
A Hardware/Software Partitioning Algorithm for SIMD Processor Cores

Koichi Tachikake† Nozomu Togawa††,‡ Yuichiro Miyaoka† Jinku Choi†

Masao Yanagisawa† Tatsuo Ohtsuki†

†Dept. of Electronics, Information and Communication Engineering, Waseda University
††Dept. of Information and Media Sciences, The University of Kitakyushu

‡Advanced Research Institute for Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

Tel: +81-3-5286-3396 Fax: +81-3-3203-9184
E-mail: tatikake@ohtsuki.comm.waseda.ac.jp

Abstract

This paper proposes a new hardware/software partition-
ing algorithm for processor cores with SIMD instruc-
tions. Given a compiled assembly code including SIMD
instructions, a timing constraint of execution time, and
available hardware units, the proposed algorithm synthe-
sizes an area-optimized processor core with a new assem-
bly code. Firstly, we assume an initial processor core on
which an input assembly code can run with the short-
est execution time. Secondly we reduce a hardware unit
added to a processor core one by one while the timing
constraint is satisfied. At the same time, we update the
assembly code so that it can run on the new processor
configuration. By repeating this process, we finally ob-
tain a processor core architecture with small area under
the given timing constraint. We expect that we can ob-
tain a processor core which has appropriate SIMD func-
tional units for running the input application program.
The promising experimental results are also shown.

1 Introduction
In image processing applications such as image synthesis
and/or image corrections, each pixel in an image is com-
posed of small bits of data. For example, a pixel can be
represented by an 8-bit data. However, a general micro
processor has a basic bit width of 32 bits or more. In
image processing applications, how to deal with a short-
word data with a long-word functional unit is a main
problem. A packed SIMD type operation[5], [9], [10], [15]
(or a SIMD operation in short) gives one of the most ef-
fective solutions for this problem. A SIMD operation is
n-parallel b/n-bit sub-operations executed by a modified
b-bit functional unit. An instruction corresponding to a
SIMD operation is called a SIMD instruction. A func-
tional unit executing SIMD operations is called a SIMD
functional unit and a processor core with SIMD instruc-
tions is called a SIMD processor core. A SIMD processor
core can be effectively applied to image processing ap-
plications since we can deal with n pixels concurrently
by modifying normal b-bit functional units.

Generally, a SIMD operation has many options (see
2.3.2 in detail). Thus we can configure so many different
SIMD operations. However, a particular image applica-
tion program often uses very limited SIMD operations.
We consider that appropriate configuration for a image
processor core is required depending on application pro-
grams as well as hardware costs. Hardware/software
cosynthsis must be a very powerful strategy to synthe-

size a SIMD processor core.
Hardware/software codesign is to design a hardware

part and a software part of a processor and/or a sys-
tem simultaneously depending on application programs.
Particularly the hardware/software codesign systems
such as in [1], [2], [4], [7], [12], [14], [16] synthesize micro
processor cores for given application programs. All the
systems proposed so far, however, focus on conventional
micro processor cores and then they do not deal with
SIMD operations/instructions.

We have been developing a hardware/software cosyn-
thesis system for SIMD processor cores [11], [13], [17],
[18]. For image processing applications, the system au-
tomatically synthesizes an optimal image processor ar-
chitecture through compiling, hardware/software parti-
tioning, and hardware/software generation. The basic
system which automatically synthesizes a digital signal
processor architecture was proposed in [17], [18]. A par-
allelizing compiler with SIMD instructions was proposed
in [13]. The compiler generates an initially scheduled as-
sembly code including SIMD instructions given to hard-
ware/software partitioning. The functional unit gen-
erator for SIMD operations was proposed in [11]. The
functional unit generator estimates area/delay values for
each functional units used in hardware/software parti-
tioning.

In this paper, we focus on hardware/software par-
titioning in our system and propose a new hard-
ware/software partitioning algorithm for SIMD proces-
sor cores. Firstly, we determine the numbers and types
of hardware units added to a processor core to execute
an input assembly code. Then we reduce the number
of the hardware units or we reduce a sub-function of
the hardware units, one by one. At the same time, we
reconfigure the processor core and update the assembly
code. Finally, we obtain a processor core architecture
with small area under the given timing constraint.

2 Architecture Model and Instruction Set

In this section, we define our processor architecture
model and its instruction set [11], [13], [17], [18]. Fig. 1
shows our processor architecture model. Our processor
architecture is based on a digital signal processor in [6]
and composed of one of the two processor kernels and
extra hardware units. A processor core is constructed
by adding several hardware units to a processor kernel.
In the following, processor kernels, hardware units, and
an instruction set are defined.

Inst-
bus X bus

Shifter

Reg

DSP kernel

Y bus Mult

Loop

Addr

Mult
Add

ALU

RISC kernel

SIMD
Mult

SIMD
ALU

Figure 1. Processor kernels and hardware units.

Table 2. Basic Instructions (a minimum instruction
is underlined).

Arithmetic and logic ADD, SUB, SRA, SRL, SLL, AND,
operation OR, XOR, MUL, DIV, SLT, SEQ,

SNE, COM2, MAC, INC, DEC,
ADDI, SUBI, SRAI, SRLI, SLLI,
ANDI, ORI, XORI, MULI, DIVI

Load and store LDX, LDY, STX, STY, LDRX,
LDRY, STRX, STRY, LDXI, LDYI,
STXI, STYI, LDIX, LDIY, STIX,
STIY, MV, IMM

Jump BEQ, BNE, BZ, BNZ, JP, LOOP,
RPT, CALL, RET, NOP, HLT

Parallel load and store LDPX, STPX

2.1 Processor Kernels
A processor kernel is (i) a RISC-type kernel or (ii)
a DSP-type kernel. A RISC-type kernel has the five
pipeline stages (IF, ID, EXE, MEM, and WB) as in the
micro processor of [3]. A DSP-type kernel has the three
pipeline (IF, ID, and EXE) stages as in the DSP pro-
cessors of [6], [8]. The number of pipeline stages and
processes in each pipeline stage are fixed and cannot
be changed. A processor core will become a general-
purpose RISC core if a RISC-type kernel is selected. It
will become a DSP core if a DSP-type kernel is selected.
A hardware configuration of each processor kernel is de-
termined in the same way as in [17].

2.2 Hardware Units
Our processor core can have extra hardware units:
(1) a Y-bus for Y data memory, (2) functional units
(shifters, ALUs, multipliers, MAC units, bit exten-
ders/extractors, and data move units), (3) addressing
units, and (4) hardware loop units (see [13], [17], [18] for
detailed functions in each hardware units). A functional
unit has a functional unit type tfu (see Table 1).

All these hardware units can be added to the DSP
kernel. The hardware units except addressing units and
hardware loop units can be added to the RISC kernel.

2.3 Instruction Set

2.3.1 Basic Instructions and Parallel Instruc-
tions

Our synthesized processor core has basic instructions
such as ADD and MUL and parallel instructions such
as (ADD || ADD) and (ADD || MUL). The basic instruc-
tions correspond to the functions of our processor ker-
nels and hardware units. A parallel instruction executes
more than one basic instructions. All the combination of
basic instructions cannot be a parallel instruction. Our
hardware/software partitioner determines which basic
instructions should be included in a processor core and
which combination of basic instructions should be a par-
allel instruction.

Table 3. Packed SIMD Type Instructions in basic
instructions.

Arithmetic operation ADD, SUB, MUL, MAC

Shift operation SRA, SLA, SLL

Bit extend/extract operation EXTR, EXTD

Data move operation EXCH, PERM

A processor core requires minimum instructions so
that it can function as a general processor. The min-
imum instructions will be included in a processor core
whatever application program is given. Table 2 shows
our basic instructions and minimum instructions.

Basic instruction has its instruction type tinst. If a
basic instruction i is executed by a functional unit with
the type of tfu, its instruction type, tinst, is defined as
tfu.1

2.3.2 SIMD instructions
Several basic instructions can be SIMD instructions as
shown in Table 3. For example, Fig. 2 shows SIMD mul-
tiplication. In this figure, we assume that a register has
32 bits and four 8-bit data is packed into a single reg-
ister. In Fig. 2(a), two four-packed data are multiplied
and the four results are packed into a single register.
In this case, since each of the intermediate data has a
maximum of 16 bits, we must shorten its bit length to
8 bit. Wrap around operation or saturation operation
will be applied to the intermediate data and then we can
obtain 8-bit data. In Fig. 2(b), the lower words of two
four-packed data are multiplied and the two results are
packed into a single register. In this case, bit-extend op-
eration is applied to the intermediate data if it has the
bit length of 15 bits or less and we can obtain a 16-bit
data.

As discussed above, each of SIMD arithmetic opera-
tions and SIMD shift operations has the options of (1) a
packing number n, (2) whether the data is signed or un-
signed, (3) whether the saturation operation is applied
to the resultant data or not, (4) whether the bit-extend
operation is applied to the resultant data or not, and (5)
how much the resultant data is shifted. For example, the
instruction MUL_4_sr2s shows that four data are packed
into one register, all the data are singed, bit-extend op-
eration is not applied, and each of four resultant data is
shifted to the right by two bits and saturation operation
is applied to it (multiplication, 4 packing data, signed,
right shift by 2 bits, and saturated).

A bit extend instruction constructs n/2-packed data
from n-packed data. A bit extract instruction constructs
2 × n-packed data from n-packed data.

A data move instruction obtains new n-packed data
by rearranging old n-packed data. The behavior of
the EXCH instruction is fixed. The PERM instruc-
tion can rearrange n-packed data into any new n-packed
data. The behavior of the PERM instruction is de-
termined depending on an application program by our
hardware/software cosynthesis system.

SIMD instructions also has its instruction type tinst.
If a SIMD instruction is executed by a SIMD functional
unit with type tfu, its instruction type tinst is tfu. For
example, MUL_4_sr2s have the type of mul.

1 The type of ADD and SUB is defined as ALU , although ADD and
SUB can be executed by either an ALU or a MAC unit. The type
of SIMD version of ADD and SUB is also defined as ALU .

Table 1. Functional unit type and its corresponding operations.
Function unit FU type tfu Operations

Shifter sft Shift operation
ALU alu Arithmetic and logic operations
Multiplier mul Multiply
Divider div Divide
MAC unit mac multiply and addition
Bit extractor/extender ext Bit extend/extract
Data move unit exh Data exchange and permutation

32 bits

8 bits* * * *

(a)

32 bits

8 bits * *

(b)16 bits 16 bits

Figure 2. SIMD multiplications. (a) Four 8-bit multiplications. (b) Two 16-bit bit-extend multiplications.

3 A HW/SW Partitioning Algorithm for
SIMD Processor Cores

3.1 Hardware/Software Cosynthesis System

We have been developing a hardware/software cosynthe-
sis system for SIMD processor cores [11], [13], [17], [18].
We named the system SPADES (System for Processor
Architecture Design with Estimation – type SIMD). In
this subsection, we briefly review our basic idea of the
system.

Given an application program in C and a set of its
application data, our system synthesizes a hardware de-
scription of a processor core and generates an object
code and a software environment (compiler, assembler
and simulator) for the processor core under the con-
straint of the execution time to run the application pro-
gram. The objective is to minimize the hardware cost of
a processor core. The hardware cost of a processor core
is given by the sum of hardware costs of a processor
kernel and hardware units used in the processor core.
The hardware cost refers to area in this paper. The
execution time to run an application program is given
by multiplying the clock period by the number of clock
cycles to run the application program.

3.2 The HW/SW Partitioning Algorithm

In this subsection, we focus on a hardware/software par-
titioning algorithm for SIMD processor cores. We first
define a hardware/software partitioning problem. Then
we propose a hardware/software partitioning algorithm
for SIMD processor cores.

3.2.1 Problem Definition

An assembly code is defined as a graph (call graph,
control-flow graph, and data-flow graph)[17]. A call
graph Gc = (Vc, Ec) is defined as a graph represent-
ing function calls in an application program. A node
v ∈ Vc in Gc represents a function. Each node in a call
graph has a control-flow graph. A control-flow graph
Gcf = (Vcf , Ecf) is defined as a graph representing con-
trol flow in a function. A node v ∈ Vcf in Gcf represents
a basic block. Each node in a control-flow graph has a
data-flow graph. A data-flow graph Gdf = (Vdf , Edf) is
a graph representing data flow in a basic block. A node

v ∈ Vdf in Gdf represents a basic instruction.
Let Bapp and Fapp be a set of basic blocks and a set

of functions, respectively, in an input assembly code.
Consider that a basic block B ∈ Bapp is executed NB

exe

times. NB
exe is calculated by our system. Let NB

cycle
be the number of clock cycles to execute B. The num-
ber of the total clock cycles Ncycle to execute an input
assembly code can be computed as

Ncycle =
∑

B∈Bapp

NB
exe · NB

cycle. (1)

The execution time Tapp of an assembly code is defined
as

Tapp = Ncycle × Tcycle, (2)
where Tcycle is a clock period of a synthesized proces-
sor core. Let Tmax

app be the maximum execution time of
an application program which is given by the designer.
Then a timing constraint is given by

Tapp ≤ Tmax
app . (3)

Then a hardware/software partitioning problem is de-
fined.
Definition 1 Given an initially scheduled assembly
code, NB

exe for each basic block B ∈ Bapp, the timing
constraint, and available hardware units for a proces-
sor core, a hardware/software partitioning problem is to
find a processor core configuration, an assembly code ex-
ecuted on the processor core, and an instruction set for
the processor core under the timing constraint and the
hardware configuration conditions so as to minimize the
hardware cost of the processor core.

3.2.2 The Algorithm
The proposed algorithm is an extended version of the
algorithm in [17] so that it can deal with SIMD instruc-
tions and SIMD functional units. Firstly, we determine
the numbers and types of hardware units added to a pro-
cessor core to execute an input assembly code (Phase 1).
Phase 1 determines an initial processor core. An initial
processor core includes full SIMD functional units where
a functional unit with type tfu can execute all the SIMD
instructions in an input assembly code with the instruc-
tion type tinst = tfu. Then we reduce the number of
the hardware units or we reduce a sub-function of the
hardware units, one by one, while the timing constraint

MUL_2_sr7w R1, R2, R3

MUL_4_ur4s R4, R5, R6

MUL R3, R6, R7

Numbers of packed data
= 1, 2, and 4

(singned and unsigned)

MUL

Fixed right 4-bit
and 7-bit shifter

Saturation
circuit

(a)

(b)

Figure 3. Instructions with the type of mul (a) and
a multiplier configuration for them (b).

is satisfied. At the same time, we reconfigure the pro-
cessor core and update the assembly code (Phase 2).

Our approach is heuristic but we expect that it can
find a globally good solution in a practical time since
it optimizes the numbers, types, and sub-functions of
hardware units including SIMD functional units simul-
taneously.

Phase 1. Allocate an Initial Resource: In Phase
1, we configure an initial processor core.

Let us consider processor kernel parameters. A pro-
cessor kernel type, RISC or DSP, is not determined in
Phase 1 but this is determined in Phase 2. The basic bit
width bknl,fu of a processor core is given as input and
all the other parameters are determined in the same way
as in [17]. The configuration of the ALU and shifter in
a processor kernel will be discussed later together with
other functional units.

Let us consider hardware unit parameters. If an in-
put assembly code includes an instruction using the Y
data memory, we add the Y data memory to a proces-
sor kernel. The number of loop registers, the number
of address registers, and the type of addressing units
are all determined by an input assembly code. Finally,
we must determine the configuration of functional units
including SIMD functional units.

Configuration of functional units: The configura-
tion of each functional unit is determined in the follow-
ing way. Let us consider a set It of the instructions
whose instruction type of tinst = t in an input assembly
code. We construct the functional unit with the type
tfu = t so that it can execute all the instructions in
It and minimum instructions with the type of t. For
example, assume that an input assembly code includes
the instructions of MUL , MUL_4_ur4s , and MUL_2_sr7w
for multiplication. In this case, we construct a SIMD
multiplier as shown in Fig. 3. The SIMD multiplier is
composed of a multiplier for one, two and four data, a
4-bit and 7-bit right shifter, and a saturation unit.

The number of each functional unit is determined in
the following way. If nt-parallel instructions are exe-
cuted for a set It of the instructions with tinst = t in an
input assembly code, we add nt functional units with

Inputs: Assembly code, initial processor core, and timing
constraint.

Outputs: New processor core and its corresponding assem-
bly code

Phase 2. For each of a DSP-type kernel and a RISC-type
kernel, execute Steps 1–4.

Step 1. For each u in the hardware units, sub-functions of
hardware units, and registers currently added to a
processor kernel, try to eliminate u or try to replace
u with the one which has the smaller hardware cost
than u.

Step 2. Evaluate the Trate(u) value. For umin which gives
the minimum Trate(umin) value without violating
the given timing constraint, eliminate umin from a
current processor kernel or replace umin with the
one which has the smaller hardware cost than umin.

Step 3. Update the assembly code according to a new pro-
cessor core configuration.

Step 4. While there exists a hardware unit, sub-function,
or register which meets Step 2, repeat Steps 1–3.
Otherwise finish.

Figure 4. The algorithm of Phase 2 (configuration
of a processor core).

the type of tfu = t to a processor kernel. For exam-
ple, assume that an input assembly code includes the
parallel instruction as below:

MUL_4_ur4s R1,R2,R3 || MUL_2_sr7w R4,R5,R6

In this case, we add two multipliers whose configuration
is shown in Fig. 3(b) to a processor kernel.
Phase 2: Determine a Processor Core Configura-
tion: Phase 2 determines (1) a processor kernel type
(RISC or DSP), (2) the number of general-purpose reg-
isters, (3) whether the Y data memory is added to a
processor kernel or not, (4) the number of address reg-
isters and types of addressing units, (5) the number of
loop registers in the hardware loop unit, and (6) func-
tional unit configuration, depending on an input assem-
bly code and timing constraint.

Firstly, we assume that a processor core has a RISC-
type kennel or a DSP-type kernel. For each of a kernel,
we reduce the parameters in (1)–(6) one by one while the
processor core satisfies the timing constraint. Finally,
we can find an processor core architecture with small
area satisfying the timing constraint.

Fig. 4 shows our proposed algorithm. In the algo-
rithm, Step 1 and Step 3 are discussed later. Step 4
is trivial. In Step 2, Trate(u) for each hardware unit,
each sub-function of hardware units,2 or each register
is defined as:

Trate(u) =
T1(u) − T0

A0 − A1(u)
, (4)

where A0 and T0 refer to a hardware cost and execution
time of the processor core before eliminating u, respec-
tively, and A1(u) and T1(u) refer to a hardware cost and
execution time of the processor core after eliminating u,
respectively. Step 2 finds umin which gives minimum

2 An addressing unit and a SIMD functional unit have sub-
functions. Sub-functions of an addressing unit refer to the ad-
dressing operations such as post increment, post decrement, index
addition, and modulo operation. For sub-functions for a SIMD
functional unit, see the discussion later.

Multiplier

(packed data = 2 and 4)

(signed and unsigned)

Shifter

(fixed 4bit right shift)

(fixed 7bit right shift)

Saturation unit

Multiplier

(packed data = 2 and 4)

(signed and unsigned)

Shifter

(fixed 4bit right shift)

(fixed 7bit right shift)

Saturation unit

mul1 mul2

Figure 5. Original multiplier configuration.

Multiplier

(packed data = 4)

(signed)

Shifter

(fixed 7bit right shift)

(no saturation)

Multiplier

(packed data = 2 and 4)

(signed and unsigned)

Shifter

(fixed 4bit right shift)

(fixed 7bit right shift)

Saturation unit

mul1 mul2'

Figure 6. Multiplier configuration (after eliminating
a sub-function in mul2).

Trate(umin) and actually eliminates umin from a cur-
rent processor core. By using the Trate(u) value, we can
effectively reduce a hardware cost of a processor core
with satisfying a timing constraint.

In the following, we discuss Step 1 and Step 3.

SIMD functional unit reduction and assembly
code update (Steps 1 and 3): In Step 1 and Step 3,
we can deal with hardware units other than SIMD func-
tional units in the same way as in [17]. Then we discuss
here SIMD functional unit reduction and its correspond-
ing assembly code update.

For any SIMD functional unit u added to a processor
core, we consider to (a) replace u with a SIMD func-
tional unit u′ which has the same functions with u and
has the smaller hardware cost than u or (b) eliminate
some sub-function of u.

(a) is realized by calling our SIMD functional unit
generator proposed in [11]. If u is replaced with u′,
assembly code update is unnecessary since the function
of u′ is just the same as that of u.

Now let us focus on the case of (b). The SIMD func-
tional unit u can execute several SIMD instructions.
Then we can consider a sub-function corresponding to
each SIMD instruction and eliminate the sub-function
from the SIMD functional unit. After eliminating the
sub-function in a SIMD functional unit, we update an
assembly code according to a new SIMD functional unit.
Note that, we eliminate a sub-function in SIMD func-
tional units only when the SIMD instruction is executed
by another SIMD functional unit.

For example, we assume that a processor core has
two SIMD multipliers, mul1 and mul2, each of which
can execute the two SIMD instructions MUL_2_ur4s
and MUL_4_sr7w. The SIMD multiplier configuration is
shown in Fig. 5. Each SIMD multiplier, mul1 or mul2,
is composed of a multiplier for two and four data, a 4-

bit and 7-bit right shifter, and a saturation unit. Using
these mul1 and mul2, we can execute the following two
parallel instructions in two clock cycles.

MUL_2_ur4s R1,R2,R3 || MUL_2_ur4s R4, R5, R6
MUL_4_sr7w R7,R8,R9 || MUL_4_sr7w R10,R11,R12

The first instruction is executed by using mul1 and mul2
and the second instruction is also executed by using
mul1 and mul2.

Consider to eliminate the sub-function corresponding
to MUL_2_ur4s in mul2. The configuration of mul2 is
changed so that it can execute only MUL_4_sr7w. We
have the new SIMD functional unit mul′2 as shown in
Fig. 6. mul′2 is composed of a multiplier for two data
and a 7-bit right shifter. Comparing the configuration
of mul2 and that of mul′2, the hardware cost of mul′2
must be smaller than that of mul2 . However, mul′2 can-
not execute MUL_2_ur4s. Then if we eliminate the sub-
function corresponding to MUL_2_ur4s in mul2, we must
update the above assembly code as follows:

MUL_2_ur4s R1,R2,R3
MUL_2_ur4s R4,R5,R6
MUL_4_sr7w R7,R8,R9 || MUL_4_sr7w R10,R11,R12

The first instruction is executed by mul1 and the second
instruction is also executed by mul1. The third instruc-
tion is executed by using mul1 and mul′2.

In this way, we try to eliminate each of the hardware
units, sub-functions of hardware units, and registers in
Step 1. Then in Step 3, we update an assembly code
according to a new processor core configuration.

Based on this algorithm, we can reduce redundant
sub-functions in SIMD functional units and then we can
find an optimal processor core configuration.

4 Experimental Results and Conclusion
The proposed hardware/software partitioning algorithm
has been implemented in the C language on Sun Ultra
Workstation. The algorithm was applied to the Alpha
Blend (image size of 640× 480 pixels) and the Copying
Machine Application (image size of 640 × 480 pixels).
The basic bit width of a processor core is set to be 32 bits
and the number of instructions executed concurrently is
set to be four.

Tables 4 and 5 show the experimental results. In
the tables, Const shows timing constrains, Area shows
synthesized processor core area, Time shows execution
time for running an application program, and Hardware
configuration shows hardware configuration for synthe-
sized processor cores. In the tables, SIMD functional
unit configuration is shown as follows: Assume that
a synthesized SIMD processor core has one ALU and
two SIMD ALUs, salu1 and salu2, where salu1 and
salu2 have two SIMD ALU instructions and one ALU
insturction, respectively. This ALU confiugration is
shown as (1, 2[2, 1]).

The tables indicate that, our hardware/software par-
titioning algorithm configures appropriate SIMD func-
tional units depending on the given application pro-
grams and timing constraints. If a similar timing con-
straint is given to a non-SIMD processor core and a
SIMD processor core, an area of a SIMD processor core

Table 4. Experimental results (Alpha Blend).
Consts Area Time Hardware configuration
[ms] [µm2] [ms] Kernel #ALUs #SFTs #MULs #MACs #Regs Y-mem Addr unit HW loop

Non 18.0 11,591,021 17.740 DSP 2 1 2 3 (7, 3, 1) Yes X[1,2], Y[1,2] Yes
SIMD 20.0 5,672,754 18.923 DSP 2 1 1 1 (6, 3, 1) Yes X[1,2], Y[1,2] Yes
([17]) 22.0 3,839,427 20.106 DSP 2 1 1 0 (8, 3, 1) Yes X[1,2], Y[1,2] Yes

24.0 3,672,783 22.471 DSP 2 1 1 0 (8, 3, 0) Yes X[1,2], Y[1,2] No
32.0 3,549,223 30.750 DSP 2 1 1 0 (7, 3, 0) Yes X[1,2], Y[1,2] No

Packed 4.5 6,299,770 4.421 DSP 0, 2[2,2] 1, 0 0, 3[1,1,1] 0, 2[1,1] (8, 3, 1) Yes X[1,2], Y[1,2] Yes
SIMD 5.0 4,065,268 4.886 DSP 0, 1[3] 1, 0 0, 2[1,1] 0, 1[1] (8, 3, 1) Yes X[1,2], Y[1,2] Yes

6.0 2,873,058 5.584 DSP 0, 1[3] 1, 0 0, 1[1] 0, 0 (10, 3, 0) Yes X[1,2], Y[1,2] No
7.0 2,857,929 6.981 DSP 0, 1[3] 1, 0 0, 1[1] 0, 0 (12, 0, 0) Yes No No

18.0 2,656,377 13.962 DSP 0, 1[3] 1, 0 0, 1[1] 0, 0 (9, 0, 0) Yes No No
20.0 2,656,377 13.962 DSP 0, 1[3] 1, 0 0, 1[1] 0, 0 (9, 0, 0) Yes No No

Table 5. Experimental results (Copying Machine Application).
Consts Area Time Hardware configuration
[ms] [µm2] [ms] Kernel #ALUs #SFTs #MULs #Regs Y-mem Addr unit HW loop

Non 50.5 8,753,937 50.295 DSP 4 1 4 (69, 6, 1) Yes X[1,2], Y[1,2] Yes
SIMD 100.0 5,086,785 99.421 DSP 2 1 1 (48, 6, 0) Yes X[1,2], Y[1,2] No
([17]) 250.0 3,944,657 249.138 DSP 2 1 1 (31, 6, 0) Yes X[1,2], Y[1,2] No

500.0 2,668,161 499.446 DSP 1 1 1 (12, 6, 0) Yes X[1,2], Y[1,2] No

Packed 5.7 10,698,879 5.688 DSP 0, 4[2,2,2,2] 1, 0 0, 4[1,1,1,1] (69, 6, 1) Yes X[1,2], Y[1,2] Yes
SIMD 10.0 5,500,743 9.783 DSP 2, 2[2,2] 1, 0 0, 1[1] (44, 6, 0) Yes X[1,2], Y[1,2] No

50.0 3,155,438 49.837 RISC 1, 1[2] 1, 0 0, 1[1] (10, 0, 0) Yes No No
100.0 2,696,463 99.881 DSP 1, 1[2] 1, 0 0, 1[1] (6, 6, 0) Yes X[1,2], Y[1,2] No

#ALUs for SIMD cores: (#ALUs, #SIMD ALUs[#SIMD instructions in SIMD ALU1,. . .])
#SFTs for SIMD cores: (#Shifters, #SIMD Shifters[#SIMD instructions in SIMD Shifter1, . . .])
#MULs for SIMD cores: (#MULs, #SIMD MULs[#SIMD instructions in SIMD MUL1, . . .])
#MACs for SIMD cores: (#MACs, #SIMD MACs[#SIMD instructions in SIMD MAC1, . . .])
#Regs: (#General registers, #Address registers, #Loop registers)
Addr unit: Address unit configuration. X[1,2] (or Y[1,2]) means that the X (or Y) data memory has the addressing
unit with post increment operation.

can be smaller than that of a non-SIMD processor core
for both application programs. Tables 4 and 5 show
that the area of SIMD processor core is 22–53 % smaller
than that of non-SIMD processor cores configured under
the similar timing constraints. Because the numbers of
functional units and reginsters added to SIMD proces-
sor cores are smaller than that of non-SIMD processor
cores.

By using our new hardware/software partitioning al-
gorithm, we can find a processor core architecture with
small area satisfying a given timing constraint. Now our
algorithm is a greedy heuristic approach, but for larger
applications we may need more efficient heuristics. In
the future, we will improve our algorithm so that it can
optimize the configuration of each SIMD functional unit
by reducing several sub-functions at once. Thus we will
have globally optimized hardware/software partitioning.

Acknowledgement
This research is supported in part by STARC (Semicon-
ductor Technology Academic Research Center).

References
[1] H. Akaboshi and H. Yasuura, “COACH: A computer aided

design tool for computer architects,” IEICE Transactions
on Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. E76-A, no. 10, pp. 1760–1769, 1993.

[2] N. N. B̀ınh, M. Imai, A. Shiomi and N. Hikichi, “A hard-
ware/software partitioning algorithm for designing pipelined
ASIPs with least gate count,” in Proc. 33rd DAC, pp. 527–
532, 1996.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan-Kaufman, 1990.

[4] I. J. Huang and A. M. Despain, “Synthesis of instruction sets
for pipelined microprocessors,” in Proc. 31st DAC, pp. 5–11,
1994.

[5] Intel, MMX Technology Architecture Overview, http://www.
intel.com/technology/itj/q31997/articles/art 2.htm, 1997.

[6] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals: Architectures and Features, Berkeley Design
Technology, Inc., 1994–1996.

[7] H. Liu and D. F. Won, “Integrated partitioning and schedul-
ing for hardware/software codesign,” in Proc. International
Conference on Computer Design, 1998.

[8] V. K. Madisetti, Digital Signal Processors, IEEE Press, 1995.

[9] MIPS Technologies, MIPS Extension for digital media with
3D, 1997.

[10] M. Mittal, A. Peleg, and U. Weiser, “MMX technology ar-
chitecture overview,” Intel Technology Journal, 3rd Quarter,
1997.

[11] Y. Miyaoka, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A
hardware unit generation algorithm for a hardware/software
cosynthesis system of digital signal processor cores with
packed SIMD type instructions,” Transactions on Informa-
tion Processing Society of Japan, vol.43, no.5, pp.1191–1201,
2002, (in japanese).

[12] E. F. Nurprasetyo, A. Inoue, H. Tomiyama, and H. Yasuura,
“Soft-core processor architecture for embedded system de-
sign,” IEICE Trans. on Electron, vol.E81-C, no.9, pp.1416–
1423, 1998.

[13] N. Nonogaki, N. Togawa, M. Yanagisawa, and T. Ohtsuki,
“A parallelizing compiler in a hardware/software cosynthe-
sis system for image/video processor with packed SIMD type
instruction sets,” IEICE Technical Report, VLD2000-139,
ICD2000-215, 2001, (in japanese).

[14] J. Sato, A. Y. Alomary, Y. Honma, T. Nakata, A. Shiomi, N.
Hikichi and M. Imai, “PEAS-I: A hardware/software codesign
system for ASIP development,” IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer
Sciences, vol. E77-A, no. 3, pp. 483–491, 1994.

[15] Sun Microsystems, VIS Instruction Set User’s Manual, 1997.

[16] Tensilica, Xtensa Microprocessor: Overview Handbook ,
http://www.tensilica.com/.

[17] N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A hardware/
software cosynthesis system for digital signal processor cores,”
IEICE Trans. on Fundamentals, vol. E82-A, no. 11, pp. 2325–
2337, 1999.

[18] N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A hardware/
software cosynthesis system for digital signal processor cores
with two types of register files,” IEICE Trans. on Fundamen-
tals, vol. E83-A, no. 3, 2000.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

