
Register Aware Scheduling for Distributed Cache Clustered Architecture∗

Zhong Wang Xiaobo Sharon Hu Edwin H.-M. Sha

University of Notre Dame University of Notre Dame University of Texas at Dallas
Notre Dame IN 46556 Notre Dame IN 46556 Richardson TX 75083

e-mail: zwang1@cse.nd.edu shu@cse.nd.edu edsha@utdallas.edu

Abstract— Increasing wire delays have become a serious prob-
lem for sophisticated VLSI designs. Clustered architecture of-
fers a promising alternative to alleviate the problem. In the clus-
tered architecture, the cache, register file and function units are
all partitioned into clusters such that short CPU cycle time can
be achieved. A key challenge is the arrangement of inter-cluster
communication. In this paper, we present a novel algorithm for
scheduling inter-cluster communication operations. Our algo-
rithm achieves better register resource utilization than the previ-
ous methods. By judiciously putting the selected spilled variables
into their corresponding consumer’s local cache, the costly cross-
cache transfer is minimized. Therefore, the distributed caches
are used more efficiently and the register constraint can be satis-
fied without compromising the schedule performance. The exper-
iments shows that our technique outperforms the existing cluster-
oriented schedulers.

I. I NTRODUCTION

Many high performance processors are designed with wide
issue widths to exploit extensively instruction level parallelism
(ILP). With the increased capability of overlapping operations
comes the increased need to supply register bandwidth. Even-
tually the access time to and from a central register file be-
comes the bottleneck of the cycle time of the processor. It is
very difficult to solve many problems associated with a large
centralized register file, such as long access time, excess sil-
icon area for address decoders, complicated bypassing logic,
etc. Hence, a natural solution is to deploy a clustered architec-
ture.

By distributing the registers, function units and cache into
different clusters, register files can be located near their data
consumers and producers, such that both access time and
power are saved. The performance can also be greatly im-
proved due to the reduced clock cycle time. Clustered archi-
tectures are gaining popularity, e.g., the architecture of Texas
Instruments’sTMS320C6000, Equator’sMAP1000, Analog’s
TigerShareand HPLx all adopt multiple clusters.

A major concern in clustered architecture is scheduling. In
the clustered architecture, the inter-cluster MOVE operation
is required whenever a non-local (not in the current cluster)
variable is accessed. These inter-cluster data transfers may
lead to undesirable increases in schedule latency if the pre-
vious centralized architecture scheduling algorithm is directly
applied. An inefficient schedule often ruins the benefit ob-
tained from the reduced processor cycle time. Therefore, an
efficient scheduling technique which can cope with multiple
clusters is very crucial to the success of such architecture.

∗This work is supported in part by NSF under grant numbers MIP-9701416
and CCR02-08992.

In the context of multimedia and digital signal processing
(DSP) applications, there exist a large number of loops. Loop
schedule latency can significantly influence the whole system
performance. Thus high quality software pipelining algorithms
targeting VLIW clustered architecture are indispensable for
such applications. It has been shown that rotation scheduling
is one of the best software pipelining techniques in the cen-
tralized architecture [4]. Nevertheless, the traditional rotation
algorithm does not consider the register constraint or cluster
configuration, and thus limits the usage of this algorithm. This
paper proposes an extended rotation scheduling algorithm to
optimize the loop performance in the clustered architecture,
where both register file and data cache are distributed among
clusters. The proposed algorithm can efficiently explore the
parallelism at the level of distributed function units and reg-
isters. It can handle arbitrary clustered datapath configuration
and, along with schedule latency minimization, can effectively
handle the register constraints.

One important aspect in clustered architecture is the con-
sideration of inter-cluster communication. Previous meth-
ods [19, 1, 20] treat communication BUS as a type of hard-
ware resource and inter-cluster communication operation as
same as other operations during scheduling. Indeed, MOVE
operation is different from other operations in that it has a sig-
nificant impact on the register pressure of both provider and
consumer clusters, while other operation only affect the local
register pressure. Therefore, we collect all the MOVE opera-
tions (used to move operands between clusters) and schedule
them at the later stage of the scheduler. With all the global
information gathered, the MOVE operations can be scheduled
in a more efficient way such that the register resource can be
better utilized. The algorithm to schedule MOVE operations
is presented and the register usage improvement can be seen
from the experimental results.

Another important aspect in clustered architecture is the
distributed cache. Distributed caches allow multiple clusters
to perform memory operations simultaneously while a single
cache only provides very limited parallel memory operations.
In the contemporary architecture, the cache coherence is guar-
anteed by the hardware mechanism [7]. When the register re-
source is restrictive, some operands are needed to be spilled out
to the local cache. The cross-cluster cache transfer will happen
when the spilled operands are required by other clusters. The
transfer between caches is rather costly which may degrade the
system performance. Thus, cache allocation problem arises
in order to reduce such costly cross-cluster transfer. None of
the previous work has the consideration to associate the spill
code insertion with distributed caches. By judiciously putting
the spilled operand in the consumer’s cluster local cache, we
can substitute many cross-cache transfers with efficient cross-
cluster register transfers and minimize the number of cross-
cluster cache transfer. Hence the register constraint can be



satisfied without significantly increasing the schedule latency.
Compared to the traditional schemes [20] which depend only
on the hardware protocol to maintain the cache consistency, it
is an obvious improvement to reduce the cross-cache transfer
with the help of compiler.

The rest of paper is organized as follows. Section 2 reviews
the necessary background knowledge and related previous re-
search. Section 3 presents the framework of our scheduling
algorithm and a detailed description. The experimental results
and comparison are discussed in Section 4, and Section 5 con-
cludes the paper.

II. BACKGROUND

Our technique can be applied to the uniform nested loop
which exists in a lot of DSP and multimedia applications.
Moreover, more general linear index loops can be uniformized
first, then use our technique to optimize the schedule. Detailed
discussion on uniformization can be found in [15] and [21].

In a uniform nested loop, aniteration is the execution of
the loop body once. It can be represented by a graph called
data flow graph(DFG). A DFG is a directed weighted graph
G = (V,E,d, t) whereV is the set of operation nodes,E is the
edge set which defines the precedence relations among nodes
in V, d(e) is the data dependence for an edgee∈ E andt(v) is
the computation time of a nodev∈V.

We briefly review the rotation scheduling algorithm, which
will be referred to later. Therotation scheduling algorithm[4]
is used to get a static compact schedule for one iteration. The
inputs to the rotation scheduling algorithm are a DFG and its
corresponding initial schedule. Rotation scheduling reduces
the schedule length (the number of control steps needed to ex-
ecute one iteration of the schedule) of the initial schedule by
exploiting the concurrency across iterations. It accomplishes
this by shifting the scope of the iteration in the initial schedule
down so that nodes from different iterations appear in the same
iteration scope. Intuitively speaking, this procedure is analo-
gous to rotating tasks from the top of each iteration down to
the bottom. Furthermore, this procedure is equivalent to re-
timing those tasks (nodes in the DFG) in which one delay can
be deleted from all incoming edges and added to all outgo-
ing edges, resulting in an intermediate retimed graph. Once
the parallelism is revealed, the algorithm reassigns the rotated
nodes to the earlier available positions so as to reduce the
schedule length.

A. Architecture model

In this paper, we use the architecture model similar to that
of HP Lx [7], as shown in Figure 1. It is a multi-cluster ar-
chitecture. Each cluster is composed of a mix of register files
and function units (each cluster may have a different config-
uration). Inter-cluster communication, achieved by explicit
register-to-register move, is compiler-controlled and invisible
to the programmer. To increase the parallelism and efficiency,
each cluster has its own local data cache, thereby multiple
data caches exist in the architecture. To establish main mem-
ory coherency in the presence of multiple memory access, A
MESI-like (Modified, Exclusive, Shared, Invalid, which are
four states that a cache line may be in) synchronization mech-
anism [3] can be used for multiple independent caches. This
protocol is completely transparent to the ISA (Instruction Set
Architecture). Both the coherence and the bus arbitration are
managed by the hardware.

Regarding memory accesses, a load/store issued by a cluster
first tries its local data cache. If the data is found, the access
is satisfied with minimum latency. Otherwise, the access is
solved by the MESI-like synchronization protocol. It will take
much longer time to access data from other data cache (cross-
cache transfer) or main memory.

Fig. 1. Lx architecture model

B. Previous work

Previous research work related to cluster scheduling can be
classified into two categories: scheduling with computational
DAGs and scheduling with cyclic code. In [6], Desoli de-
veloped a two-phase binding algorithm called Partial Compo-
nent Clustering. Ozeret al [13] presented a greedy binding
/scheduling algorithm, which binds and schedules the ordered
operations to a priority list of clusters in one step. The priority
of the cluster is determined by several heuristics. Lapinskii and
Jacome [11] proposed an algorithm whose initial schedule ex-
plores tradeoffs between in-cluster operation serialization and
delays associated with inter-cluster data movement. An iter-
ative scheme can be applied on this initial schedule to com-
pact the schedule further. In [10], a code generation frame-
work for Clustered ILP processors, which combines cluster
assignment, register allocation and instruction scheduling, is
presented. They use modified list scheduling algorithm to do
cluster assignment and instruction scheduling. An on-the-fly
register allocation is integrated into this algorithm. The above
algorithms study scheduling of DAGs, and cannot be directly
applied to the cyclic code. They can not take advantage of the
inter-iteration data dependences, thereby lost many optimality.

Software pipelining [9] is efficient in scheduling cyclic code
through moving operations among the iterations such that a
shorter Initiation Interval (schedule length) can be achieved.
Much work on software pipelining has been done in the cen-
tralized architecture, such as Modulo scheduling [17, 16], ro-
tation scheduling [4] and retiming scheduling [2]. Here we
briefly review algorithms that target clustered architecture.
Sanchezet al [19] proposed the modulo scheduling algorithm
which performs the cluster assignment and instruction schedul-
ing in a single pass and considers possible improvements by
loop unrolling. Akturan and Jacome [1] developed the CAL-
IBeR framework for clustered embedded VLIW processors.
The framework tries to optimize the schedule length as well as
minimize the register usage and code size. It is the state-of-art
cluster scheduling algorithm without considering distributed



cache. Another work dealing with clustered scheduling, which
assumes a centralized cache, is presented in [23]. It takes into
account of spill code insertion, which is the major improve-
ment compared to previous work. One important difference
between centralized and distributed cache lies in the cache al-
location consideration, which is a key issue to reduce the cross-
cache communication to improve the performance. To our best
knowledge, the technique in [20] is the only cluster schedul-
ing approach which considers both the distributed register file
and caches. It uses Cache Miss Equations [8] to predict the
influence of allocating memory operations and uses modulo
scheduling to derive the compact schedule. The detail compar-
ison in the experimental section show that our algorithm can
achieve a better result.

III. SCHEDULING ALGORITHM

The problem we are attacking in this paper is defined as fol-
lows:
Problem: Given a DFG and a clustered datapath configura-
tion, find a schedule that minimizes the schedule length and
satisfies the register constraint. Insert spill codes if necessary
to reduce the register requirement.

From this definition, we can see that the solution to this
problem can handle all major aspects of the clustered architec-
ture, i.e., cluster configuration, register constraint, inter-cluster
communication and distributed caches.

A. Scheduler framework

The framework of the scheduler is shown in Figure 2. The
input includes the data flow graph and architecture specifica-
tions, i.e., clustered datapath configuration, cache configura-
tion and register constraint. The output is a minimized feasible
schedule for the given system.

Input

Output

Operation Partitioning

Force−directed List Scheduling

Rotation Scheduling

MOVE Operation Scheduling

Spill Code Insertion

Data Padding Pattern Calculation

Fig. 2. The scheduling algorithm framework

The scheduler first partitions the DFG nodes into differ-
ent clusters to achieve an efficient resource utilization. Then
an initial schedule can be generated by the force-directed list
scheduling module [14].1 This initial schedule can be opti-
mized by repeatedly applying rotation and partial reschedul-
ing. Steps 2 and 3 are repeated several times until a minimal
schedule length is reached.

1Any other scheduling technique, e.g, other kinds of list scheduling, can be used
in this framework. We choose force-directed list scheduling because it can handle the
resource constraint and operation concurrency effectively.

In the clustered architecture, rotation is performed on the ba-
sis of each cluster. That is to say, an operation is only resched-
uled to another available control step in the same cluster.
Only allowing operation rotation in the same cluster avoids the
change of the inter-cluster move operations. With such a ro-
tation scheme, the assignment of variables to clusters does not
vary with rotation, thereby the communication workload on the
communication bus remains constant with rotation. However,
the variable lifetime may be changed by rotation.

With the compact schedule derived from the above steps, we
can gather the global information of inter-cluster communica-
tion and iterate over the fourth and fifth steps to schedule the
communication with the consideration of register constraint.

With the instruction rotation and spill code insertion, many
operands from originally different iterations may be brought
into one iteration and the data locality is increased. However,
the likelihood of conflicts in the cache increases even if the
cache capacity is enough. This problem may leads to the loss
of data locality and the schedule improvement. Therefore, data
padding [18] is applied in our framework as the last step in or-
der to overcome this problem. By finding the suitable pad pat-
tern, we can eliminate such cache conflict misses. The readers
are refered to [18, 22] for the details.

B. Operation partitioning

As the first step, the DFG nodes are partitioned into differ-
ent clusters. The objective is to minimize the communication
cost and balance the load of function units in each cluster. A
modified k-way partition algorithm is used in our technique for
this purpose.

An important difference between scheduling acyclic and
cyclic codes is reflected in this step’s consideration. In liter-
ature, the k-way partition algorithm is seldom used in clus-
tered scheduling because it does not consider the influence of
the critical path on the schedule length. It is difficult to as-
sociate a good partition with a compact schedule length when
scheduling acyclic code [6]. However, in cyclic code schedul-
ing, most critical paths can be broken up by a suitable retim-
ing. Hence a k-way partition algorithm can be used effectively
in the first step to form a good initial partition. The following
points should be kept in mind when implementing the opera-
tion partitioning step.

Point 1: Any edge between two nodes corresponds to an commu-
nication cost of 1 regardless of its weight, since the weight
is only related to timing information.

Point 2: The balanced cluster load means that the load is evenly
distributed to each cluster for every operation type, while
the minimized communication cost is found from the
global view.

Point 3: Strongly connected component (SCC) with small overall
latency should be treated specially such that they are put
into the same cluster with a high probability.

We use an example to help illustrate the last two points. As-
sume an architecture with two clusters, each of which has an
ALU and a multiplication unit. For a DFG which has 2 multi-
plication (cost 3) nodes and 6 addition (cost 1) nodes, a good
partition will allocate 3 additions and 1 multiplication to each
cluster. A partition, with 2 multiplications in one cluster while
6 additions in the other cluster, is not acceptable though the
cluster cost is balanced. As of the combination of 1 multipli-
cation and 3 additions, it should be decided by taking into con-
sideration all the communication cost between any two nodes



to minimize the communication cost. For point 3, a SCC of a
DFG is a subgraph such that for every pair of nodesni andnj
belonging to this SCC, there exists a pathni → nj andnj → ni .
A SCC with small overall latency always exerts an extra re-
striction for the schedule. Retiming cannot change the overall
latency of such a cycle. If a critical path exists in this kind
of SCC, it cannot be broken up by retiming. Therefore, it is
beneficial to put such SCC in one cluster.

K-way partition is an NP-complete problem and many
heuristics algorithms exist. We modified the algorithm in [12]
due to its easy implementation and fast speed. Point 2 is han-
dled by artificially assigning special costs to different kinds
of operations. We take care of Point 3 by a post-processing
step after the DFG is partitioned. Although the k-way parti-
tion algorithm we used is fairly simple, it is good enough to
generate a partition from which an efficient schedule can be
derived. However, with a better k-way partition heuristic algo-
rithm which can take the above three points into account, some
improvements of the final schedule may be expected.

C. Move operation scheduling

When an operation requests a variable in another cluster,
an inter-cluster MOVE operation is needed. The schedule of
MOVE operations influences the maximum register require-
ment significantly. Through a better MOVE operation sched-
ule, register loads may be distributed to clusters more evenly
such that the overall register requirement is reduced. By con-
sidering the MOVE operation scheduling after rotation, we
have a comprehensive view of the global register usage and
can use it to achieve more efficient register usage. The global
MOVE scheduling algorithm is shown in Algorithm 1.

Algorithm 1 MOVE operation scheduling algorithm
Input: MOVE operations in listL and the schedule after rotation.
Output: MOVE operation schedule which can generate the efficient register usage

1. Derive the register usage map for cluster part.
2. SortL in the increasing order of lifetime.
WHILE (L is not empty)do

Pop out the headh of L
FOREACH (control stepi in h’s lifetime) do

CalculateF(i). Push it into listForce list(h)
ENDFOR
SortForce list(h) in the increasing order.
Tentatively scheduleh in the control stepCon corresponding to the least force in
Force list(h).
WHILE (BUS confliction exist betweenh and a previously scheduledOLD) do

if OLD’s lifetime ∈ h’s lifetime then
Tentatively scheduleh in the control stepCon′ with the second least force.

else
Selecth as the instruction with the less second least force of two instructions,
and schedule it to the corresponding control step.

end if
ENDWHILE
Update the move part register usage map

ENDWHILE

The register requirement of a schedule can be derived by a
register usage map. In our algorithm, we divide the register
usage map into two parts,cluster partfor all except MOVE
operations, andmove partfor only MOVE operations. In the
move part, the lifetime of a MOVE operation starts from the
last control step when the variable to be moved is alive in the
producer cluster and ends at the first control step when the vari-
able is needed in the consumer cluster.2 The MOVE operation
can be scheduled at any control step belonging to its lifetime.
Scheduling a MOVE at different control steps will have differ-
ent impact on the register usage map of the move part. For ex-

2In the case of two MOVE operations deal with the same moving variable but have
different control steps,a andb in the consumer cluster, the MOVE operation with the later
control step can be omitted, and the span of lifetimeb−a (assumingb ≥ a) is counted
into the cluster part register usage map.

ample, scheduling a MOVE operation whose lifetime is 1→ 5
at control step 2 will add 1 to the move part register usage map
of the producer and consumer clusters at control steps 1,2 and
2,3,4,5, respectively, while scheduling it at control step 4 will
add 1 at control steps 1,2,3,4 and 4,5, respectively. If the
maximum register requirement of thecluster partoccurs at the
control step 3 in the consumer cluster, we prefer to schedul-
ing this MOVE at control step 4 since it will not increase the
overall register requirement.

Suppose the largest register requirement in thecluster part
is MAX. If a MOVE operation is scheduled at a certain step
Con, a new move part register usage map can be derived. In
each control stepi, we find the maximum register requirement
valueMi for all clusters at this control step from the overall
register usage map. Theforce of scheduling MOVE atCon
at this control step is defined asF(Con)i = Mi −MAX, and
the force of scheduling MOVE at Conis defined asF(Con),
which is the largest ofF(Con)i . We always try to schedule the
MOVE operation to a control stepb which has the least force
F(b), whereb belong to the MOVE operation’s lifetime. The
objective is to leave more scheduling space for other MOVE
instructions.

In the algorithm, all the MOVE instructions are considered
in the order of increasing lifetime. The observation behind
this considering order is that the instruction with larger life-
time has more scheduling freedom. Because of the BUS con-
straint, a MOVE instruction may not be able to be scheduled
at its optimal control step. One of two conflict instructions
will be scheduled at a suboptimal control step. The selection
of such an instruction depends on the lifetime relationship and
the comparison of the suboptimal force values. It is easy to
verify that the time complexity of this algorithm isO(m2n2),
wherem is the schedule length andn is the number of MOVE
operations.

D. Spill code insertion

If the register requirement still exceeds the constraint after
the first four steps in Figure 5, spill codes need to be inserted
to satisfy the register constraint. Spill code insertion has been
considered in many papers [23, 5]. None of them have dealt
with distributed cache. On the other hand, we believe spill code
insertion should be applied to theentire schedule instead of the
partial schedule as in [23]. With such scheme, we can easily
identify those operands with longest lifetime, whose spill can
reduce register pressure to the largest extent.

In the clustered architecture with distributed cache, the con-
sideration of spill code insertion includes two aspects: which
variable is spilled (to free more registers) and which cache
should the spilled variable be put in (to reduce the costly cross-
cache transfer).

Spill code is added through a pair of memory operations:
writing back to the local cache and loading it later. Each clus-
ter has its own local caches, which can be accessed much faster
than main memory and remote caches. To minimize the cross-
cache transfer, a spilled variable is always written back to the
local cache of itsconsumer, i.e., the variable has been moved
to the desired cluster before spilled out to the cache. By this
way, the costly cross-cache transfer is replaced with cross-
cluster register MOVE, which has much higher efficiency.

If a cluster demands more registers than available, several
steps are carried out to get rid of the violation.

1 Find a variable with the longest lifetime and its spilling
can help reduce the register pressure.



2 If the variable’s lifetime is longer than the overall cost of
writing back and loading from the local cache, the corre-
sponding spill code is inserted.

3 Otherwise, find the control step with the largest regis-
ter requirement. Distribute the operations in this control
step into two control steps to reduce the register pressure,
thereby increase the schedule length by one control step.
Because of the change of schedule length, the MOVE op-
erations are rescheduled (correspondes to the iterative ex-
ecution of steps 4 and 5 in Figure 2.

4 The above steps are repeated until all the register con-
straints are satisfied.

These steps are effective in reducing the register pressure
since the general register constraint violation is often caused
by long variable lifetimes that span several iterations. It is ad-
vantageous to swap them out of the register file to decrease
the register usage. If no such long lifetime variable exists and
the register limit is still surpassed, the register resource is re-
ally tight. The only way to satisfy the constraint is to increase
the schedule length to provide more room for scheduling, such
that the register pressure is alleviated by reducing the number
of living variables at the same time.

IV. EXPERIMENTAL RESULTS

The effectiveness of our technique is illustrated by running
a set of benchmarks from [1]. We compared our results with
CALiBeR in [1] and Modulo scheduling in [19]. The experi-
mental results for the latter two methods are extracted from [1].
In order to make a fair comparison, we use the same set of
benchmarks with exactly the same DFGs, and the same clus-
ter configuration as [1]. Table 1 lists the benchmarks and the
clustered datapath configuration. In this table, the correspond-
ing benchmarks from left to right areLattice Filter, 2 Cascaded
Biquad Filter, Avenhous Filter, 4 Cascaded FIR Filter, AR Fil-
ter, 4 Cascaded Biquad Filter, DCT-DIT. The number of nodes
in the DFG is listed after the benchmark’s name. The clus-
tered datapath is specified in the form of number of ALU (a),
multiplication (m) and load/store (x) units.

LF(C1)
LF(C2)

2CBF(C1)
2CBF(c)

AF(C1)
AF(C2)

AF(C3)
4CFF(C1)

4CFF(C2)
4CCF(C3)

AR(C1)
AR(C2)

AR(C3)
4CBF(C1)

4CBF(C2)
4CBF(C3)

DCT(C1)
DCT(C2)

DCT(C3)
0

1

2

3

4

5

6

7

8

9

Schedule Length

Rotation

CALiBeR

Module

Centra

LF(C1)
LF(C2)

2CBF(C1)
2CBF(C2)

AF(C1)
AF(C2)

AF(C3)
4CFF(C1)

4CFF(C2)
4CCF(C3)

AR(C1)
AR(C2)

AR(C3)
4CBF(C1)

4CBF(C2)
4CBF(C3)

DCT(C1)
DCT(C2)

DCT(C3)
0

2.5

5

7.5

10

12.5

15

17.5

20

Register Requirement

Rotation

CALiBeR

Module

Fig. 3. Schedule length and register requirement without register constraint

In our experiment, the minimal schedules for all benchmarks
can be found in one minute on a SUN Ultra-2 SPARC worksta-
tion, which demonstrates the time efficiency of our technique.
In order to evaluate the efficiency of the scheduler itself, we

show the experimental results in Figure 3. The schedule length
for 4 different schedulers are listed. They areregister aware
scheduling(rotation),CALiBeRfrom [1] (CALiBeR), modulo
scheduling in [19] (modulo), and the RS-FDRA in [2] (Cen-
tra). RS-FDRA is a centralized architecture software pipelin-
ing scheduling algorithm. It is used to provide a criteria to
show how well the other three schedulers can perform in clus-
tered architecture. It has been shown in [2] that this algorithm
and rotation scheduling can always achieve the best results in
the centralized architecture. In a clustered architecture, af-
ter the function units are partitioned into clusters, the sched-
ule length cannot get better due to the extra cost introduced
by inter-cluster communication. Therefore, the results from
RS-FDRA can be regarded as the lower bound for other algo-
rithms. CALiBeR is selected for comparison because it is the
start-of-art software-pipelining algorithm in clustered architec-
ture. The modulo scheduling in [19] is selected for comparison
because it is the baseline scheduling algorithm of [20]. In Fig-
ure 3, the result of register requirement for RS-FDRA is not
shown, because it is meaningless to compare the register re-
quirement for different architectures.

LF(C1)
LF(C2)

4CFF(C1)
4CFF(C2)

4CCF(C3)
4CBF(C1)

4CBF(C2)
4CBF(C3)

DCT(C1)
DCT(C2)

0

1

2

3

4

5

6

7

8

9

Schedule Length

NRC

RC

LF(C1)
LF(C2)

4CFF(C1)
4CFF(C2)

4CCF(C3)
4CBF(C1)

4CBF(C2)
4CBF(C3)

DCT(C1)
DCT(C2)

0

1

2

3

4

5

6

7

8

9

10

11

12

Register Requirement

NRC

RC

Fig. 4. The schedule length and register requirement if register resource is restricted. NRC and RC represent the
performance without register constraint and with register constraint, respectively.

If the register resource is not restricted, we can see from Fig-
ure 3 that all three clustered scheduling algorithms are quite
effective in that they can reach the lower bound in most cases.
However, from the pointer view of register cost, as shown in
Figure 3, our technique requires the least number of registers
than the other two schedulers. The register usage comparison
demonstrates that the global MOVE operation schedule can in-
deed reduce register cost.

When the register resource is restrictive, spill codes have
to be inserted to swap some variables out of the register file.
CALiBeR does not consider the register constraint, thereby
cannot obtain a schedule under the rather restrictive register
constraint. Through judiciously inserting spill code, our tech-
nique can reduce the register requirement by 1/3 -1/2 with al-
most the same schedule length, as shown in Figure 4. More-
over, our technique can still get a reasonable result if the reg-
ister constraint becomes tighter. In such a case, the schedule
length is expected to become longer to modify the register re-
quirement distribution and accommodate the swapping time
between the register file and local cache.

As we mentioned before, the algorithm in [20] is the only
existing algorithm which can handle the distributed cache. It



LF (16) 2CBF (16) AF (20) 4CFF (32) AR (34) 4CBF (32) DCT (48)
C1 C2 C1 C2 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3
1a 2a 1a 2a 1a 1a 2a 2a 2a 3a 2a 3a 3a 1a 2a 4a 2a 3a 3a

Cluster1 1m 2m 1m 2m 1m 1m 2m 2m 2m 3m 2m 3m 4m 1m 2m 4m 1m 1m 1m
1x 1x 1x 2x 2x 2x

1a 2a 1a 2a 1a 1a 2a 2a 2a 3a 2a 3a 3a 1a 2a 4a 2a 3a 3a
Cluster2 1m 2m 1m 2m 1m 1m 2m 2m 2m 3m 2m 3m 4m 1m 2m 4m 1m 1m 1m

1x 1x 1x 2x 2x 2x
1a 2a 3a 3a

Cluster3 1m 2m 1m 1m
1x

BUS 1 1 1 1 1 2 2 1 2 1 2 2 3 1 1 1 2 3 5

TABLE I
BENCHMARKS AND THE CLUSTERED CONFIGURATION

takes the distributed cache into consideration by integrating a
Cache Miss Equation (CME) [8] solver into the baseline algo-
rithm [19]. Solving CME is NP-complete. By deploying some
heuristics, they try to solve CME and find a schedule to reduce
the cache conflict misses. Because the baseline algorithm does
not consider the cache conflict, the schedule length obtained
from the baseline algorithm can be regarded as the lower bound
of their algorithm. Although this CME solver can improve the
cache performance to some extents, it cannot eliminate cache
conflict misses. The existence of such misses may severely
compromise the schedule. As shown in Figure 3, our scheduler
outperforms the baseline algorithm in in both schedule length
and register requirement. Moreover in our algorithm, cache
conflict misses are eliminated through data padding. There-
fore, We believe that our scheduler is better than the algorithm
in [20].

V. CONCLUSION

We have presented a register aware scheduling framework
suitable for compilers targeting clustered VLIW processors
with distributed cache. A novel global inter-cluster commu-
nication scheduling algorithm is proposed to efficiently utilize
the register resource. To satisfy the restrictive register con-
straint, spill codes are wisely inserted. The proposed algorithm
can handle arbitrary clustered configuration and, along with la-
tency minimization, can effectively handle register constraint.
The experimental results demonstrate that our technique is su-
perior to the existing algorithms.

REFERENCES

[1] C. Akturan and M. Jacome. Caliber: a software pipelining algorithm
for clustered embedded vliw processors. InProceeding of IEEE/ACM
International Conference on Computer Aided Design, pages 112–118,
2001.

[2] C. Akturan and M. Jacome. Rs-fdra: A register sensitive software
pipelining algorithm for embedded vliw processors. InProceeding of
9th International Symposium on Hardware/Software Codesign, April
2001.

[3] J. Archibald and J. L. Baer. Cache coherence protocols: Evaluation
using a multiprocessor simulation model.ACM Transactions on Com-
puter Systems, 4(4), November 1986.

[4] L.-F. Chao, A. LaPaugh, and E. H.-M. Sha. Rotation scheduling: A loop
pipelining algorithm. IEEE Transactions on Computer Aided Design,
16(3), March 1997.

[5] A. K. Dani, V. J. Ramanan, and R. Govindarajan. Register-sensitive
software pipelining. InProc. Merged 12th Intl. Parallel Processing and
9th Intl. Symposium on Parallel and Distributed System, April 1998.

[6] G. Desoli. Instruction assignment for clustered vliw dsp compilers: A
new approach. Technical Report HPL-98-13, Hewlett-Packard Com-
pany, 1998.

[7] P. Faraboschi, G. Brown, and J. A. Fisher. Lx: A technology platform
for customizable vliw embedded processing. InProc. of 27th Annual In-
ternational Symposium on Computer Architecture, Vancouver, Canada,
June 2000.

[8] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: an an-
alytical representation of cache misses. InProceeding of International
Conference on Supercomputing, pages 317–324, July 1997.

[9] R. Jones and V. Allan. Software pipelining: An evaluation of enhanced
pipelining. InProc. International workshop on Microprogramming and
Microarchitecture, pages 82–92, Nov 1991.

[10] K. Kailas, K. Ebcioğlu, and A. Agrawala. Cars: A new code generation
framework for clustered ilp processors. InProc. International Sym-
posium on High Performance Computer Architecture, pages 133–143,
Monterrey, Mexico, Jan 2001.

[11] V. Lapinskii and G. Jacome, M.F.and de Veciana. High-quality oper-
ation binding for clustered vliw datapaths. InProceeding of Design
Automation Conference, pages 702–707, 2001.

[12] C. Lee, M. Kim, and C. I. Park. An efficient k-way graph partitioning
algorithm for task allocation in parallel computing systems. InProceed-
ing of the First International Conference on Systems Integration, pages
748–751, 1990.

[13] E. Ozer, S. Banerjia, , and T. Conte. Unified assign and schedule: A new
approach to scheduling for clustered register file microarchitectures. In
Proceeding of the 31th Annual Intern. Symposium on Microarchitec-
tures,, pages 308–315, 1998.

[14] P. G. Paulin and J. P. Knight. Force directed scheduling for the behav-
ioral synthesis of asics.IEEE Trans. on Computer Aided Design, 8(1),
June 1989.

[15] P. Quinton and V. V. Dongen. The mapping of linear recurrence equa-
tions on regular arrays.Journal of VLSI Signal Processing, 1, 1998.

[16] B. R. Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. InProc. of the 27th Annual International Symposium
on Microarchitecture, pages 63–74, Nov 1994.

[17] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an eas-
ily schedulable horizontal architecture for high performance scientific
computing. InProc. 14th Annual Workshop on Microprogramming,
pages 183–198, 1981.

[18] G. Rivera and C. W. Tseng. Data transformation for eliminating conflict
misses. InProceedings of the ACM SIGPLAN’98 conference on Pro-
gramming Language Design and Implementation, pages 38–49, 1998.

[19] J. Sanchez and A. Gonzalez. Instruction scheduling for clustered vliw
architectures. InProceeding of the 13th International Symposium on
System Synthesis, pages 41–46, 2000.

[20] J. Sanchez and A. Gonzalez. Modulo scheduling for a fully-distributed
clustered vliw architecture. InProceeding of 33rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 124–133, 2000.

[21] W. Shang, E. Hodzic, and Z. Chen. On uniformization of affine depen-
dence algorithms.IEEE Transactions on Computers, 45(7), 1996.

[22] Z. Wang, E. H.-M. Sha, and X. Hu. Combining partitioning and data
padding for scheduling multiple loop nests. InProc. International Con-
ference on Compilers, Architectures and Synthesis for Embedded Sys-
tems, pages 67–75, Atlanta, GA, Nov 2001.

[23] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Modulo schedul-
ing with integrated register spilling for clustered vliw architecture. In
Proceedings of the 34th International Symposium on Microarchitecture,
pages 160–169, Austin, Texas, December 2001.


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




