
Non-slicing Floorplans with Boundary Constraints Using
Generalized Polish Expression

Abstract− In this paper, we address the problem of VLSI

floorplanning with considering boundary constraints. The
problem is practical and crucial in physical design since
architects decide to arrange some I/O involved modules along
the chip boundary to minimize both chip area and off-chip
connections. By using a new representation called Generalized
Polish Expression, we propose an efficient algorithm to handle
the boundary constraints on non-slicing floorplans. In addition,
a new fixing heuristic based on modular similarity is also
presented to effectively fix the generated infeasible floorplans
during the process. The experimental result is good in
commonly used MCNC benchmark circuits.

I. INTRODUCTION

In the application of the floorplanning method, it will be
useful if the users are allowed to specify some floorplan
constraints in the final layout. The floorplan constraint we
consider here is called boundary constraint: some modules
are constrained to be packed along one of the four sides of
the chip boundary: on the left, on the right, at the bottom, or
at the top of the final floorplan. The constraint considered
here is very valuable because architects may want to place
some modules along the chip boundary to minimize both
chip area and off-chip connections. The boundary constraint
problem on slicing floorplans, using Polish expression, had
been studied in [5]. The boundary constraint problem on
non-slicing floorplans, using different non-slicing
representations, had also been discussed in articles [3, 6].

Recently, an easy and efficient representation of
non-slicing structure, called Generalized Polish Expression
(GPE for short), is proposed [2]. Basically, GPE is the
generalization of Polish expression, and it inherits the
elegant properties of Polish expression in handling
floorplanning problems. In this paper, by using GPE, we
propose an efficient algorithm to handle the boundary
constraints on non-slicing floorplans. Furthermore, a new
fixing heuristic based on modular similarity is presented to
effectively fix the generated infeasible floorplans during the
process. We tested our algorithm with some benchmark data
and the experimental result is good.

The paper is organized as follows. Preliminaries are given
in section II. Section III describes our proposed method.

Section IV gives the experimental results on MCNC
benchmarks. We make some conclusions in the last section.

II. PRELIMINARIES

A module B is a rectangle of height hB, width wB, and area
areaB. A super-module consists of several modules. A
floorplan for n modules consists of an enveloping rectangle
R subdivided by horizontal lines and vertical lines into n
non-overlapping rectangles such that each rectangle must be
large enough to accommodate the module assigned to it.

In our problem, we are given two kinds of hard modules
M = F U C. The modules in F have freedom to move while
the modules in C are constrained to be packed along one of
the four sides of the final floorplan. A module B which is
constrained to right boundary is denoted as BR, and the rest
may be deduced by analogy. A feasible packing is a packing
in the first quadrant such that all the modules in C are placed
on the boundaries as required. Our objective is to construct a
feasible floorplan R to minimize the total area of the
floorplan R.

A. Polish Expression

This representation can only present slicing structure of a
floorplan. Each packing is encoded by a sequence, including
module name and two relational operators. As illustrated in
Fig. 1, every leaf corresponds to a basic module and is
marked by a module name. Every internal node of the tree is
labeled by a + or a *, corresponding to a vertical or a
horizontal cut respectively. We can obtain a Polish
expression [1] of length 2n - 1 with n modules in the slicing
floorplan by traversing the slicing tree.

B. Generalized Polish Expression (GPE)

GPE (the abbreviation for Generalized Polish Expression)
[2] is the generalization of Polish expression. GPE can
efficiently reuse some area that cannot be utilized anymore if
only having vertical and horizontal operators defined in
Polish expression, and is able to present non-slicing
structural floorplan.

GPE uses a sequence of modules to reflect a physically

De-Sheng Chen

Department of Information Engineering
and Computer Science
Feng Chia University

100 Wen-hwa Road, Taichung, Taiwan
Tel: +886-4-24517250 Ext. 3746

Fax: +886-4-24516101
e-mail: dschen@pine.iecs.fcu.edu.tw

Chang-Tzu Lin, Yi-Wen Wang

Department of Information Engineering
and Computer Science
Feng Chia University

100 Wen-hwa Road, Taichung, Taiwan
Tel: +886-4-24517250 Ext. 3719, 3763

Fax: +886-4-24516101
e-mail: p8993852@knight.fcu.edu.tw,

ywang@fcu.edu.tw

mailto:dschen@pine.iecs.fcu.edu.tw
mailto:p8993852@knight.fcu.edu.tw
mailto:ywang@fcu.edu.tw

non-slicing floorplan by proposing a new relational operator
@. As illustrated in Fig. 2(a), if there are only geometrically
vertical and horizontal operators, the utilization of dead area
is not achievable. The corner operator @, however, will
arrange a module or a super-module in a corner formed by
the other modules. As shown in Fig. 2(b), the corner
operator will arrange E in the corner, i.e. the dead area
constructed by A and B, where A, B and E can be a module
or a super-module. Through corner operator, the dead area
can be effectively reused by the other modules that have not
been arranged yet. Furthermore, with the proposed corner
operator, the new encoding scheme GPE can express the
structure of wheel, as illustrated in Fig. 2(c).

C. Young-Wong Algorithm

In [5], Young and Wong handle the boundary constraints
by adding an algorithm to find the information of each
module. If a new generated Polish expression does not
satisfy the boundary constraints in the progress of simulated
annealing process, it can be fixed as much as possible by
shuffling the modules. An example is shown in Fig. 3. In the
figure, boundary constraint is violated in Fig. 3(a) since
module e is not packed at the right, as required. To fix this, e
is exchanged with g, where g is the module closest to e in
the Polish expression and that g is packed on the right
boundary. The result after shuffling the two modules is
shown in Fig. 3(b).

III. OUR PROPOSED METHOD

In [5], the boundary information of each module is found
by scanning the Polish expression from right to left. The
relationship of topology of + and * operators are checked to
obtain the boundary information of each module. However,

modules that can be slid to the chip boundary may be not
found due to the order of mergence of Polish expression.
Hence, the method used in [5] may lose a certain chances to
fix an infeasible floorplan that could lead to a good result at
the end. An example of the situation is shown in Fig. 4. A
floorplan is shown in Fig. 4 (a), and the boundary
information of right side is only set to module e. Although,
both of the module a and d can be slid to the right side of the
chip (Fig. 4 (b)), the situation is not checked due to the
appearing order of Polish expression. Hence, it may lose the
chances to repair the violated modules. Therefore, it is
important to come up with a more accurate method to find
the boundary information of a floorplan.

A. Boundary Information Checking Algorithm (BICA)

In our boundary information checking algorithm, the
boundary information of a floorplan can be established by
scanning the GPE once. This is done by recording four lists:
L, B, R and T when entirely scanning the GPE from left to
right, and by using a stack. The modules exist in list L mean
there are no modules cover them in final floorplan, i.e. the
modules are at or can be slid to left boundary of the
floorplan, and the modules in lists B, R and T may be
deduced by analogy. Each element N that is pushed into
stack has four lists: N.left, N.below, N.right, N.above. The
modules exist in list N.left mean there are no modules cover
them in a sub-floorplan, i.e. the modules are at or can be slid
to left boundary of the sub-floorplan, and the modules in
lists N.below, N.right and N.above may be deduced by
analogy. We push an element into the stack whenever we see
a module or a super-module. We pop both the top and the
top - 1 elements in the stack, and then push a new element
which the four lists of the new element are obtained from the

c a * e + b + g d + f + *

eR

c a

f

g

b
d

eRc a

fg

b

d

c a * g + b + e d + f + *

eR

c a

f

g

b
d

c a * f + b + g d + e + *
 (a) (b) (c)

Fig. 3. Suppose module e is constrained to be packed along the right
boundary. (a) an infeasible floorplan, (b) feasible by shuffling e with g, (c)
feasible by shuffling e with f.

(a) B A * (b) B A * E @

B

A

C

D

B

A

E
B

A

E

Dead-area

(c) B A * E @ C + D @

Fig. 2. (a) dead area is no longer utilized by only horizontal or vertical
operators (b) corner operator, @, can effectively reuse the dead area, and (c)
a floorplan of wheel structure, where A, B, C, D and E can be a module or a
super-module. Notice that the part of shadow is dead area.

Polish expression =
{a f + c i * + h + e g + * b d + *}

+: cut horizontally
*: cut vertically

slicing tree

a f
+

c i
*

h
+

e g
+

*
b d

+
*

a
b

c d
g

i

h

ef +

Fig. 1. Slicing tree representation and its corresponding Polish expression
of a slicing floorplan.

Polish expression = {b c * a + d + e *}

a

d

eRb c

aR

dR

eRb c

sliding

(a) Incompletely (b) Completely

Fig. 4. The boundary constraints at right side are, (a) only set to module
e, (b) set to modules e, a and d, where module a and d can be slid to right
boundary.

two popped elements with reference to both union and
x_cover(retain, alter, direct) operations whenever we see an
operator. For an expression AB*, we arrange super-module A
left to super-module B. The union operation which acts on
an expression AB* directly append the list of B.above to
both the list of A.above and form a new element N.above,
and so does N.below. The lists of retain and alter in x_cover
operation mean the list of retain replace the list of alter
which is covered by the lists of retain in one of the four
direction: LEFT, RIGHT, TOP, BOTTOM. The rest of
situations of x_cover may be deduced by analogy. An
example of the boundary information checking algorithm is
given in Fig. 5. We scan the GPE from left to right once.
Suppose we scan from the module a to the first operator *,
i.e. GPE = {a d *}. A new element N will be pushed into
stack, where N.left will be the module a, N.right will be the
module d, and N.above and N.below will be the modules a
and d. The rest of processing can be deduced by analogy.
Finally, we will obtain the boundary information of the
floorplan as follows: L = {a-b}, B = {a-d}, R = {d-e-c}, T =
{b-c}.

Because we use more accurate information to find out the
boundary information of a floorplan, we can easily fix an
infeasible solution to obtain a feasible one.

B. Fixing an Infeasible Floorplan

If the generated floorplan violates the boundary
constraints, we are going to fix it as much as possible by
shuffling the modules with reference to the similarity
heuristic. The value, D, of similarity between module A and
module B can be defined as follows.

BABA wwhhD −+−=

The smaller the value D is, the similar the two modules
are. We will choose the module which has the smallest value
to perform the fixing. An example is shown in Fig. 3. In the
figure, boundary constraint is violated in Fig. 3(a) since
module e is not packed at the right, as required. To repair
this, we exchange e with f where f is the module most
similar to e in the GPE and that f is packed on the right
boundary, as shown in Fig. 3 (c). Generally, if a module X is
not packed along the boundary as required, we will shuffle it
with another module Y which is most similar to X in the GPE
and that Y’s position satisfies the boundary constraint of X.
Obviously, the shuffling with reference to similarity
heuristic (Fig. 3(c)) will be better or equal to the shuffling
with the closest module (Fig. 3(b)).

C. Cost Function

e

a d

b c

Scanned GPE = {a d *}
N.left = x_cover({a}, {d}, LEFT) = {a}
N.right = x_cover({d}, {a}, RIGHT) = {d}
N.above = {a} union {d} = {a-d}
N.below = {a} union {d} = {a-d}

Scanned GPE = {a d * b +}
N.left = {a} union {b} = {a-b}
N.right = {d} union {b} = {d-b}
N.above = x_cover({b}, {a-d}, TOP) = {b}
N.below = x_cover({a-d}, {b}, BOTTOM) = {a-d}

Scanned GPE = {e c +}
N.left = {e} union {c} = {e-c}
N.right = {e} union {c} = {e-c}
N.above = x_cover({c}, {e}, TOP) = {c}
N.below = x_cover({e}, {c}, BOTTOM) = {e}

Scanned GPE = {a d * b + e c + @}
N.left = x_cover({a-b}, {e-c}, LEFT) = {a-b}
N.right = x_cover({d-b}, {e-c}, RIGHT) = {d-e-c}
N.above = x_cover({b}, {c}, TOP) = {b-c}
N.below = x_cover({a-d}, {e}, BOTTOM) = {a-d}

Final boundary information of the floorplan:
L = {a-b}, B = {a-d}, R = {d-e-c}, T = {b-c}

GPE = {a d * b + e c + @}
CCL = {(b, d)}

Fig. 5. Some snapshots of BICA.

Boundary Information Checking Algorithm
Input: A Generalized Polish expression Ψ = {λ1, λ2, …, λ2n-1}
Output: Four boundary lists L, B, R and T in the final floorplan.
1. top = 0.
2. For i = 1 to 2n -1
3. If λi is + operator:
4. N.left = stack[top].left union stack[top-1].left
5. N.right = stack[top].right union stack[top-1].right
6. N.above = x_cover(stack[top-1].left, stack[top].right,
 TOP)
7. N.below = x_cover(stack[top].bottom,

stack[top-1].bottom, BOTTOM)
8. Pop the top two elements of stack
9. Push N to stack
10. If λi is * operator:
11. N.left = x_cover(stack[top-1].left,stack[top].left, LEFT)
12. N.right = x_cover(stack[top].left,stack[top-1].left,

RIGHT)
13. N.above = stack[top].above union stack[top-1].above
14. N.below = stack[top].below union stack[top-1].below
15. Pop the top two elements of stack
16. Push N to stack
17. If λi is @ operator:
18. N.left = x_cover(stack[top-1].left, stack[top].left, LEFT)
19. N.right = x_cover(stack[top].left, stack[top-1].left, RIGHT)
20. N.above = x_cover(stack[top-1].left, stack[top].right, TOP)
21. N.below = x_cover(stack[top].bottom,

stack[top-1].bottom, BOTTOM)
22. Pop the top two elements of stack
23. Push N to stack
24. If λi is a module name:
25. N.left = λi
26. N.right = λi
27. N.above = λi
28. N.below = λi
29. Push N to stack
30. L = stack[top].left
31. B = stack[top].below
32. R = stack[top].right
33. T = stack[top].above

It is possible that some constraints are still violated after
all the possible shufflings. Hence, the cost function is
defined as A + P, where A is the total area of the final layout
and P is the penalty term for the violated boundary
constraints. The penalty term is the new total dead area
produced by the modules, which are virtually put at the
boundaries of the floorplan along which they should be
packed. For instance, if module e is constrained to be packed
on the right, the penalty term for e will be the new produced
dead area caused by virtually putting e to the right boundary
of the final floorplan and the same situation for calculating c
constrained to be packed on the right, as shown in Fig. 6 (b).
The boundary constraint terms P will drop to zero as the
process proceeds.

IV. EXPERIMENTAL RESULTS

Based on the simulated annealing method [4], we
implemented the GPE representation in the C++
programming language on a PC with Intel PIII 800MHz
CPU and 256 MB memory. For comparison, we also
implemented the algorithms presented in [5]. The
experimental result is shown in Table I. Note that all the
modules used in the experiment are hard and the modules
with boundary constraints are randomly chosen. The area of
a floorplan is measured by that of the minimum bounding
box enclosing the floorplan. As shown in the Table I, the
first column is the number of constraint modules. The
second column means the labels of modules, which have
boundary constraints in the order of {(Left-Boundary),

(Bottom-Boundary), (Right-Boundary), (Top-Boundary)}. It
is clear that GPE achieves promising area utilization with
reasonable runtime to satisfy the boundary constraints, as
required. The final circuit layouts of ami49, ami33 with 10
boundary constraints are shown in Fig. 7(a) and Fig. 7(b),
respectively.

V. Conclusions

 We successfully propose an efficient algorithm to handle
non-slicing floorplan with boundary constraints by using the
Generalized Polish Expression [2]. In addition, we can
effectively fix the expression based on the accurate
boundary information of a floorplan and the similarity
heuristic. The experimental results show that the
performance is good.

REFERENCES

[1] D. F. Wong, and C. L. Liu, “A New Algorithm for Floorplan Design,”
Proc. DAC, pp.101–107, 1986.
[2] Chang-Tzu Lin, De-Sheng Chen and Yi-Wen Wang, “GPE: A New
Representation for VLSI Floorplan Problem,” Proc. ICCD, pp. 42-44, 2002.
[3] Jianbang Lai, Ming-Shiun Lin, Ting-Chi Wang and Li-C. Wang,
“Module Placement with Boundary Constraints Using the Sequence-Pair
Representation,” Proc. ISCAS, pp. 341-344, 2001.
[4] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp.671–680, May, 1983.
[5] F. Y. Young, D. F. Wong, and H. H. Yang, “Slicing floorplans with
boundary constraints,” IEEE Trans. on CAD, pp. 1385–1389, 1999.
[6] Yuchun Ma, Sheqin Dong, Xianlong Hong, Yici Cai, Chung-Kuan
Cheng, Jun Gu, “VLSI Floorplanning with Boundary Constraints Based on
Corner Block List,” Proc. ASP-DAC, pp. 509-514, 2001.

eR

g h

fR

iR

b

aR

dR
cT

eR

g h

fR

iR

b

aR

dR
cT

eR

cT

(a) (b)

Fig. 6. (a) A floorplan with two violated modules c and e, (b) Added
penalty (shaded region) for the two violated modules.

(a) (b)

Fig. 7. Final results with 10 boundary constraints, (a) ami49, (b) ami33.

TABLE I
RESULTS OF THE BOUNDARY CONSTRAINTS TESTING

 PE GPE

 # of Constraints Constraint modules
{(L), (B), (R), (T)}

Area
(mm2)

Time
(sec)

Area
(mm2)

Time
(sec)

6 {(3, 11), (7), (1, 9), (5)} 1.21 41.4 1.21 80.57
8 {(3, 13), (7, 17), (1, 11), (5, 15)} 1.25 46.61 1.21 113.12 ami33-bc

10 {(9, 27), (15, 19, 32), (3, 17, 30), (6, 24)} 1.28 50.02 1.23 137.74

6 {(4), (15, 19), (14, 22), (1)} 37.48 73.03 37.11 232.71
8 {(13), (15, 19), (3, 42), (1, 9, 35)} 38.2 69.77 37.4 189.56 ami49-bc

10 {(13, 14, 22), (15, 19), (3, 42), (1, 9, 35)} 39.56 65.52 37.24 270.61

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

