

Symmetric Composition of Musical Concerns

Patrick Hill
The Open University

Walton Hall
Milton Keynes.

MK7 6AA

PatrickHill@bcs.org.uk

Simon Holland
The Open University

Walton Hall
Milton Keynes.

MK7 6AA

s.holland@open.ac.uk

Robin Laney
The Open University

Walton Hall
Milton Keynes.

MK7 6AA

r.c.laney@open.ac.uk

ABSTRACT
Aspect-oriented programming (AOP) describes a range of
techniques that enable the separation, organisation and
composition of various programming concerns that cannot be
adequately encapsulated using the principal decomposition
mechanisms available to modern programming languages.

Naturally, most AOP-related research is focussed on its
application to the development of computer software. However,
we believe that it is worthwhile considering whether AOP and
cognate techniques might be usefully adapted and made available
as a means for an end-user to organise, represent and compose
information in computer systems that support application domains
in which scattering and tangling are present.

Music is notoriously rich in deeply tangled relationships.
Moreover, there is no universally accepted representation of
music that simultaneously represents all dimensions of interest to
the composer. Consequently, different music representations
effectively impose their own ontology and dominant
decomposition.

In this paper we describe an approach to the organisation,
representation and composition of musical materials, based on
MDSOC. Our approach extends MDSOC by adding a dynamic
hyperspace, in a sense described in Section 3, and by allowing
users to write detailed composition expressions using an
extensible set of compositors. We introduce the concept of
composition history, enabling symmetric composition to be
related to joinpoints, demonstrating a way to combine symmetric
and asymmetric aspect approaches.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques -
Object-oriented design methods, Aspect-oriented design; D.2.1
[Software Engineering]: Requirements / Specifications -
Methodologies, Separation of Concerns; D.2.3 [Software
Engineering]: Coding Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features -
Aspects; J.5 [Computer Applications]: Performing Arts - Music

General Terms
Design, Languages, Human Factors.

Keywords
Aspect-oriented programming, Multi-dimensional Separation of
Concerns, music composition, music representation.

1. INTRODUCTION
Aspect-Oriented Programming (AOP) [26] and cognate
techniques [1, 30, 37] aim, in various ways, to assist in managing
the organisation and composition of software components that
appear at multiple, possibly unrelated, loci within the structure of
a software system. Such elements are said to crosscut the system’s
structure. Approaches to AOP vary. Some approaches, such as
Composition Filters [1] and Adaptive Programming [29], support
the separation and composition of specific concern types. Other
approaches, such as Hyper/J [49] , AspectJ [50], and Caesar [32]
are of more general-purpose nature. Two key approaches to
general-purpose AOP are symmetric and asymmetric [18]. In
general, symmetric AOP, such as Multi-Dimensional Separation
of Concerns (MDSOC) [37] , which is the main subject of this
paper, is concerned with the identification and encapsulation of
discrete software units that together represent the implementation
of a particular concern. Symmetric approaches enable such units
to be composed together to form complete software systems. In
contrast, Asymmetric AOP implementations, such as AspectJ [50]
and derivative dynamic aspects systems such as AspectS [24],
largely consider the augmentation of a base program, through the
application of encapsulated crosscutting concerns at specified
points in a program’s static structure, or dynamic execution graph.

Scattered through the AOSD literature are claims that the same
ideas could be applied more widely than just to object-orientation
[13], and indeed more widely than software concerns [37]. To the
best of our knowledge, the present programme of work, alluded to
in [20-22] and detailed here, is the first to apply ideas from AOP
to music representation and composition.

In a similar way to software, problems of crosscutting appear to
exist, at various levels, in music [20-22]. It is common experience
that music is not simply a stream of random notes. Rather, when
listening to music, we rely, to a great extent, upon the perception
of repetition and variation of musical material [33]. Therefore, in
composing a piece of music, composers tend to utilise a finite set
of musical resources that are variously combined and transformed
to achieve a balance between novelty and repetition and form a
coherent musical whole [3, 27, 42-44, 50]. The processes of
musical composition can be usefully seen to involve the
multidimensional scattering and tangling of musical ideas and
transformational and combinatorial processes. At a level of
abstraction, the perceived “musical surface” can be viewed as the
result of the composer’s tacit weaving together of a “tangled web”
[10, 34] of musical structures and dimensions.

Music, as typically conceived of and represented, is
multidimensional in that it contains multiple types of information,
some of which are presented simultaneously. There are a number
of musical dimensions, such as the principal perceptual
dimensions of pitch, rhythm, loudness and timbre [31], which are
inherent in music. Other dimensions may overlay these
dimensions; harmony for example is a higher-level organisation of
pitch. Additionally, musical information may be transformed or
filtered to produce new, but related material. Transformation
therefore presents another dimension. A music composer is also
concerned with the ways in which musical structures are
combined to form new structures. Moreover, structures across
various simultaneously presented dimensions of musical concern
may form polyarchies (overlapping hierarchies) of arbitrary depth
[27].

Since the pioneering experiments of the 1950’s [23], researchers
and practitioners from diverse scientific and artistic communities
have explored the application of computers to a varied range of
musical activities. Composers have used and developed music-
based programming language extensions to assist in the processes
of musical composition [14, 36, 40]. The approach of each system
influences its underlying musical ontology and the design of its
musical representation. While computer systems generally
demand a formal and precise representation of the data upon
which they operate, the lack of consensus on what music is and
how it is structured contributes to a “challenging” array of
representational problems [9]. These problems are further
complicated by the multidimensional nature of musical
information and the requirement to represent task related
viewpoints of musical data across the tangle of relationships that
exist between various musical elements and dimensions.

While the composition of software systems, and musical works
are clearly different, we suggest, that there are strong similarities
between the kinds of crosscutting that occur in software structure,
and those that occur in the structuring of musical materials. We
believe, therefore, that it is worthwhile investigating ways in
which Aspect Oriented techniques may be usefully adapted and
applied to the computational representation of music for the
purposes of musical composition.

Our approach involves developing new computer mediated tools
to allow composers to deal more flexibly with cross-cutting
musical concerns. Our approach starts with the application of
AOSD ideas directly to musical materials and processes rather
than their conventional application to software units such as
methods and fields. This ultimately leads to musical tools in
which, motivated by the same reasons as AOSD, musical

materials are organised differently from existing musical
applications and are embodied within software that deals
explicitly with the separation and composition of concerns in the
application domain. Moreover, the end-user of such applications
interacts through the exposed “aspect-oriented” model.

In this paper, we describe a computational representation of music
that facilitates the organisation of discrete musical ideas and their
composition into higher-level units. In the first section we outline
our general representation of musical information, and describe
some of the ways in which new musical information may be
obtained through the composition of a finite set of musical
elements. In the second section we describe a domain-specific
approach to the symmetric organisation of this musical
representation, inspired by the work of Ossher et al [37]. The
contributions of this paper are in applying aspect-oriented
concepts to the concerns of an application domain, and exposing
AOP to the end-user. We also suggest composition history as a
way in which symmetric and asymmetric approaches may be
usefully combined.

2. REPRESENTATION OF MUSICAL
INFORMATION
In order to deal with crosscutting musical concerns, rather than
the classes, methods and attributes that are the primitive elements
of object-oriented programming concerns, we need to focus on
ways of representing and weaving fundamental musical building
blocks. In our representation, a Music Unit contains a single type
of musical information, such as pitch or rhythm. Music Units are
the lowest level of granularity that may be expressed using our
approach. Of course, reductio ad absurdam, a music unit could
contain a single pitch or rhythmic value, but we would argue that
composers think in terms of higher level composites of such
values, for example, a melodic line, cell, tone row, chord
progression or rhythmic pattern [5, 6, 38, 43, 46, 47]. Either case
can, without loss of generality, be represented using a sequence of
values, since a sequence may contain just a single value.
Consequently a music unit represents an ordered sequence of
ordered sequences of values. This enables simultaneous
structures, such as chords, to be expressed. While not all
simultaneous values may be meaningful, the approach does not
impose any constraints. Moreover, the semantics of the musical
values stored in a music unit are neither defined nor constrained
by the approach.

All the values within all sets in the ordered sequence relate to a
single musical type. For example, a Music Unit may contain a
sequence of pitches or chords, a rhythmic pattern, or a sequence
of musical transformations such as pitch transposition, rhythmic
augmentation etc. A music unit may be populated by an
algorithmic generative process, or from a data source, such as a
MIDI file.

In general, musical types are not restricted to a single
representation. For example, a music unit representing pitch may
contain a mixture of values that represent pitch in a variety of
ways, such as frequency, MIDI note number (an integer in the
range 0-127), symbolic note name (eg, ‘C4’) etc. [10, 40].
However, for simplicity, in this paper we use consistent
representations within a music unit type.

2.1 Composed Music Units
Music Units are not inherently associated with other Music Units.
A Composed Music Unit (CMU) is a container [19] that has been
formed by composing together particular Music Units. For
example, pitch and rhythm music units might be composed
together into a CMU that represents a melody. A Music Unit type
appears only once in each CMU. Since CMUs contain Music
Units, CMUs may be composed with other CMUs.

2.1.1 CMU Representation
Each CMU may be considered as containing a dictionary of
indexable ordered collections, each collection representing a
Music Unit. The dictionary key to each collection is the name of
the Music Unit type that it represents. Each element of the ordered
collection is accessible through an index (I) and, as described
above, each element contains a sequence of values (S).

In addition to musical information, a CMU may contain code
fragments that are used to transform the musical information in
some way. Transformations are represented as code fragments, in
the music unit type #transform. In order to help visualise the
representation, consider the following simple examples.

A populated CMU, containing only a #pitch music unit consisting
of the notes of a C major triad (the notes C,E and G), occurring in
sequence, is shown in Fig 1.

Type Sequence
#pitch I 1 2 3

S ‹C› ‹E› ‹G›

Figure 1. Pitches of C major triad in sequence

A populated CMU containing a single C Major triad, occurring
simultaneously, is shown in Table 2

Type Sequence
#pitch I 1

S ‹C,E,G›

Figure 2. Pitches of C major triad in unison

A populated CMU containing two music unit types, #pitch and
#rhythm, respectively consisting of the notes of a C major triad
occurring in sequence and a rhythmic pattern1 is shown in table 3.
Here numeric values in the #rhythm music unit type indicate the
duration of a pitch. Note that because music units are correlated
by index, a CMU represents a homorhythmic structure. In other
words, CMUs do not support multiple simultaneous rhythmic
figures.

1 The detailed representation of pitches and rhythm values is
outside the scope of this paper

Type Sequence
#pitch I 1 2 3

S ‹C› ‹E› ‹G›

#rhythm I 1 2 3
S ‹4› ‹8› ‹8›

Figure 3. Pitches of C major triad, with rhythmic
values, in sequence

2.2 Composing CMUs
CMUs may be composed together to produce new CMUs. Since
the term composition is heavily overloaded in the context of
software and music, we refer to the process of composing the
musical and programmatic data from selected CMUs into a single
CMU as weaving. Processes that perform weaving are termed
weavers.

2.2.1 Weaving
The weaving of CMUs is achieved by merging, according to the
logic implemented by a weaver, the ordered collections of
matching music unit types. Usually, music unit types are matched
by name. Thus, for example, the information from the pitch type
of one CMU is woven with the pitch information of another.
However, in principle, this matching may be overridden. For
example, a composer may wish a sequence of rhythmic values to
be interpreted as pitch values. In this case, the #pitch music unit of
one CMU might be woven with the #rhythm music unit of
another.

The weaving of CMUs may be specified by a composition
expression that specifies the CMUs to be woven, and the weavers
required to achieve the desired weave. Two of the simplest, and
possibly musically most useful, weavers are sequential and
parallel.

2.2.1.1 Sequential Weaving
Sequential weaving appends to the ordered collection of each of
the types being composed. Figure 4 shows two CMUs, CMU1 and
CMU2 and the result of the sequential composition of these
CMUs.

CMU1
Type Sequence
#pitch I 1 2

S ‹C› ‹D›

CMU2

Type Sequence
#pitch I 1 2

S ‹E› ‹F›

CMU1 and CMU2 composed in sequence
Type Sequence
#pitch I 1 2 3 4

S ‹C› ‹D› ‹E› ‹F›

Figure 4: Sequential Composition of CMUs

In sequential composition, all the music unit types that exist in the
CMUs being sequentially woven together are represented in the
resulting CMU. The following example shows the sequential
weaving of two CMUs, CMU1 and CMU2, and that the result is
actually of their parallel composition.

CMU1

Type Sequence
#pitch

I 1 2 3 4
S ‹C› ‹D› ‹E› ‹F›

CMU2

Type Sequence
#rhythm

I 1 2 3 4
S ‹1› ‹2› ‹2› ‹1›

CMU1 and CMU2 composed in sequence
Type Sequence
#pitch I 1 2 3 4

S ‹C› ‹D› ‹E› ‹F›

#rhythm

I 1 2 3 4
S ‹1› ‹2› ‹2› ‹1›

Figure 5: Sequential Composition of multiple types

The semantics of sequential weaving are that the set of music unit
types contained in the resultant CMU is the union of all music unit
types in the composed CMUs. Each music unit type in the
resultant CMU contains a concatenation of the sequences of the
same music unit type from the composed CMUs. These
relationships are shown formally in figure 6.

If where A and B are CMUs and the symbol ‘+’
represents sequential weaving, then the set of music unit types
T(C) in the resultant CMU C is the union of the music unit types
in A and B.

And each music unit is composed sequentially

where
s(c,t) is the sequence stored for music unit type t in CMU c.
^ indicates sequence concatenation.

Figure 6. Formal Expression of Sequential Weaving

There is no requirement for there to be the same number of
elements in the ordered collections of different music unit types.
An interesting result is, therefore, that the composition of a pitch
sequence with a rhythmic sequence may be achieved through
sequential composition rather than the possibly more intuitive
parallel composition.

2.2.1.2 Parallel Weaving
Parallel weaving correlates indexes between the collections of the
music units being composed, and adds to the set found at each
index. Figure 7 shows two CMUs, CMU1 and CMU2, and the
result of their parallel weaving.

CMU1
Type Sequence
#pitch

I 1 2 3
S ‹C› ‹E› ‹G›

CMU2

Type Sequence
#pitch

I 1 2 3
S ‹E› ‹G› ‹B›

CMU1 and CMU2 composed in parallel
Type Sequence
#pitch

I 1 2 3
S ‹C,E› ‹E,G› ‹G,B›

Figure 7. Parallel Composition of CMUs

The semantics of parallel weaving are that the resultant CMU
contains the union of the set of all music unit types in the
composed CMUs. Each resultant music unit collection contains an
indexed sequence of sets. Each such set contains the index-
correlated set of values from the composed music units. This is
shown formally in Figure 8.

If C = A // B where A and B are CMUs, and the symbol ‘//’
represents parallel composition, then the set of types T(C) in the
resultant CMU C is the union of the types in A and B.

And each type is composed in parallel such that

where
 T(c) is the set of type in CMU c
 s(c,t) is the sequence stored for music unit type t in CMU c.
 m(c,t,i) is the sequence stored for type music unit type t in CMU
c at sequence index i
 #s is the number of elements in the ordered sequence s.

Figure 8. Formalism for Parallel weaving

2.3 Applying Transformations
We have stated earlier that in addition to musical data, a CMU
may contain transformational processes. The value of a CMU is
obtained by executing each of the transformations found in its
#transform music unit to yield a new CMU that contains no
#transform type.

For example, a CMU containing a transformation and its
evaluation are shown in Figure 10.

BAC +=

)()()(BTATCT È=

),(^),(),(:)(xBsxAsxCsCTx =Î"

)()()(BTATCT È=

),,(),,(),,(
:)),(#),,(max(#1

),(

ixBmixAmixCm
xBsxAsii

CTx

È=
££"

Î"

CMU1

Type Sequence
#pitch I 1 2 3 4

S ‹C› ‹D› ‹E› ‹F›

#rhythm I 1 2 3 4
S ‹2› ‹4› ‹4› ‹2›

#transform I 1
S ‹R_AUGMENT (3)›

Evaluation of CMU1

Type Sequence
#pitch I 1 2 3 4

S ‹C› ‹D› ‹E› ‹F›

#rhythm I 1 2 3 4
S ‹6› ‹12› ‹12› ‹6›

Figure 10. Evaluation of a CMU

The execution of the R_AUGMENT(3) transformation, in this
example, causes the elements of the #rhythm music unit to be
lengthened (augmented) by tripling their value.

If the #transform collection contains multiple transformations,
then they are executed in sequence.

Transformations are not restricted to operating on a single type.
Rather, transformations have unrestricted access to the entire
CMU. Thus, for example, we might define a transform
DROP_ALTERNATE that removes every other entry from all the
music units in the CMU.

CMU1
Type Sequence
#pitch I 1 2 3 4

S ‹C› ‹D› ‹E› ‹F›

#rhythm I 1 2 3 4
S ‹2› ‹4› ‹4› ‹2›

#transform I 1
S ‹R_AUGMENT (3),

DROP_ALTERNATE›

Evaluation of CMU1

Type Sequence
#pitch I 1 3

S ‹C› ‹E›

#rhythm I 1 3
S ‹6› ‹12›

Figure 11. Evaluation of multiple transformations

Musical composition processes, such as Counterpoint, Fugue [39]
and Serial Composition [38], often involve musical
transformations, such as the reversal of pitch and / or rhythm
sequences. These kinds of transformation are easily implemented
using this approach.

If a CMU contains no #transform collection, or an empty
#transform collection, then the value of the CMU is the CMU
itself.

In the remainder of this paper, we will notate the evaluation of a
CMU C as @C.

2.4 Composing Units with Transformations
As discussed in 2.3, evaluation applies the transformations in the
#transform collection to the woven elements from its component
CMUs.

There are several possible results from composing CMUs that
contain transformations, depending upon whether or not the
CMUs are evaluated prior to composition.

To illustrate this, consider the composition of two CMUs, A and
B in which CMU A contains a pitch sequence PA and a
transformation TA and CMU B contains a pitch sequence PB and
a transformation TB. Figures 12-17 show variations on the
composition of CMU A and CMU B that can be achieved using
evaluation.

Type Sequence
#pitch I 1 2

S ‹PA› ‹PB›

#transform I 1 2
S ‹TA› ‹TB›

Figure 12. Sequential Composition A + B

Type Sequence
#pitch I 1 2

S ‹TB(TA(PA)› ‹TB(TA(PB))›

Figure 13. Value of @(A + B)

Type Sequence
#pitch I 1 2

S ‹TA(PA)› ‹PB›

#transform I 1
S ‹TB›

Figure 14. Composed CMU (@A + B)

Type Sequence
#pitch Index 1 2

Set ‹TB(TA(PA)› ‹TB(PB))›

Figure 15. Value of (@A + B)

Type Sequence
#pitch I 1 2

S ‹PA› ‹TB(PB)›

#transform I 1
S ‹TA›

Figure 16. Composed CMU (A + @B)

Type Sequence
#pitch Index 1 2

Set ‹ TA(PA)› ‹TA(TB(PB))›

Figure 17. Value of (A + @B)

Type Sequence
#pitch I 1 2

S ‹TA(PA)› ‹TB(PB)›

Figure 18. Composed CMU @A + @B

To help make these ideas more concrete, consider the example
implementations for the PA, PB, TA and TB units shown in
Figure 20. The TRANSPOSE transformation shift pitches by an
amount specified by its parameter. If the parameter is negative,
then the pitch is shifted down.

CMU Unit Implementation

A

PA

 TA

TRANSPOSE(3)

B

PB

 TB

TRANSPOSE(-7)

Figure 19. Example unit implementations.

As we discussed in the introduction, musical compositions often
use several musical ideas that are variously combined. Figure 20
illustrates the values of CMUs woven with the various weaving
expressions discussed above. Each CMU value represents a
particular variation that may be obtained from the composition of
the two CMUs A and B. Note however that various structural
characteristics of the results remain constant. We can see, for
instance, that a group three ascending pitches is always followed
by a group of four descending pitches, and that the ‘distance’
between pitches in each group remains constant.

Weaving
Expression

CMU Value

@(A + B)

@A + B

A + @B

@A + @B

Figure 20. Weaving results

3. ORGANISING MUSICAL MATERIALS
The foregoing has introduced the concept of Composed Music
Units as composable containers that aggregate musical and
transformational information. However, each CMU exists in
isolation; it is not possible to specify a relationship to any
particular musical dimension or concern. One of the main
difficulties in building music representations is that there is no
single, all-encompassing, musical ontology. Rather, particular
music systems impose their own ontology on the composer.

A similar problem exists in software engineering. In object-
oriented software development, for example, the unit of
decomposition, namely the Class, is imposed upon the software
developer as the fundamental structuring mechanism. Multi-
Dimensional Separation of Concerns [7] is an AOP technique that
enables software code fragments to be logically related. Software
systems may then be composed by reference to these logical
groupings. Thus the dominance of the class decomposition is
overcome.

Like Subject Oriented Programming (SOP) [16] and Mixins [35],
MDSOC, as applied to software, is concerned with the separation
and composition of program fragments [8]. Similarly, in our work,

we want to be able to compose fragments containing both
multidimensional musical data and algorithmic transformations
into higher-level components. Moreover, we want to be able to
organise the fragments and composed units without imposing any
particular musical ontology.

Non-musicians might wonder why musicians would want to do
this. Aspect Oriented Music Representation (AOMR) offers
composers capabilities not easily obtainable otherwise. These
capabilities lie particularly in rapidly carrying out and fine-tuning
wide-ranging musical "what if" experiments. Existing tools allow
composers to perform limited what-if experiments. By contrast,
AOMR allows musical what-if experiments to range over any
musical dimensions or concerns, and to cross-cut low level details
in one dimension with high level abstractions in another. Changes
can be applied over arbitrarily specifiable scopes - not just scopes
based on temporal intervals or voices. This is particularly useful,
because while music is experienced in time, it is generally not
composed in a left-to-right fashion. Composers seem to work with
different levels of abstraction simultaneously and with incomplete
ideas in various musical dimensions [48]. The notion of thematic
unity means that composers are often very economical about the
materials they use, but deeply concerned with exploring
interesting ways in which they can be combined and transformed.
Musicians also tend to problem seek rather than just problem
solve [25] which makes what-if experiments, whether tacit or
explicit, vital. AOMR may not be well suited for all musical tasks,
any more than AOP for all programming, but it offers advantages
not readily available otherwise.

We have therefore used MDSOC as a basis for our approach.
There are, however, some distinctive requirements of musical
composition. Firstly, while the ordering of composition in
software is sometimes irrelevant, it must be possible to exert
precise control over the ordering of composition of music units of
the corresponding types. Secondly, unlike the MDSOC approach
to software composition, (music) units may appear multiple times
within a composition. Finally, units may be transformed as part of
the composition.

In this section, we describe our extensions to MDSOC for use in
composing CMUs. We stress that it is not anticipated that the end-
user of our system will interact directly with the MDSOC-like
formalisms described in this section. Rather, the representation
described here will be used internally within our system. The user
will be presented with a UI that facilitates the construction of the
artefacts described.

3.1 Hyperspaces
Our approach to organising musical materials is based upon the
MDSOC approach to software composition [37]. In a similar way
to MDSOC, in our approach, discrete CMUs are organised into a
hyperspace. Each unit is named and associated with a dimension
and a concern in that dimension. The dimensions and their
concerns that are contained by the hyperspace are entirely
arbitrary, enabling the composer to classify each unit according to
their particular structuring preferences. Each unit implementation
appears only once in the hyperspace.

In the following examples, we use the Hyperspace shown in
Figure 21. For simplicity of exposition, each unit in this
hyperspace contains only a single type, though in general, this is
not the case.

Dimension Concern Unit Unit Implementation
Phrase1 Melody A #pitch

Phrase1 Rhythm R #rhythm

Phrase1 Melody B #pitch

Phrase2 Melody B #pitch

Figure 21. Example Hyperspace

3.2 Hyperslices
A hyperslice is an abstract slice through the hyperspace and is
expressed as set of regular expressions that may be used to match
dimension.concern.

For example, the hyperslice specification

 “.*”.”Melody”

matches all units from all dimensions that are in the “Melody”
concern. In our example hyperspace, this would yield three
CMUs; Phrase1.Melody.A, Phrase1.Melody.B and
Phrase2.Melody.B

3.3 Hypermodules
A hypermodule is a specification that is used to construct, through
weaving, a new CMU from units within the hyperspace.

For example, consider a CMU that represents the musical snippet
shown in Figure 22.

Figure 22. A musical snippet

By referring to the hyperspace in figure 21, such a CMU might be
composed by the following hypermodule specification

Musicunit: Intro1
Hyperslices: Phrase1.*
Relationships:
 mergeByName;

 Composition:
 “.*A” + “.*B” + ”.*R”;

This hypermodule specification composes a CMU called “Intro1”,
as specified in the Musicunit specification.
The Hyperslice specification defines the hyperslices from which
the CMUs to be composed will be drawn.

The Relationships specification specifies the general composition
strategy. The composition strategy describes how names will be
matched in the composition expression. The “mergeByName”
composition strategy used here indicates that units drawn from the

hyperslice are to correspond to those in the composition
expression if the names of the units match.

The Composition specification contains an expression that defines
how the CMUs are to be woven together. The expression contains
CMU names to be matched from the hyperslice and operators
representing weavers. For example, ‘+’ represents a sequential
weaver, while ‘//’ represents a parallel weaver.

In this example, the composition expression A + B + R is resolved
as follows:

The hyperslice specification includes only those units in the
Phrase1 dimension. Namely

 Phrase1.Melody.A
 Phrase1.Melody.B
and Phrase1.Rhythm.R.

Matching these against the composition expression

 “.*A” + “.*B” + ”.*R”

yields

Phrase1.Melody.A + Phrase1.Melody.B +
Phrase1.Rhythm.R

A second CMU may be composed using the following
hypermodule specification

Musicunit: Intro2
Hyperslices: Phrase1.*, Phrase2.*
Relationships:

 overrideByName;
 Composition:

 “.*A” + “.*B” + ”.*R”;

In this specification, the overrideByName relationship indicates
that in the event that multiple matches are found for a unit in the
hyperslice, then the last found unit should be used. The search
order is dictated by the order in which hyperslices are specified.

Consequently, the composition expression in this hypermodule is
resolved as follows:

The hyperslice includes all units in all concerns from the Phrase1
and Phrase2 dimensions, in this order. Namely
 Phrase1.Melody.A,
 Phrase1.Melody.B,
 Phrase1.Rhythm.R
and Phrase2.Melody.B.

 “*.A” can only be matched by Phrase1.Melody.A

“*.B” can be matched by Phrase1.Melody.A and
Phrase2.Melody.B

 “*.R” can be matched only by Phrase1.Rhythm.R

The ambiguity of matching “*.B” is resolved by the
overrideByName relationship. This relationship indicates that the
last found match is used. In this case, the match is
Phrase2.Melody.B.

Thus the composition expression is resolved to:

Phrase1.Melody.A + Phrase2.Melody.B +
Phrase1.Rhythm.R

Since we currently assume that the semantics of the CMU are
such that the dimensions of each note, in this case pitch and
rhythm, are obtained by correlating indices across all composed
dimensions, then this composition yields the musical fragment
shown in Figure 23.

Figure 23

3.4 Expressing Relationships Between CMUs
In musical composition, often a particular musical idea may be
transformed and the transformed version used in composing new
musical materials. This results in the formation of so-called
evolutionary chains [7]. Supporting this type of composition
requires the ability to define new CMUs and add them to the
hyperspace. Thus the hyperspace is a dynamic structure that
evolves with the musical composition. In particular, the composer
may not necessarily separate out all the dimensions and concerns
ab initio, but may subsequently wish to remodularise a unit by
separating its concerns as the musical work evolves.

For example, by inspection, we can see that Phrase2.Melody.B is
actually a transposition, 3 semitones up, of Phrase1.Melody.B

Rather than defining Phrase2.Melody.B in terms of absolute
musical data, we can define a CMU that expresses this
relationship.

In this example, a transformation unit Transpose has been added
to the hyperspace in the Transforms.Pitch dimension and concern.

The Transpose transformation unit takes as an argument the
number of semitones to transpose.

Musicunit: Phrase2.Melody.B
Hyperslices: Phrase1.Melody,
Transforms.Pitch
Relationships: MergeByName;
Composition: Transpose(3) + B;

The composition expression is resolved to:
Transforms.Pitch.Transpose(3) +
Phrase1.Melody.B
By providing a fully qualified music unit specification
(Phrase2.Melody.B), the newly composed unit may be added to
the hyperspace in its own dimension and concern.

3.5 Multiple Matches
The mergeByName relationship has the possibility to return
multiple matching results.

For example, the hyperslice specification

 Phrase1.Melody, Phrase2.Melody

results in two matches for the unit B, namely Phrase1.Melody.B
and Phrase2.Melody.B.

By default, the mergeByName relationship causes matching
units to be woven in sequence, in the order in which they are
found.

Thus, given the hyperslice specification shown above, the
composition expression Transpose(3) + B would be resolved to

Transpose(3) + (Phrase1.Melody.B + Phrase2.Melody.B)

If the default sequential weaving is not required, then the
composition expression must explicitly state the desired weaving
such that all ambiguities are resolved.

3.6 Other Weavers
Unlike the composition of software, through an approach such as
MDSOC, the ways in which musical information may be
composed together are open-ended. The two basic weavers,
sequential and parallel, described above are useful in musical
composition. However, other weavers might be required to
perform specific weaving operations, such as the appoggiatura
composition described in [11]. Briefly, an appoggiatura is a “time-
taking” musical “ornament” O that is associated with, and
prefixes, a main musical structure T. If T is placed in sequence,
following a structure S, then the appoggiatura O associated with T
must coincide with S if T is to immediately follow S.
Consequently, unlike simple sequential weaving, an appoggiatura-
style sequential weaving of two units must modify the first unit to
include the appoggiatura of the second. Unlike sequential and
parallel weaving, an important requirement of this kind weaving is
that the weaver itself knows how to interpret the information
contained within the music units being composed.

3.7 Composition History
The symmetric organisation and composition of musical materials
described above is partial; it is not expected that entire
compositions will be structured using this approach. Rather,
CMUs will be assembled in time through an approach, called
MusicSpace, which incorporates an analog of Asymmetric AOP.
Full description of this approach is outside the scope of the
present paper, but briefly, MusicSpace supports temporal
joinpoints. At each joinpoint it is possible, through pointcut
expressions, to query the content of the musical information that
is to be rendered at that point in time.

As observed in [4], composed units have no recollection of their
components once they are composed. Therefore, in order to
support richly expressive pointcuts within MusicSpace, the
mechanism through which CMUs are composed produces, for
each element of each sequence of each collection, a structure that
identifies the dimension, concern and unit name of all units that
have created or affected the element. Thus it is possible, for
example, to define pointcut expressions that identify all pitches
that have been generated from a particular unit, even though the
transformational processes through which the note has passed may
make such an analysis difficult, or impossible, from the musical
surface alone. This, we claim, has applications, not only to
musical composition, but also to analytical and pedagogical music
systems.

4. RELATED WORK
There are many approaches to, and implementations of, AOP [1,
18, 24, 26, 29, 30, 32, 37, 49, 50] and, as noted in [41], different
types of crosscutting concern may be better handled by one
approach over another. Our work, as reported in this paper
considers the static composition of units from components
representing different concerns, and as such, our primary
influence is MDSOC [37]. However, rather than applying the
ideas to classes, methods and attributes, we have applied them to
domain concepts; musical materials, musical processes and
transformations and domain-specific forms of weaving. Thus, at
the detailed level, our work borrows ideas from the music
representation literature [2, 9, 45].

Approaches to musical representation are diverse. Some
approaches, such as [12, 14, 28] support the separation of
concerns for specific domains of musical interest, such as
harmony, or stylistic concerns. However our research considers
more general musical applications. The CHARM representation
[45] abstracts musical events from structure, enabling various
structures to be superimposed over a single set of events.
However, CHARM considers an event as a composite of musical
dimensions, such as pitch and rhythm. The composition
expressions that we have described are related to those of Music
Structures [2]; a declarative representation that aims to model
temporal and hierarchical musical relationships. However, Music
Structures lacks a systematic repository for organising discrete
musical elements. Consequently, there is a tight coupling between
the composition specification and particular musical element
instances.

We have suggested music composition tools could benefit greatly
from both symmetric and asymmetric approaches, This
requirement for multiple AOP approaches in software is supported
by the Concern Manipulation Environment (CME) [17-19].

Finally, our work is in the spirit of Universal Composition [15],
with each composed unit being built up of units that are stated
only once, and whose composition is parameterised through a
composition specification.

5. CONCLUSIONS
Since the inception of AOSD, there have been largely
unsupported claims that the same ideas could be applied more
generally than to object-orientation [13], and more widely than to
software development [37]. To the best of our knowledge, the
present programme of work is the first to investigate this claim in
detail, using music representation and composition as a vehicle. A
key step in our approach is to apply AOSD ideas directly to
musical materials and processes rather than their conventional
application to software units such as methods and fields.

Our approach enables the composition of multiple musical
dimensions into higher-level composites, and for these composites
to be themselves made available for further composition through
the manipulation of a dynamic hyperspace. Composition
expressions permit the definition of abstract orderings between the
units being composed and enable the use of multiple weaving
strategies within a given composition. The use of hyperslices and
name matching abstracts the composition expression from the
particular units being composed, while preserving structural
relationships with respect to the hyperslice. Moreover, the
weaving processes themselves are abstracted and extensible.

While this paper has described only the symmetric composition of
musical information, we assert that both symmetric and
asymmetric approaches are required for a full musical
representation. We have proposed the use of a history of
symmetric composition, which is made available for query at
asymmetric-style joinpoints, as way to link both approaches

Thus, given the demanding multidimensional, temporally
sequenced, polyarchic nature of music and music representation,
applying MDSOC to music representation problems has
demanded extensions of MDSOC. These extension may be to
some degree more generally applicable, and exportable back to
MDSOC in its original domain. In summary, our approach
extends MDSOC by adding a dynamic hyperspace and allowing
users to write detailed composition expressions using an
extensible set of compositors. In addition we introduced the
concept of composition history, enabling symmetric composition
to be related to joinpoints, demonstrating a way to combine
symmetric and asymmetric aspect approaches at a high level of
granularity.

5. REFERENCES
1. Aksit, M. and Tekinerdogan, B. Solving the modelling

problems of object-oriented languages by composing
multiple aspects using composition filters Aspect
Oriented Programming Workshop, ECOOP, 1998.

2. Balaban, M. Music Structures: Interleaving the
Temporal and Hierarchical Aspects in Music. in
Understanding Music with AI, MIT Press, 1992.

3. Belkin, A. A Practical Guide to Musical Composition.
http://www.musique.umontreal.ca/personnel/Belkin/bk/,
1995-1999.

4. Chitchyan, R. and Sommerville, I., AOP and Reflection
for Dynamic Hyperslices. in ECOOP’04 Workshop on
Reflection,AOP, and Meta-Data for Software Evolution,
(Oslo, 2004), 29-35.

5. Cook, N. A Guide to Musical Analysis. Oxford
University Press, 1987.

6. Cope, D. A Computer Model of Music Composition. in
Machine Models of Music, MIT Press, 1993.

7. Crochemore, M., Iliopoulos, C.S. and Pinzon, Y.J.
Computing Evolutionary Chains in Musical Sequences.
The Electronic Journal of Combinatorics, 8 (2).

8. Czarnecki, K. and Eisenecker, U.W. Generative
Programming. Methods, Tools and Applications.
Addison Wesley, 2000.

9. Dannenberg, R.B. Music Representations Issues,
Techniques and Systems. Computer Music Journal, 17
(3). 20-30.

10. Dannenberg, R.B., Desain, P. and Honing, H.
Programming Language Design for Music. in De Poli,
G., Picialli, A., Pope, S.T. and Roads, C. eds. Musical
Signal Processing., Swets & Zeitlinger., 1997, 271-315.

11. Desain, P. and Honing, H. Towards a Calculus for
Expressive Timing in Music. Computers in Music
Research, 3. 42-120.

12. Ebcioglu, K. An Expert System for Harmonizing
Chorales in the Style of J.S. Bach”. in Understanding
Music with AI, Perspectives on Music Congnition, MIT
Press, 1992.

13. Filman, R. and Friedman, D.P. Aspect-Oriented
Programming is Quantification and Obliviousness
Workshop on Advanced Separation of Concerns,
OOPSLA, Minneapolis, 2000.

14. Fry, C. Flavors Band: A Language for Specifying
Musical Style. in Pope, S.T. ed. The Well-Tempered
Object: Musical Applications of Object-Oriented
Software Technology, MIT Press, 1991.

15. Gedenryd, H. Universal Composition - An Optimal
Scheme for Structuring (Software) Systems.
www.arcavia.com/cache/UCpaper.pdf. 2001.

16. Harrison, W. and Ossher, H. Subject-oriented
programming: a critique of pure objects Proceedings of
the eighth annual conference on Object-oriented
programming systems, languages, and applications,
ACM Press, Washington, D.C., United States, 1993.

17. Harrison, W., Ossher, H., Sutton, S. and Tarr, P.
Concern Modeling in the Concern Manipulation
Environment. RC23344 (W0409-136). IBM. 2004.

18. Harrison, W., Ossher, H. and Tarr, P. Asymmetrically
vs. Symmetrically Organized Paradigms for Software
Composition. RC22685 (W0212-147). IBM. 2002.

19. Harrison, W., Ossher, H. and Tarr, P. Concepts for
Describing Composition of Software Artifacts. RC23345
(W0409-140). IBM Research Division. 2004.

20. Hill, P., Holland, S. and Laney, R. Applying Aspect
Oriented Programming to Music Computing
Proceedings Sound & Music Computing Conference
(SMC04), Paris, France, 2004.

21. Hill, P., Holland, S. and Laney, R. Using Aspects to
Help Composers. TR 2003/21. Department of
Computing, The Open University. 2003.

22. Hill, P., Holland, S. and Laney, R. Using Dynamic
Aspects in Music Composition Dynamic Aspects
Workshop, AOSD'04 International Conference on
Aspect-Oriented Software Development, Lancaster UK,
2004, 89-97.

23. Hiller, L. and Isaacson, L. Musical Composition with a
High-Speed Digital Computer. in Schwanauer, S.M. and
Levitt, D.A. eds. Machine Models of Music, MIT Press,
1958.

24. Hirschfeld, R. Aspect-Oriented Programming with
AspectS. DoCoMo Communications Laboratories
Europe. 2002.

25. Holland, S. Artificial Intelligence in Music Education:
A Critical Review. in Miranda, E.R. ed. Readings in
Music and Artificial Intelligence, Harwood Academic
Publishers, 2000, 239-274.

26. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M. and Irwin, J. Aspect-
Oriented Programming European Conference on
Object-Oriented Programming, Springer-Verlag, 1997.

27. Lerdahl, F. and Jackendoff, R. A Generative Theory of
Tonal Music. MIT Press, 1983.

28. Levitt, D.A. Musical Dialects and Language.
29. Lieberherr, K.J. Adaptive Object-Oriented Software:

The Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996.

30. Lieberherr, K.J., Silva-Lepe, I. and Xiao, C. Adaptive
Object-Oriented Programming using Graph
Customisation. College of Computer Science,
Northeastern University. 1994.

31. Loy, G. and Abbott, C. Programming Languages for
Computer Music Synthesis, Performance and
Composition. ACM Computing Surveys, 17 No 2.

32. Mezini, M. and Ostermann, K. Conquering Aspects
with Caesar. Proceedings AOSD, 2003.

33. Minsky, M. Music, Mind and Meaning. in Schwanauer,
S.M. and Levitt, D.A. eds. Machine Models of Music,
MIT Press, 1993.

34. Miranda, E.R. Composing Music with Computers. Focal
Press, 2001.

35. Moon, D. Object Oriented Programming with Flavors.
ACM SIGPLAN Notices, Conference proceedings on
Object-oriented programming systems, languages and
applications, 21 (11).

36. Oppenheim, D.V. DMix - A Multi Faceted Environment
for Composing and Performing Computer Music: its
Design, Philosophy, and Implementation. Center for
Computer Research in Music and Acoustics (CCRMA).
1992.

37. Ossher, H. and Tarr, P. Multi-Dimensional Separation
of Concerns in Hyperspace. RC
21452(96717)16APR99. IBM T.J.Watson Research
Center. 1999.

38. Perle, G. Serial Composition and Atonality. University
of California Press, 1991.

39. Piston, W. Counterpoint. W.W. Norton & Company,
1947.

40. Pope, S.T. Introduction to MODE: The Musical Object
Development Environment. in Pope, S.T. ed. The Well-
Tempered Object: Musical Applications of Object-
Oriented Software Technology, MIT Press, 1991.

41. Rashid, A. A Hybrid Approach to Separation of
Concerns: The Story of SADES. Lecture Notes in
Computer Science, 2192. 231.

42. Russo, W., Ainis, J. and Stevenson, D. Composing
Music A New Approach. University of Chicago Press,
1980.

43. Schoenberg, A. (ed.), Fundamentals of Music
Composition. Faber and Faber, 1967.

44. Sloboda, J.A. The Musical Mind. The Cognitive
Psychology of Music. Oxford University Press., 1985.

45. Smaill, A., Wiggins, G.A. and Miranda, E.R. Music
Representation - between the musician and the
computer. in Smiths, A., Smaill, A. and Wiggins, G.
eds. Music Education - An Artificial Intelligence
Perspective, Springer-Verlag, London, 1994, 108-122.

46. Smoliar, S. Process Structuring and Music Theory. in
Schwanauer, S.M. and Levitt, D.A. eds. Machine
Models of Music, MIT Press, 1993.

47. Spiegel, L. Manipulations of Musical Patterns.
http://retiary.org/ls/writings/musical_manip.html. 1981.

48. Spiegel, L. Old Fashioned Composing from the Inside
Out: On Sounding Un-Digital on the Compositional
Level 8th Symposium on Small Computers in the Arts,
1988.

49. Tarr, P. and Ossher, H. Hyper/JTM User and Installation
Manual. IBM Research. 2000.

50. Xerox. The AspectJ Programming Guide. Xerox
Corporation. 1998-2002.

