrase2.Melody.B 

 “*.R” can be matched only by Phrase1.Rhythm.R 
 
The ambiguity of matching “*.B” is resolved by the 
overrideByName relationship. This relationship indicates that the 
last found match is used. In this case, the match is 
Phrase2.Melody.B. 
 
Thus the composition expression is resolved to: 



 

 
Phrase1.Melody.A + Phrase2.Melody.B + 
Phrase1.Rhythm.R 
 
Since we currently assume that the semantics of the CMU are 
such that the dimensions of each note, in this case pitch and 
rhythm, are obtained by correlating indices across all composed 
dimensions, then this composition yields the musical fragment 
shown in Figure 23. 
 

 
Figure 23 

 
3.4 Expressing Relationships Between CMUs 
In musical composition, often a particular musical idea may be 
transformed and the transformed version used in composing new 
musical materials. This results in the formation of so-called 
evolutionary chains [7]. Supporting this type of composition 
requires the ability to define new CMUs and add them to the 
hyperspace. Thus the hyperspace is a dynamic structure that 
evolves with the musical composition. In particular, the composer 
may not necessarily separate out all the dimensions and concerns 
ab initio, but may subsequently wish to remodularise a unit by 
separating its concerns as the musical work evolves.  
 
For example, by inspection, we can see that Phrase2.Melody.B is 
actually a transposition, 3 semitones up, of Phrase1.Melody.B 
 
Rather than defining Phrase2.Melody.B in terms of absolute 
musical data, we can define a CMU that expresses this 
relationship. 
 
In this example, a transformation unit Transpose has been added 
to the hyperspace in the Transforms.Pitch dimension and concern. 
 
The Transpose transformation unit takes as an argument the 
number of semitones to transpose. 

 
Musicunit: Phrase2.Melody.B  
Hyperslices: Phrase1.Melody,  
Transforms.Pitch 
Relationships:  MergeByName; 
Composition:  Transpose(3) + B; 

 
The composition expression is resolved to: 
Transforms.Pitch.Transpose(3) +  
Phrase1.Melody.B 
By providing a fully qualified music unit specification 
(Phrase2.Melody.B), the newly composed unit may be added to 
the hyperspace in its own dimension and concern. 
 
3.5 Multiple Matches 
The mergeByName relationship has the possibility to return 
multiple matching results. 
 
For example, the hyperslice specification  
 
 Phrase1.Melody, Phrase2.Melody  
 

results in two matches for the unit B, namely Phrase1.Melody.B 
and Phrase2.Melody.B. 
 
By default, the mergeByName relationship causes matching 
units to be woven in sequence, in the order in which they are 
found.  
 
Thus, given the hyperslice specification shown above, the 
composition expression Transpose(3) + B would be resolved to 
 
Transpose(3) + (Phrase1.Melody.B + Phrase2.Melody.B)  
 
If the default sequential weaving is not required, then the 
composition expression must explicitly state the desired weaving 
such that all ambiguities are resolved. 
 
3.6 Other Weavers 
Unlike the composition of software, through an approach such as 
MDSOC, the ways in which musical information may be 
composed together are open-ended. The two basic weavers, 
sequential and parallel, described above are useful in musical 
composition. However, other weavers might be required to 
perform specific weaving operations, such as the appoggiatura 
composition described in [11]. Briefly, an appoggiatura is a “time-
taking” musical “ornament” O that is associated with, and 
prefixes, a main musical structure T. If T is placed in sequence, 
following a structure S, then the appoggiatura O associated with T 
must coincide with S if T is to immediately follow S. 
Consequently, unlike simple sequential weaving, an appoggiatura-
style sequential weaving of two units must modify the first unit to 
include the appoggiatura of the second. Unlike sequential and 
parallel weaving, an important requirement of this kind weaving is 
that the weaver itself knows how to interpret the information 
contained within the music units being composed. 
 
3.7 Composition History 
The symmetric organisation and composition of musical materials 
described above is partial; it is not expected that entire 
compositions will be structured using this approach. Rather, 
CMUs will be assembled in time through an approach, called 
MusicSpace, which incorporates an analog of Asymmetric AOP. 
Full description of this approach is outside the scope of the 
present paper, but briefly, MusicSpace supports temporal 
joinpoints. At each joinpoint it is possible, through pointcut 
expressions, to query the content of the musical information that 
is to be rendered at that point in time. 
 
As observed in [4], composed units have no recollection of their 
components once they are composed. Therefore, in order to 
support richly expressive pointcuts within MusicSpace, the 
mechanism through which CMUs are composed produces, for 
each element of each sequence of each collection, a structure that 
identifies the dimension, concern and unit name of all units that 
have created or affected the element. Thus it is possible, for 
example, to define pointcut expressions that identify all pitches 
that have been generated from a particular unit, even though the 
transformational processes through which the note has passed may 
make such an analysis difficult, or impossible, from the musical 
surface alone. This, we claim, has applications, not only to 
musical composition, but also to analytical and pedagogical music 
systems. 
 



 

4. RELATED WORK 
There are many approaches to, and implementations of, AOP [1, 
18, 24, 26, 29, 30, 32, 37, 49, 50] and, as noted in [41], different 
types of crosscutting concern may be better handled by one 
approach over another. Our work, as reported in this paper 
considers the static composition of units from components 
representing different concerns, and as such, our primary 
influence is MDSOC [37].  However, rather than applying the 
ideas to classes, methods and attributes, we have applied them to 
domain concepts; musical materials, musical processes and 
transformations and domain-specific forms of weaving. Thus, at 
the detailed level, our work borrows ideas from the music 
representation literature [2, 9, 45].  
 
Approaches to musical representation are diverse. Some 
approaches, such as [12, 14, 28] support the separation of 
concerns for specific domains of musical interest, such as 
harmony, or stylistic concerns. However our research considers 
more general musical applications. The CHARM representation 
[45] abstracts musical events from structure, enabling various 
structures to be superimposed over a single set of events. 
However, CHARM considers an event as a composite of musical 
dimensions, such as pitch and rhythm. The composition 
expressions that we have described are related to those of Music 
Structures [2]; a declarative representation that aims to model 
temporal and hierarchical musical relationships. However, Music 
Structures lacks a systematic repository for organising discrete 
musical elements. Consequently, there is a tight coupling between 
the composition specification and particular musical element 
instances.  
 
We have suggested music composition tools could benefit greatly 
from both symmetric and asymmetric approaches, This 
requirement for multiple AOP approaches in software is supported 
by the Concern Manipulation Environment (CME) [17-19].  
 
Finally, our work is in the spirit of Universal Composition [15], 
with each composed unit being built up of units that are stated 
only once, and whose composition is parameterised through a 
composition specification.  
 
5. CONCLUSIONS  
Since the inception of AOSD, there have been largely 
unsupported claims that the same ideas could be applied more 
generally than to object-orientation [13], and more widely than to 
software development [37]. To the best of our knowledge, the 
present programme of work is the first to investigate this claim in 
detail, using music representation and composition as a vehicle. A 
key step in our approach is to apply AOSD ideas directly to 
musical materials and processes rather than their conventional 
application to software units such as methods and fields.  
 
Our approach enables the composition of multiple musical 
dimensions into higher-level composites, and for these composites 
to be themselves made available for further composition through 
the manipulation of a dynamic hyperspace. Composition 
expressions permit the definition of abstract orderings between the 
units being composed and enable the use of multiple weaving 
strategies within a given composition. The use of hyperslices and 
name matching abstracts the composition expression from the 
particular units being composed, while preserving structural 
relationships with respect to the hyperslice. Moreover, the 
weaving processes themselves are abstracted and extensible. 
 

While this paper has described only the symmetric composition of 
musical information, we assert that both symmetric and 
asymmetric approaches are required for a full musical 
representation. We have proposed the use of a history of 
symmetric composition, which is made available for query at 
asymmetric-style joinpoints, as way to link both approaches 
 
Thus, given the demanding multidimensional, temporally 
sequenced, polyarchic nature of music and music representation, 
applying MDSOC to music representation problems has 
demanded extensions of MDSOC. These extension may be to 
some degree more generally applicable, and exportable back to 
MDSOC in its original domain. In summary, our approach 
extends MDSOC by adding a dynamic hyperspace and allowing 
users to write detailed composition expressions using an 
extensible set of compositors. In addition we introduced the 
concept of composition history, enabling symmetric composition 
to be related to joinpoints, demonstrating a way to combine 
symmetric and asymmetric aspect approaches at a high level of 
granularity. 
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