Register Aware Scheduling for Distributed Cache Clustered Architecturé

Zhong Wang

University of Notre Dame
Notre Dame IN 46556
e-mail: zwangl@cse.nd.edu

Abstract— Increasing wire delays have become a serious prob-
lem for sophisticated VLSI designs. Clustered architecture of-
fers a promising alternative to alleviate the problem. In the clus-
tered architecture, the cache, register file and function units are
all partitioned into clusters such that short CPU cycle time can
be achieved. A key challenge is the arrangement of inter-cluster
communication. In this paper, we present a novel algorithm for
scheduling inter-cluster communication operations. Our algo-
rithm achieves better register resource utilization than the previ-
ous methods. By judiciously putting the selected spilled variables
into their corresponding consumer’s local cache, the costly cross-
cache transfer is minimized. Therefore, the distributed caches
are used more efficiently and the register constraint can be satis-
fied without compromising the schedule performance. The exper-
iments shows that our technique outperforms the existing cluster-
oriented schedulers.

|I. INTRODUCTION

Xiaobo Sharon Hu

University of Notre Dame
Notre Dame IN 46556
shu@cse.nd.edu

Edwin H.-M. Sha

University of Texas at Dallas
Richardson TX 75083
edsha@utdallas.edu

In the context of multimedia and digital signal processing
(DSP) applications, there exist a large number of loops. Loop
schedule latency can significantly influence the whole system
performance. Thus high quality software pipelining algorithms
targeting VLIW clustered architecture are indispensable for
such applications. It has been shown that rotation scheduling
is one of the best software pipelining techniques in the cen-
tralized architecture [4]. Nevertheless, the traditional rotation
algorithm does not consider the register constraint or cluster
configuration, and thus limits the usage of this algorithm. This
paper proposes an extended rotation scheduling algorithm to
optimize the loop performance in the clustered architecture,
where both register file and data cache are distributed among
clusters. The proposed algorithm can efficiently explore the
parallelism at the level of distributed function units and reg-
isters. It can handle arbitrary clustered datapath configuration
and, along with schedule latency minimization, can effectively
handle the register constraints.

One important aspect in clustered architecture is the con-
sideration of inter-cluster communication. Previous meth-

Many high performance processors are designed with widéls [19, 1, 20] treat communication BUS as a type of hard-
issue widths to exploit extensively instruction level parallelisnyvare resource and inter-cluster communication operation as
(ILP). With the increased capability of overlapping operation§ame as other operations during scheduling. Indeed, MOVE
comes the increased need to supply register bandwidth. Evéfperation is different from other operations in that it has a sig-
tually the access time to and from a central register file bélficant impact on the register pressure of both provider and
comes the bottleneck of the cycle time of the processor. It onsumer clusters, while other operation only affect the local
very difficult to solve many problems associated with a largeegister pressure. Therefore, we collect all the MOVE opera-
centralized register file, such as long access time, excess &§ns (used to move operands between clusters) and schedule

icon area for address decoders, complicated bypassing lodf€

m at the later stage of the scheduler. With all the global

etc. Hence, a natural solution is to deploy a clustered architégformation gathered, the MOVE operations can be scheduled

ture.

By distributing the registers, function units and cache int
different clusters, register files can be located near their d

consumers and producers, such that both access time

in a more efficient way such that the register resource can be
getter utilized. The algorithm to schedule MOVE operations
gpresented and the register usage improvement can be seen
fyn the experimental results.

power are saved. The performance can also be greatly im-Another important aspect in clustered architecture is the
proved due to the reduced clock cycle time. Clustered archiistributed cache. Distributed caches allow multiple clusters
tectures are gaining popularity, e.g., the architecture of Textss perform memory operations simultaneously while a single

Instruments’sT MS320C6000, Equator'sviAP1000, Analog’s
TigerShareand HPLx all adopt multiple clusters.
A major concern in clustered architecture is scheduling.

cache only provides very limited parallel memory operations.
In the contemporary architecture, the cache coherence is guar-

|anteed by the hardware mechanism [7]. When the register re-

the clustered architecture, the inter-cluster MOVE operatigiPurce is restrictive, some operands are needed to be spilled out
is required whenever a non-local (not in the current clustefp the local cache. The cross-cluster cache transfer will happen
variable is accessed. These inter-cluster data transfers n¥#yen the spilled operands are required by other clusters. The

lead to undesirable increases in schedule latency if the pitgansfer between caches is rather costly which may degrade the
vious centralized architecture scheduling algorithm is directl§ystem performance. Thus, cache allocation problem arises
applied. An inefficient schedule often ruins the benefit obin order to reduce such costly cross-cluster transfer. None of

tained from the reduced processor cycle time. Therefore, &€ previous work has the consideration to associate the spill

efficient scheduling technique which can cope with multipl€ode insertion with distributed caches. By judiciously putting

clusters is very crucial to the success of such architecture. the spilled operand in the consumer’s cluster local cache, we
can substitute many cross-cache transfers with efficient cross-

“This work is supported in part by NSF under grant numbers MIP-9701418lUster register transfers and minimize the number of cross-
and CCR02-08992. cluster cache transfer. Hence the register constraint can be

satisfied without significantly increasing the schedule latency. Regarding memory accesses, a load/store issued by a cluster
Compared to the traditional schemes [20] which depend onfirst tries its local data cache. If the data is found, the access
on the hardware protocol to maintain the cache consistencyijst satisfied with minimum latency. Otherwise, the access is
is an obvious improvement to reduce the cross-cache trans$aived by the MESI-like synchronization protocol. It will take
with the help of compiler. much longer time to access data from other data cache (cross-
The rest of paper is organized as follows. Section 2 reviewsiche transfer) or main memory.
the necessary background knowledge and related previous re-
search. Section 3 presents the framework of our scheduling _
algorithm and a detailed description. The experimental results e e
and comparison are discussed in Section 4, and Section 5 con: IR

cludes the paper. Inaruction —
feten |:"> Clugter 0 N
and 03)
Il. BACKGROUND Espansion b
o = M(;:w?ry
Our technique can be applied to the uniform nested loop | eexuy cluster e || controler
which exists in a lot of DSP and multimedia applications. T U g
Moreover, more general linear index loops can be uniformized : Inter
first, then use our technique to optimize the schedule. Detailed : e
discussion on uniformization can be found in [15] and [21]. W[o =)
In a uniform nested loop, aiteration is the execution of ICache I:,'} Cluster N
the loop body once. It can be represented by a graph called =
data flow graph(DFG). A DFG is a directed weighted graph < >
G = (V,E,d,t) whereV is the set of operation nodes,is the

edge set which defines the precedence relations among nodes
inV, d(e) is the data dependence for an eégeE andt(v) is Fig. 1 Lxarchitecture model
the computation time of a nodec V.
We briefly review the rotation scheduling algorithm, which .
will be referred to later. Theotation scheduling algorithnj4] ~ B- Previous work

is used to get a static compact schedule for one iteration. Thepo\iqs research work related to cluster scheduling can be
Inputs to the rotation scheduling algorithm are a DFG and itgssifieq into two categories: scheduling with computational
corresponding initial schedule. Rotation scheduling reduc Gs and scheduling with cyclic code. In [6], Desoli de-
the schedule length (the number of control steps needed to S&loped a two-phase binding algorithm called Partial Compo-

ecute one iteration of the schedule) of the initial schedule By; ¢ Clustering. Ozeet al [13] presented a greedy binding
exploiting the concurrency across iterations. It accomplishqg i

this by shifting the scope of the iteration in the initial schedulg cheduling algorithm, which binds and schedules the ordered

. ! i , erations to a priority list of clusters in one step. The priority
down so that nodes from different iterations appear in the Sa”agthe cluster is determined by several heuristics. Lapinskii and

iteration scope. Intuitively speaking, this procedure is analog, -5 me 111] proposed an algorithm whose initial schedule ex-
tghoui t(t)t r(r:;tatlggrttﬁslﬁri frromtrt]?e t(r)p ogerac? |tera%\|/or|1 ?\?vtvn rgores tradeoffs between in-cluster operation serialization and
i e Oﬂ? - Uk e ge,_ trS] pDolgg ure rs] ehqu ag I 0 'delays associated with inter-cluster data movement. An iter-
iming those tasks (nodes in the) in which one delay calfi e’ scheme can be applied on this initial schedule to com-

be deleted from all incoming edges and added to all OUtg&%ct the schedule further. In [10], a code generation frame-

ing edges, resulting in an intermediate retimed graph. Ong&, .y for Clustered ILP processors, which combines cluster
the parallelism is revealed, the algorithm reassigns the rotat y

des 10 th i bl i ¢ d i signment, register allocation and instruction scheduling, is
gghggulg Ier?gt%ar Ier availableé posilions So as 10 reduce Weasented. They use modified list scheduling algorithm to do

cluster assignment and instruction scheduling. An on-the-fly
register allocation is integrated into this algorithm. The above
A. Architecture model algorithms study scheduling of DAGs, and cannot be directly
applied to the cyclic code. They can not take advantage of the
In this paper, we use the architecture model similar to thatter-iteration data dependences, thereby lost many optimality.
of HP Lx [7], as shown in Figure 1. It is a multi-cluster ar- Software pipelining [9] is efficient in scheduling cyclic code
chitecture. Each cluster is composed of a mix of register fildhrough moving operations among the iterations such that a
and function units (each cluster may have a different confighorter Initiation Interval (schedule length) can be achieved.
uration). Inter-cluster communication, achieved by expliciMuch work on software pipelining has been done in the cen-
register-to-register move, is compiler-controlled and invisibléralized architecture, such as Modulo scheduling [17, 16], ro-
to the programmer. To increase the parallelism and efficiendgtion scheduling [4] and retiming scheduling [2]. Here we
each cluster has its own local data cache, thereby multipteiefly review algorithms that target clustered architecture.
data caches exist in the architecture. To establish main me®anchezt al[19] proposed the modulo scheduling algorithm
ory coherency in the presence of multiple memory access, which performs the cluster assignment and instruction schedul-
MESI-like (Modified, Exclusive, Shared, Invalid, which areing in a single pass and considers possible improvements by
four states that a cache line may be in) synchronization mecleop unrolling. Akturan and Jacome [1] developed the CAL-
anism [3] can be used for multiple independent caches. ThHBeR framework for clustered embedded VLIW processors.
protocol is completely transparent to the ISA (Instruction Sethe framework tries to optimize the schedule length as well as
Architecture). Both the coherence and the bus arbitration anginimize the register usage and code size. It is the state-of-art
managed by the hardware. cluster scheduling algorithm without considering distributed

cache. Another work dealing with clustered scheduling, which In the clustered architecture, rotation is performed on the ba-
assumes a centralized cache, is presented in [23]. It takes ists of each cluster. That is to say, an operation is only resched-
account of spill code insertion, which is the major improveuled to another available control step in the same cluster.
ment compared to previous work. One important differenc®nly allowing operation rotation in the same cluster avoids the
between centralized and distributed cache lies in the cache alvange of the inter-cluster move operations. With such a ro-
location consideration, which is a key issue to reduce the crogation scheme, the assignment of variables to clusters does not
cache communication to improve the performance. To our besry with rotation, thereby the communication workload on the
knowledge, the technique in [20] is the only cluster scheduEommunication bus remains constant with rotation. However,
ing approach which considers both the distributed register fikhe variable lifetime may be changed by rotation.
and caches. It uses Cache Miss Equations [8] to predict theWith the compact schedule derived from the above steps, we
influence of allocating memory operations and uses modut@an gather the global information of inter-cluster communica-
scheduling to derive the compact schedule. The detail comp#éien and iterate over the fourth and fifth steps to schedule the
ison in the experimental section show that our algorithm catommunication with the consideration of register constraint.
achieve a better result. With the instruction rotation and spill code insertion, many
operands from originally different iterations may be brought
into one iteration and the data locality is increased. However,
the likelihood of conflicts in the cache increases even if the
cache capacity is enough. This problem may leads to the loss
data locality and the schedule improvement. Therefore, data
dding [18] is applied in our framework as the last step in or-
r to overcome this problem. By finding the suitable pad pat-

[1l. SCHEDULING ALGORITHM

The problem we are attacking in this paper is defined as f
lows:
Problem: Given a DFG and a clustered datapath configura—Of
tion, find a schedule that minimizes the schedule length a
satisfies the register constraint. Insert spill codes if necessa o = .
to reduce the register requirement. rn, we can eliminate such cache conflict misses. The readers
From this definition, we can see that the solution to thig"€ refered to [18, 22] for the details.
problem can handle all major aspects of the clustered architec-
ture, i.e., cluster configuration, register constraint, inter-clust@. Operation partitioning

communication and distributed caches. As the first step, the DFG nodes are partitioned into differ-
ent clusters. The objective is to minimize the communication
A. Scheduler framework cost and balance the load of function units in each cluster. A

The framework of the scheduler is shown in Figure 2. Thg;)sdgﬁgg;g_ay partition algorithm is used in our technique for

input includes the data flow graph and architecture specifica- An important difference between scheduling acyclic and
tions, i.e., clustered datapath configuration, cache configuide|ic codes is reflected in this step’s consideration. In liter-
tion and register constraint. The output is a minimized feasiblg .o the k-way partition algorithm is seldom used in clus-

schedule for the given system. tered scheduling because it does not consider the influence of
the critical path on the schedule length. It is difficult to as-
@ Input sociate a good partition with a compact schedule length when
[Operation Partitioning] scheduling acyclic code [6]. However, in cyclic code schedul-
@ ing, most critical paths can be broken up by a suitable retim-
ing. Hence a k-way partition algorithm can be used effectively
[Force~directed List Scheduling] in the first step to form a good initial partition. The following
w ﬂ points should be kept in mind when implementing the opera-

] tion partitioning step.

'

Rotation Scheduling
@ Point 1: Any edge between two nodes corresponds to an commu-
nication cost of 1 regardless of its weight, since the weight
is only related to timing information.

[MOVE Operation Scheduling]

J T

Spill Code Insertion

Point 2: The balanced cluster load means that the load is evenly
distributed to each cluster for every operation type, while

@ : the minimized communication cost is found from the
Data Padding Pattern Calculat@n gIobaI view.
@ oupdt Point 3: Strongly connected component (SCC) with small overall
. he scheduling alaorithm f " latency should be treated specially such that they are put
Fig. 2. The scheduling algorithm framewor into the same cluster with a high probability.

The scheduler first partitions the DFG nodes into differ- We use an example to help illustrate the last two points. As-
ent clusters to achieve an efficient resource utilization. Thesume an architecture with two clusters, each of which has an
an initial schedule can be generated by the force-directed liat.U and a multiplication unit. For a DFG which has 2 multi-
scheduling module [14]. This initial schedule can be opti- plication (cost 3) nodes and 6 addition (cost 1) nodes, a good
mized by repeatedly applying rotation and partial reschedupartition will allocate 3 additions and 1 multiplication to each
ing. Steps 2 and 3 are repeated several times until a mininguster. A partition, with 2 multiplications in one cluster while
schedule length is reached. 6 additions in the other cluster, is not acceptable though the
n . _ _ _ _ cluster cost is balanced. As of the combination of 1 multipli-
Any other scheduling technique, e.g, other kinds of list scheduling, can be us??tion and 3 additions, it should be decided by taking into con-

in this framework. We choose force-directed list scheduling because it can handle fl : . .
resource constraint and operation concurrency effectively. sideration all the communication cost between any two nodes

to minimize the communication cost. For point 3, a SCC of ample, scheduling a MOVE operation whose lifetime is»5
DFG is a subgraph such that for every pair of nogesndn; at control step 2 will add 1 to the move part register usage map
belonging to this SCC, there exists a path- n; andn; — n;. of the producer and consumer clusters at control stepand

A SCC with small overall latency always exerts an extra re2,3,4,5, respectively, while scheduling it at control step 4 will
striction for the schedule. Retiming cannot change the overaltld 1 at control steps,2,3,4 and 45, respectively. If the
latency of such a cycle. If a critical path exists in this kindnaximum register requirement of thieister partoccurs at the

of SCC, it cannot be broken up by retiming. Therefore, it i€ontrol step 3 in the consumer cluster, we prefer to schedul-
beneficial to put such SCC in one cluster. ing this MOVE at control step 4 since it will not increase the

K-way partition is an NP-complete problem and manyverall register requirement.
heuristics algorithms exist. We modified the algorithmin [12] Suppose the largest register requirement indlister part
due to its easy implementation and fast speed. Point 2 is hag-MAX. If a MOVE operation is scheduled at a certain step
dled by artificially assigning special costs to different kind€on, a new move part register usage map can be derived. In
of operations. We take care of Point 3 by a post-processimgch control step we find the maximum register requirement
step after the DFG is partitioned. Although the k-way partivalue M; for all clusters at this control step from the overall
tion algorithm we used is fairly simple, it is good enough taegister usage map. THerce of scheduling MOVE atCon
generate a partition from which an efficient schedule can l& this control step is defined &Con); = M;j — MAX, and
derived. However, with a better k-way partition heuristic algothe force of scheduling MOVE at Cas defined ag=(Con),
rithm which can take the above three points into account, somshich is the largest df (Con);. We always try to schedule the
improvements of the final schedule may be expected. MOVE operation to a control stepwhich has the least force
F(b), whereb belong to the MOVE operation’s lifetime. The
objective is to leave more scheduling space for other MOVE
instructions.

When an operation requests a variable in another cluster,In the algorithm, all the MOVE instructions are considered
an inter-cluster MOVE operation is needed. The schedule df the order of increasing lifetime. The observation behind
MOVE operations influences the maximum register requirdhis considering order is that the instruction with larger life-
ment significantly. Through a better MOVE operation schedime has more scheduling freedom. Because of the BUS con-
ule, register loads may be distributed to clusters more eversjraint, a MOVE instruction may not be able to be scheduled
such that the overall register requirement is reduced. By coat its optimal control step. One of two conflict instructions
sidering the MOVE operation scheduling after rotation, wavill be scheduled at a suboptimal control step. The selection
have a comprehensive view of the global register usage aatisuch an instruction depends on the lifetime relationship and
can use it to achieve more efficient register usage. The glodhe comparison of the suboptimal force values. It is easy to

C. Move operation scheduling

MOVE scheduling algorithm is shown in Algorithm 1. verify that the time complexity of this algorithm ®(m?n?),
wheremis the schedule length amds the number of MOVE
Algorithm 1 MOVE operation scheduling algorithm operations.

Input: MOVE operations in list. and the schedule after rotation.

Output: MOVE operation schedule which can generate the efficient register usage . . .
1. Derive the register usage map for cluster part. D. Spl// code insertion
2. SortL in the increasing order of lifetime.

WHILE (L Is not empty)lo If the register requirement still exceeds the constraint after
Pop out the heal of L
FOREACH (control stefi in h's lifetime) do the first four steps in Figure 5, spill codes need to be inserted
Encdlate(i). Push itinto listorceist(h) to satisfy the register constraint. Spill code insertion has been
SortForcelist(h) in the increasing order. considered in many papers [23, 5]. None of them have dealt
Tentatlive%)schedule in the control stegCon corresponding to the least force in with distributed cache. On the other hand. we believe Spi” code
Forcelist(h). . . Y : § .
W!?IBED(BIUfS conflicﬁiorllfexist b%tweeh and a previously schedul&D) do insertion should be applied to tkatire schedule instead of the
i 's lifetime € h's lifetime then P i ; i
Tentatively schedull in the control steCor with the second least force. _partle_ll schedule as in [23]_‘ With SUCh_ sc_heme, we Can_ eaSIIy
else identify those operands with longest lifetime, whose spill can

Selecth as the instruction with the less second least force of two instruction

and schedule it to the corresponding control step. Yeduce reglster pressure to the Iargest extent.

end if In the clustered architecture with distributed cache, the con-

ENDWHILE sideration of spill code insertion includes two aspects: which
Update the move part register usage map N . _p . p T

ENDWHILE variable is spilled (to free more registers) and which cache

should the spilled variable be putin (to reduce the costly cross-

The register requirement of a schedule can be derived byc@che transfer). _ .
register usage map. In our algorithm, we divide the register Spill code is added through a pair of memory operations:
usage map into two partsjuster partfor all except MOVE ~ Writing back to the local cache and loading it later. Each clus-
operations, andghove partfor only MOVE operations. In the ter has its own local caches, which can be accessed much faster
move part, the lifetime of a MOVE operation starts from théhan main memory and remote caches. To minimize the cross-
last control step when the variable to be moved is alive in tHeache transfer, a spilled variable is always written back to the
producer cluster and ends at the first control step when the vdAcal cache of itconsumer, i.e., the variable has been moved
able is needed in the consumer clugt@he MOVE operation © the desired cluster before spilled out to the cache. By this
can be scheduled at any control step belonging to its lifetim¥/@Y, the costly cross-cache transfer is replaced with cross-
Scheduling a MOVE at different control steps will have differ-CluSter register MOVE, which has much higher efficiency.

ent impact on the register usage map of the move part. For ex-If @ cluster demands more registers than available, several
steps are carried out to get rid of the violation.

2| the case of two MOVE operations deal with the same moving variable but have
different control stepsa andb in the consumer cluster, the MOVE operation with the later H H H H 7 H illi
control step can be omitted, and the span of lifetimea (assumingo > a) is counted 1 Find a variable with the. Iongest lifetime and its Splllmg
into the cluster part register usage map. can help reduce the register pressure.

2 If the variable’s lifetime is longer than the overall cost ofshow the experimental results in Figure 3. The schedule length
writing back and loading from the local cache, the correfor 4 different schedulers are listed. They aegister aware

sponding spill code is inserted.

schedulingrotation), CALiBeRfrom [1] (CALiBeR), modulo

.) . . scheduling in [19] (modulo), and the RS-FDRA in [2] (Cen-
3 Otherwise, find the control step with the largest regisyra). RS-FDRA is a centralized architecture software pipelin-

ter requirement. Distribute the operations in this contrghg scheduling algorithm. It is used to provide a criteria to
step into two control steps to reduce the register pressughow how well the other three schedulers can perform in clus-
thereby increase the schedule length by one control stegred architecture. It has been shown in [2] that this algorithm
Because of the change of schedule length, the MOVE ofnd rotation scheduling can always achieve the best results in
erations are rescheduled (correspondes to the iterative @e centralized architecture. In a clustered architecture, af-

ecution of steps 4 and 5 in Figure 2.

ter the function units are partitioned into clusters, the sched-

4 The above steps are repeated until all the register coﬁ{/e length cannot get better due to the extra cost introduced

straints are satisfied.

vy inter-cluster communication. Therefore, the results from

RS-FDRA can be regarded as the lower bound for other algo-
These steps are effective in reducing the register presstif@ms. CALIBeR is selected for comparison because it is the
since the general register constraint violation is often causétfrt-of-art software-pipelining algorithm in clustered architec-
by long variable lifetimes that span several iterations. It is adure. The modulo scheduling in[19] is selected for comparison
vantageous to swap them out of the register file to decread@cause it is the baseline scheduling algorithm of [20]. In Fig-
the register usage. If no such long lifetime variable exists arlf€ 3, the result of register requirement for RS-FDRA is not
the register limit is still surpassed, the register resource is r8hown, because it is meaningless to compare the register re-
ally tight. The only way to satisfy the constraint is to increas@uirement for different architectures.

the schedule length to provide more room for scheduling, such
that the register pressure is alleviated by reducing the number
of living variables at the same time.

IV. EXPERIMENTAL RESULTS

The effectiveness of our technique is illustrated by running
a set of benchmarks from [1]. We compared our results with
CALIiBeR in [1] and Modulo scheduling in [19]. The experi-
mental results for the latter two methods are extracted from [1].
In order to make a fair comparison, we use the same set of
benchmarks with exactly the same DFGs, and the same clus-
ter configuration as [1]. Table 1 lists the benchmarks and the
clustered datapath configuration. In this table, the correspond-
ing benchmarks from left to right atettice Filter, 2 Cascaded
Biquad Filter, Avenhous Filter, 4 Cascaded FIR Filter, AR Fil-
ter, 4 Cascaded Biquad Filter, DCT-DIThe number of nodes
in the DFG is listed after the benchmark’s name. The clus-
tered datapath is specified in the form of number of ALU (a)z;,

Schedule Length

W NRC
VIRC

|

LF(Cl) 4CFF(Cl) 4CCF(C3) 4CBF(C2) DCT(CL)
LF(C2) 4CFF(C2) 4CBF(Cl) 4CBF(C3) DCT(C2)

Register Requirement

-
g1 78 70 780 70 70 70 70 /A %
Z0 G0 70 7B 70 ZH %0 7ZA A 4
LF(Cl) 4CFF(Cl) 4CCF(C3) 4CBF(C2) DCT(C1)

LF(C2) 4CFF(C2) 4CBF(Cl) 4CBF(C3) DCT(C2)

8

. .

- .
. /7 Zire
7N 7E 7N 70 B 70

NI I G0 78 78 70 70 70

B 7B 71 78 70 70 o9 70

1

:

multiplication (m) and load/store (X) units.

Schedule Length

¥

M ﬁ

ARG ARG ACERCE) AR ARCS) _acerc2)

Register Requirement

Flg 3. schedule length and register requirement without register constraint

%m\\\

4. The schedule length and register requirement if register resource is restricted. NRC and RC represent the
performance without register constraint and with register constraint, respectively.

If the register resource is not restricted, we can see from Fig-
ure 3 that all three clustered scheduling algorithms are quite
effective in that they can reach the lower bound in most cases.
However, from the pointer view of register cost, as shown in
Figure 3, our technique requires the least number of registers
than the other two schedulers. The register usage comparison
demonstrates that the global MOVE operation schedule can in-
deed reduce register cost.

When the register resource is restrictive, spill codes have
to be inserted to swap some variables out of the register file.
CALiBeR does not consider the register constraint, thereby
cannot obtain a schedule under the rather restrictive register
constraint. Through judiciously inserting spill code, our tech-
nique can reduce the register requirement by 1/3 -1/2 with al-
most the same schedule length, as shown in Figure 4. More-
over, our technique can still get a reasonable result if the reg-
ister constraint becomes tighter. In such a case, the schedule
length is expected to become longer to modify the register re-

In our experiment, the minimal schedules for all benchmarlguirement distribution and accommodate the swapping time
can be found in one minute on a SUN Ultra-2 SPARC workstdsetween the register file and local cache.
tion, which demonstrates the time efficiency of our technique. As we mentioned before, the algorithm in [20] is the only
In order to evaluate the efficiency of the scheduler itself, wexisting algorithm which can handle the distributed cache. It

[F (16) 2CBF (16) AF (20) 4CFF (32) AR (34) 4CBF (32) DCT (48

CT C CT CZ CI CZ C3 T CZ C3 CZ C3 T CZ C3 CT CZ C3

Ia 2a 1a 2a Ia 1a 2a 2a 2a 3a 2a 3a 3a 1a 2a 4a 2a 3a 3a

Clusterl im 2m im 2m im im 2m 2m 2m 3m 2m 3m 4m im 2m 4m im im im
1x 1x 1x 2x 2x 2x

Ia 2a 1a 2a Ia 1a 2a 2a 2a 3a 2a 3a 3a 1a 2a 4a 2a 3a 3a

Cluster2 im 2m im 2m im im 2m 2m 2m 3m 2m 3m 4m im 2m 4m im im im
1x 1x 1x 2x 2x 2x

1a 2a 3a 3a

Cluster3 im 2m im im

1x
BUS T 1 1 1 1 2 2 1 2 1 2 2 3 1 1 1 2 5

TABLE |

BENCHMARKS AND THE CLUSTERED CONFIGURATION

takes the distributed cache into consideration by integrating gs]
Cache Miss Equation (CME) [8] solver into the baseline algo-
rithm [19]. Solving CME is NP-complete. By deploying some
heuristics, they try to solve CME and find a schedule to reduceg)
the cache conflict misses. Because the baseline algorithm does
not consider the cache conflict, the schedule length obtained
from the baseline algorithm can be regarded as the lower boquo]
of their algorithm. Although this CME solver can improve the
cache performance to some extents, it cannot eliminate cache
conflict misses. The existence of such misses may severely
compromise the schedule. As shown in Figure 3, our scheduley;
outperforms the baseline algorithm in in both schedule length
and register requirement. Moreover in our algorithm, cache
conflict misses are eliminated through data padding. Therﬁ]iz]
fore, We believe that our scheduler is better than the algorith

in [20].

V. CONCLUSION [13]

We have presented a register aware scheduling framework
suitable for compilers targeting clustered VLIW processors
with distributed cache. A novel global inter-cluster commu- 14
nication scheduling algorithm is proposed to efficiently utilize !
the register resource. To satisfy the restrictive register con-
straint, spill codes are wisely inserted. The proposed algorithm
can handle arbitrary clustered configuration and, along with lal®
tency minimization, can effectively handle register constraint.
The experimental results demonstrate that our technique is s[16]
perior to the existing algorithms.

[17]
REFERENCES
[1] C. Akturan and M. Jacome. Caliber: a software pipelining algorithm
for clustered embedded vliw processors.Plimceeding of EEE/ACM
International Conference on Computer Aided Desigages 112-118, [18]

2001.
[2] C. Akturan and M. Jacome. Rs-fdra: A register sensitive software
pipelining algorithm for embedded vliw processors. Firoceeding of
9th International Symposium on Hardware/Software Codes#gpril
2001.

(19]

[3] J. Archibald and J. L. Baer. Cache coherence protocols: Evaluatio
using a multiprocessor simulation mod@CM Transactions on Com-
puter Systemst(4), November 1986.

't20]

[4] L.-F.Chao, A. LaPaugh, and E. H.-M. Sha. Rotation scheduling: A loop
pipelining algorithm. IEEE Transactions on Computer Aided Design [21]

16(3), March 1997.

[5] A. K. Dani, V. J. Ramanan, and R. Govindarajan. Register-sensitive22]
software pipelining. IfProc. Merged 12th Intl. Parallel Processing and
9th Intl. Symposium on Parallel and Distributed Systé&pril 1998.
[6] G. Desoli. Instruction assignment for clustered vliw dsp compilers: A
new approach. Technical Report HPL-98-13, Hewlett-Packard Com{23]
pany, 1998.
[7] P. Faraboschi, G. Brown, and J. A. Fisher. Lx: A technology platform
for customizable vliw embedded processingPtoc. of 27th Annual In-
ternational Symposium on Computer Architecti@ncouver, Canada,
June 2000.

S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: an an-
alytical representation of cache missesPhaceeding of International
Conference on Supercomputjmeages 317-324, July 1997.

R. Jones and V. Allan. Software pipelining: An evaluation of enhanced
pipelining. InProc. International workshop on Microprogramming and
Microarchitecture pages 82-92, Nov 1991.

K. Kailas, K. Ebcigllu, and A. Agrawala. Cars: A new code generation
framework for clustered ilp processors. Broc. International Sym-
posium on High Performance Computer Architecfysages 133-143,
Monterrey, Mexico, Jan 2001.

V. Lapinskii and G. Jacome, M.F.and de Veciana. High-quality oper-
ation binding for clustered vliw datapaths. Rroceeding of Design
Automation Conferenc@ages 702—707, 2001.

C. Lee, M. Kim, and C. I. Park. An efficient k-way graph partitioning
algorithm for task allocation in parallel computing systemd2rioceed-
ing of the First International Conference on Systems Integrafiages
748-751, 1990.

E. Ozer, S. Banerijia, , and T. Conte. Unified assign and schedule: A new
approach to scheduling for clustered register file microarchitectures. In
Proceeding of the 31th Annual Intern. Symposium on Microarchitec-
tures, pages 308-315, 1998.

P. G. Paulin and J. P. Knight. Force directed scheduling for the behav-
ioral synthesis of asicdEEE Trans. on Computer Aided Desig(1),
June 1989.

] P. Quinton and V. V. Dongen. The mapping of linear recurrence equa-

tions on regular arrayslournal of VLSI Signal Processind, 1998.

B. R. Rau. lIterative modulo scheduling: An algorithm for software
pipelining loops. INProc. of the 27th Annual International Symposium
on Microarchitecture pages 63—74, Nov 1994.

B. R. Rau and C. D. Glaeser. Some scheduling techniques and an eas-
ily schedulable horizontal architecture for high performance scientific
computing. InProc. 14th Annual Workshop on Microprogrammjing
pages 183-198, 1981.

G. Rivera and C. W. Tseng. Data transformation for eliminating conflict
misses. InProceedings of the ACM SIGPLAN'98 conference on Pro-
gramming Language Design and Implementatipages 38—49, 1998.

J. Sanchez and A. Gonzalez. Instruction scheduling for clustered vliw
architectures. IProceeding of the 13th International Symposium on
System Synthesigages 41-46, 2000.

J. Sanchez and A. Gonzalez. Modulo scheduling for a fully-distributed
clustered vliw architecture. |IRroceeding of 33rd AnnuaBIEE/ACM
International Symposium on Microarchitectugages 124-133, 2000.

W. Shang, E. Hodzic, and Z. Chen. On uniformization of affine depen-
dence algorithmslEEE Transactions on Computer5(7), 1996.

Z. Wang, E. H.-M. Sha, and X. Hu. Combining partitioning and data
padding for scheduling multiple loop nests.Aroc. International Con-
ference on Compilers, Architectures and Synthesis for Embedded Sys-
tems pages 67-75, Atlanta, GA, Nov 2001.

J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Modulo schedul-
ing with integrated register spilling for clustered vliw architecture. In

Proceedings of the 34th International Symposium on Microarchitecture
pages 160-169, Austin, Texas, December 2001.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

