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Abstract− In this paper, we address the problem of VLSI 

floorplanning with considering boundary constraints. The 
problem is practical and crucial in physical design since 
architects decide to arrange some I/O involved modules along 
the chip boundary to minimize both chip area and off-chip 
connections. By using a new representation called Generalized 
Polish Expression, we propose an efficient algorithm to handle 
the boundary constraints on non-slicing floorplans. In addition, 
a new fixing heuristic based on modular similarity is also 
presented to effectively fix the generated infeasible floorplans 
during the process. The experimental result is good in 
commonly used MCNC benchmark circuits.  
 

I. INTRODUCTION  

In the application of the floorplanning method, it will be 
useful if the users are allowed to specify some floorplan 
constraints in the final layout. The floorplan constraint we 
consider here is called boundary constraint: some modules 
are constrained to be packed along one of the four sides of 
the chip boundary: on the left, on the right, at the bottom, or 
at the top of the final floorplan. The constraint considered 
here is very valuable because architects may want to place 
some modules along the chip boundary to minimize both 
chip area and off-chip connections. The boundary constraint 
problem on slicing floorplans, using Polish expression, had 
been studied in [5]. The boundary constraint problem on 
non-slicing floorplans, using different non-slicing 
representations, had also been discussed in articles [3, 6].  

Recently, an easy and efficient representation of 
non-slicing structure, called Generalized Polish Expression 
(GPE for short), is proposed [2]. Basically, GPE is the 
generalization of Polish expression, and it inherits the 
elegant properties of Polish expression in handling 
floorplanning problems. In this paper, by using GPE, we 
propose an efficient algorithm to handle the boundary 
constraints on non-slicing floorplans. Furthermore, a new 
fixing heuristic based on modular similarity is presented to 
effectively fix the generated infeasible floorplans during the 
process. We tested our algorithm with some benchmark data 
and the experimental result is good.  

The paper is organized as follows. Preliminaries are given 
in section II. Section III describes our proposed method. 

Section IV gives the experimental results on MCNC 
benchmarks. We make some conclusions in the last section. 
 

II. PRELIMINARIES 

A module B is a rectangle of height hB, width wB, and area 
areaB. A super-module consists of several modules. A 
floorplan for n modules consists of an enveloping rectangle 
R subdivided by horizontal lines and vertical lines into n 
non-overlapping rectangles such that each rectangle must be 
large enough to accommodate the module assigned to it.  

In our problem, we are given two kinds of hard modules 
M = F U C. The modules in F have freedom to move while 
the modules in C are constrained to be packed along one of 
the four sides of the final floorplan. A module B which is 
constrained to right boundary is denoted as BR, and the rest 
may be deduced by analogy. A feasible packing is a packing 
in the first quadrant such that all the modules in C are placed 
on the boundaries as required. Our objective is to construct a 
feasible floorplan R to minimize the total area of the 
floorplan R.  

A. Polish Expression 

This representation can only present slicing structure of a 
floorplan. Each packing is encoded by a sequence, including 
module name and two relational operators. As illustrated in 
Fig. 1, every leaf corresponds to a basic module and is 
marked by a module name. Every internal node of the tree is 
labeled by a + or a *, corresponding to a vertical or a 
horizontal cut respectively. We can obtain a Polish 
expression [1] of length 2n - 1 with n modules in the slicing 
floorplan by traversing the slicing tree. 

B. Generalized Polish Expression (GPE) 

GPE (the abbreviation for Generalized Polish Expression) 
[2] is the generalization of Polish expression. GPE can 
efficiently reuse some area that cannot be utilized anymore if 
only having vertical and horizontal operators defined in 
Polish expression, and is able to present non-slicing 
structural floorplan.  

GPE uses a sequence of modules to reflect a physically 

De-Sheng Chen 
 

Department of Information Engineering 
and Computer Science 
Feng Chia University 

100 Wen-hwa Road, Taichung, Taiwan 
Tel: +886-4-24517250 Ext. 3746 

Fax: +886-4-24516101 
e-mail: dschen@pine.iecs.fcu.edu.tw 

 

Chang-Tzu Lin, Yi-Wen Wang 
 

Department of Information Engineering 
and Computer Science 
Feng Chia University 

100 Wen-hwa Road, Taichung, Taiwan 
Tel: +886-4-24517250 Ext. 3719, 3763 

Fax: +886-4-24516101 
e-mail: p8993852@knight.fcu.edu.tw, 

ywang@fcu.edu.tw  
 

mailto:dschen@pine.iecs.fcu.edu.tw
mailto:p8993852@knight.fcu.edu.tw
mailto:ywang@fcu.edu.tw


non-slicing floorplan by proposing a new relational operator 
@. As illustrated in Fig. 2(a), if there are only geometrically 
vertical and horizontal operators, the utilization of dead area 
is not achievable. The corner operator @, however, will 
arrange a module or a super-module in a corner formed by 
the other modules. As shown in Fig. 2(b), the corner 
operator will arrange E in the corner, i.e. the dead area 
constructed by A and B, where A, B and E can be a module 
or a super-module. Through corner operator, the dead area 
can be effectively reused by the other modules that have not 
been arranged yet. Furthermore, with the proposed corner 
operator, the new encoding scheme GPE can express the 
structure of wheel, as illustrated in Fig. 2(c). 

C. Young-Wong Algorithm 

In [5], Young and Wong handle the boundary constraints 
by adding an algorithm to find the information of each 
module. If a new generated Polish expression does not 
satisfy the boundary constraints in the progress of simulated 
annealing process, it can be fixed as much as possible by 
shuffling the modules. An example is shown in Fig. 3. In the 
figure, boundary constraint is violated in Fig. 3(a) since 
module e is not packed at the right, as required. To fix this, e 
is exchanged with g, where g is the module closest to e in 
the Polish expression and that g is packed on the right 
boundary. The result after shuffling the two modules is 
shown in Fig. 3(b).  
 

III. OUR PROPOSED METHOD 

In [5], the boundary information of each module is found 
by scanning the Polish expression from right to left. The 
relationship of topology of + and * operators are checked to 
obtain the boundary information of each module. However, 

modules that can be slid to the chip boundary may be not 
found due to the order of mergence of Polish expression. 
Hence, the method used in [5] may lose a certain chances to 
fix an infeasible floorplan that could lead to a good result at 
the end. An example of the situation is shown in Fig. 4. A 
floorplan is shown in Fig. 4 (a), and the boundary 
information of right side is only set to module e. Although, 
both of the module a and d can be slid to the right side of the 
chip (Fig. 4 (b)), the situation is not checked due to the 
appearing order of Polish expression. Hence, it may lose the 
chances to repair the violated modules. Therefore, it is 
important to come up with a more accurate method to find 
the boundary information of a floorplan.  
 
A. Boundary Information Checking Algorithm (BICA) 

In our boundary information checking algorithm, the 
boundary information of a floorplan can be established by 
scanning the GPE once. This is done by recording four lists: 
L, B, R and T when entirely scanning the GPE from left to 
right, and by using a stack. The modules exist in list L mean 
there are no modules cover them in final floorplan, i.e. the 
modules are at or can be slid to left boundary of the 
floorplan, and the modules in lists B, R and T may be 
deduced by analogy. Each element N that is pushed into 
stack has four lists: N.left, N.below, N.right, N.above. The 
modules exist in list N.left mean there are no modules cover 
them in a sub-floorplan, i.e. the modules are at or can be slid 
to left boundary of the sub-floorplan, and the modules in 
lists N.below, N.right and N.above may be deduced by 
analogy. We push an element into the stack whenever we see 
a module or a super-module. We pop both the top and the 
top - 1 elements in the stack, and then push a new element 
which the four lists of the new element are obtained from the 
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Fig. 3.  Suppose module e is constrained to be packed along the right 
boundary. (a) an infeasible floorplan, (b) feasible by shuffling e with g, (c) 
feasible by shuffling e with f.  
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Fig. 2.  (a) dead area is no longer utilized by only horizontal or vertical 
operators (b) corner operator, @, can effectively reuse the dead area, and (c) 
a floorplan of wheel structure, where A, B, C, D and E can be a module or a 
super-module. Notice that the part of shadow is dead area. 
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Fig. 1.  Slicing tree representation and its corresponding Polish expression 
of a slicing floorplan. 
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Fig. 4.  The boundary constraints at right side are, (a) only set to module 
e, (b) set to modules e, a and d, where module a and d can be slid to right 
boundary. 



two popped elements with reference to both union and 
x_cover(retain, alter, direct) operations whenever we see an 
operator. For an expression AB*, we arrange super-module A 
left to super-module B. The union operation which acts on 
an expression AB* directly append the list of B.above to 
both the list of A.above and form a new element N.above, 
and so does N.below. The lists of retain and alter in x_cover 
operation mean the list of retain replace the list of alter 
which is covered by the lists of retain in one of the four 
direction: LEFT, RIGHT, TOP, BOTTOM. The rest of 
situations of x_cover may be deduced by analogy. An 
example of the boundary information checking algorithm is 
given in Fig. 5. We scan the GPE from left to right once. 
Suppose we scan from the module a to the first operator *, 
i.e. GPE = {a d *}. A new element N will be pushed into 
stack, where N.left will be the module a, N.right will be the 
module d, and N.above and N.below will be the modules a 
and d. The rest of processing can be deduced by analogy. 
Finally, we will obtain the boundary information of the 
floorplan as follows: L = {a-b}, B = {a-d}, R = {d-e-c}, T = 
{b-c}. 

Because we use more accurate information to find out the 
boundary information of a floorplan, we can easily fix an 
infeasible solution to obtain a feasible one.  

B. Fixing an Infeasible Floorplan  

If the generated floorplan violates the boundary 
constraints, we are going to fix it as much as possible by 
shuffling the modules with reference to the similarity 
heuristic. The value, D, of similarity between module A and 
module B can be defined as follows. 

BABA wwhhD −+−=  

The smaller the value D is, the similar the two modules 
are. We will choose the module which has the smallest value 
to perform the fixing. An example is shown in Fig. 3. In the 
figure, boundary constraint is violated in Fig. 3(a) since 
module e is not packed at the right, as required. To repair 
this, we exchange e with f where f is the module most 
similar to e in the GPE and that f is packed on the right 
boundary, as shown in Fig. 3 (c). Generally, if a module X is 
not packed along the boundary as required, we will shuffle it 
with another module Y which is most similar to X in the GPE 
and that Y’s position satisfies the boundary constraint of X. 
Obviously, the shuffling with reference to similarity 
heuristic (Fig. 3(c)) will be better or equal to the shuffling 
with the closest module (Fig. 3(b)).  

C. Cost Function 

e

a d

b c

Scanned GPE = {a d *}
N.left = x_cover({a}, {d}, LEFT) = {a}
N.right = x_cover({d}, {a}, RIGHT) = {d}
N.above = {a} union {d} = {a-d}
N.below = {a} union {d} = {a-d}

Scanned GPE = {a d * b +}
N.left = {a} union {b} = {a-b}
N.right = {d} union {b} = {d-b}
N.above = x_cover({b}, {a-d}, TOP) = {b}
N.below = x_cover({a-d}, {b}, BOTTOM) = {a-d}

Scanned GPE = {e c +}
N.left = {e} union {c} = {e-c}
N.right = {e} union {c} = {e-c}
N.above = x_cover({c}, {e}, TOP) = {c}
N.below = x_cover({e}, {c}, BOTTOM) = {e}

Scanned GPE = {a d * b + e c + @}
N.left = x_cover({a-b}, {e-c}, LEFT) = {a-b}
N.right = x_cover({d-b}, {e-c}, RIGHT) = {d-e-c}
N.above = x_cover({b}, {c}, TOP) = {b-c}
N.below = x_cover({a-d}, {e}, BOTTOM) = {a-d}

Final boundary information of the floorplan:
L = {a-b}, B = {a-d}, R = {d-e-c}, T = {b-c}

GPE = {a d * b + e c + @}
CCL = {(b, d)}

 
 
Fig. 5.  Some snapshots of BICA. 

Boundary Information Checking Algorithm 
Input: A Generalized Polish expression Ψ = {λ1, λ2, …, λ2n-1} 
Output: Four boundary lists L, B, R and T in the final floorplan. 
1. top = 0.  
2. For i = 1 to 2n -1 
3.   If λi is + operator: 
4.     N.left = stack[top].left union stack[top-1].left  
5.     N.right = stack[top].right union stack[top-1].right  
6.     N.above = x_cover(stack[top-1].left, stack[top].right,  
          TOP) 
7.     N.below = x_cover(stack[top].bottom,  

stack[top-1].bottom, BOTTOM)  
8.     Pop the top two elements of stack   
9.     Push N to stack 
10.   If λi is * operator: 
11.     N.left = x_cover(stack[top-1].left,stack[top].left, LEFT)  
12.     N.right = x_cover(stack[top].left,stack[top-1].left,  

RIGHT)   
13.     N.above = stack[top].above union stack[top-1].above 
14.     N.below = stack[top].below union stack[top-1].below 
15.     Pop the top two elements of stack   
16.     Push N to stack 
17.   If λi is @ operator: 
18.     N.left = x_cover(stack[top-1].left, stack[top].left, LEFT)  
19.     N.right = x_cover(stack[top].left, stack[top-1].left, RIGHT)   
20.     N.above = x_cover(stack[top-1].left, stack[top].right, TOP) 
21.     N.below = x_cover(stack[top].bottom,   

stack[top-1].bottom, BOTTOM) 
22.     Pop the top two elements of stack 
23.     Push N to stack 
24.   If λi is a module name: 
25.     N.left = λi  
26.     N.right = λi  
27.     N.above = λi 
28.     N.below = λi 
29.     Push N to stack 
30. L = stack[top].left 
31. B = stack[top].below 
32. R = stack[top].right 
33. T = stack[top].above 
  



It is possible that some constraints are still violated after 
all the possible shufflings. Hence, the cost function is 
defined as A + P, where A is the total area of the final layout 
and P is the penalty term for the violated boundary 
constraints. The penalty term is the new total dead area 
produced by the modules, which are virtually put at the 
boundaries of the floorplan along which they should be 
packed. For instance, if module e is constrained to be packed 
on the right, the penalty term for e will be the new produced 
dead area caused by virtually putting e to the right boundary 
of the final floorplan and the same situation for calculating c 
constrained to be packed on the right, as shown in Fig. 6 (b). 
The boundary constraint terms P will drop to zero as the 
process proceeds. 
 

IV. EXPERIMENTAL RESULTS 
 

Based on the simulated annealing method [4], we 
implemented the GPE representation in the C++ 
programming language on a PC with Intel PIII 800MHz 
CPU and 256 MB memory. For comparison, we also 
implemented the algorithms presented in [5]. The 
experimental result is shown in Table I. Note that all the 
modules used in the experiment are hard and the modules 
with boundary constraints are randomly chosen. The area of 
a floorplan is measured by that of the minimum bounding 
box enclosing the floorplan. As shown in the Table I, the 
first column is the number of constraint modules. The 
second column means the labels of modules, which have 
boundary constraints in the order of {(Left-Boundary), 

(Bottom-Boundary), (Right-Boundary), (Top-Boundary)}. It 
is clear that GPE achieves promising area utilization with 
reasonable runtime to satisfy the boundary constraints, as 
required. The final circuit layouts of ami49, ami33 with 10 
boundary constraints are shown in Fig. 7(a) and Fig. 7(b), 
respectively. 
 

V. Conclusions 
 

  We successfully propose an efficient algorithm to handle 
non-slicing floorplan with boundary constraints by using the 
Generalized Polish Expression [2]. In addition, we can 
effectively fix the expression based on the accurate 
boundary information of a floorplan and the similarity 
heuristic. The experimental results show that the 
performance is good.  
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Fig. 6.  (a) A floorplan with two violated modules c and e, (b) Added 
penalty (shaded region) for the two violated modules.   
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Fig. 7.  Final results with 10 boundary constraints, (a) ami49, (b) ami33. 

TABLE I   
RESULTS OF THE BOUNDARY CONSTRAINTS TESTING 

 PE GPE 

 # of Constraints Constraint modules 
{(L), (B), (R), (T)} 

Area 
(mm2) 

Time 
(sec) 

Area 
(mm2) 

Time 
(sec) 

6 {(3, 11), (7), (1, 9), (5)} 1.21 41.4 1.21 80.57 
8 {(3, 13), (7, 17), (1, 11), (5, 15)} 1.25 46.61 1.21 113.12 ami33-bc 

10 {(9, 27), (15, 19, 32), (3, 17, 30), (6, 24)} 1.28 50.02 1.23 137.74 

6 {(4), (15, 19), (14, 22), (1)} 37.48 73.03 37.11 232.71 
8 {(13), (15, 19), (3, 42), (1, 9, 35)} 38.2 69.77 37.4 189.56 ami49-bc 

10 {(13, 14, 22), (15, 19), (3, 42), (1, 9, 35)} 39.56 65.52 37.24 270.61 
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