
Implementation of the Super-Systolic Array for Convolution

Abstract - High-performance computation on a large array of
cells has been an important feature of systolic array. To achieve
even higher degree of concurrency, it is desirable to make cells
of systolic array themselves systolic array as well. The
architecture of systolic array with its cells consisting of another
systolic array is to be called super-systolic array.

In this paper we propose a scalable super-systolic array
architecture which shows high-performance and can be
adopted in the VLSI design including regular interconnection
and functional primitives that are typical for a systolic
architecture.

I. Introduction

VLSI has made implementation of system hardware or
even highly parallel array processors economically feasible
and technically realizable[1]. A systolic array[2-5] formed
by interconnecting a set of identical data-processing cells in
a uniform manner is a combination of an algorithm and a
circuit that implements it, and is closely related conceptually
to arithmetic pipeline. In a systolic array, data words flow
from external memory in a rhythmic fashion, passing
through many cells before the results emerge from the
array's boundary cell and return to external memory. Upon
receiving data words, each cell performs the same operation
and transmits the intermediate results and data words to
adjacent cells synchronously.

High-performance computation over a large array of cells
has been an important feature of systolic array. To achieve
even higher degree of concurrency, it is desirable to make
cells of systolic array themselves systolic array as well. We
will refer to this architecture of systolic array consisting of
another systolic array in a hierarchical manner as a
super-systolic array.

In this paper we propose a scalable super-systolic array
architecture which consists of another systolic array,
produces high -performance, and can be directly adopted in
the VLSI design including regular and local interconnection
and functional primitives that are typical for a systolic
architecture. The cell of a systolic array derived through
projection and scheduling upon the dependence graph, DG,
[1] from the given behavior can be designed as another
systolic array, and this systolization procedure of
implementing cell as another systolic array could be applied
repeatitively in a hierarchical manner until a cell having only
primitive operators is obtained.

We choose a super-systolic array for convolution as an
example to demonstrate the procedure for deriving a
super-systolic array, and then check the improvement on
performance because it is a simple problem with a variety of
enlightening systolic solution, and more importantly, it is
representative of a wide class of computation suited to
systolic designs.

The systolic array for convolution can be thought of as a
logical systolic array in a sense that the array assumes all
operation to complete in a unit delay to maintain rhythmic
data flow. However, difference in the required delay for

different operators may not be negligible and forced
selection of unit delay as the longest delay among operators
ends up with a low-performance systolic array. To make the
assumption reasonable, namely, to transform logical systolic
array into a virtual systolic array, time-consuming operation
such as multiplication should be effectively implemented
with more primitive operations. The strategy mentioned
above calls for implementation of another systolic array
performing complex operation in a cell of the logical
systolic array. We will refer to this virtual systolic array
resulted from the above strategy as super-systolic array.

Derived super-systolic array for convolution is modeled
and simulated in RT level using VHDL, then synthesized to
a schematic and finally implemented using the cell library
based on mµ35.0 1-poly 4-metal CMOS technology.

II. Super-Systolic Array for Convolution

A. Systolic Array for Convolution

The problem of convolution is defined as follows[1]:
Given two sequences u(i) and w(i), i = 0, 1, …, N-1, the
convolution of two sequence is

∑
−

=
−=

1

0
)()()(

N

k
kiwkuiy

The convolution problem can be viewed as a problem of
combining two data streams, w(i)’s and u(i)’s, in a certain
manner to form a resultant data stream of y(i)’s.

The rectangular shaped DG for convolution is shown in
Fig. 1(a). Note that the w(i) coefficients along the columns
remains unchanged. This mean that the coefficient w(i) may
be a stored constant in the ith processor, as shown in Fig.
1(b). We first apply the systolization procedure to the
convolution signal flow graph, SFG, [1] in Fig. 1(b). In Fig.
2(a) convolution SFG is shown along with the cut-sets. If we
scale the delay by a factor of two, i.e., D → 2D΄, then one
delay can be transferred from the left-going edges to
right-going edges in the cut-sets, leading to the systolic array
for convolution shown in Fig. 2(b). The pipeline period, α ,
is two for this convolution array.

Fig. 1. (a) DG for convolution for the case of N=4 (b) SFG

obtained by projection along [0 1]

Jae-Jin Lee, Gi-Yong Song
Dept. of Computer Engineering

Chungbuk National University, Cheongju Chungbuk 361-763 Korea
E-mail : gysong@chungbuk.ac.kr

Fig. 2. (a) Convolution SFG (b) Systolic array for convolution (c)
Systolic array cell

The systolic array consists of identical linearly-connected
processing elements, or cells, as depicted in Fig. 2(b). The
internal structure of each cell is shown in Fig. 2(c). Each cell
contains a multiplier and an adder. In a high-complexity
system, area restriction is very crucial, thus leads to a need
for a systolic array-based implementation of the area
-consuming operator such as multiplier[6-8]. The multiplier
in each cell of the systolic array for convolution is a natural
candidate for systolization and should be implemented using
systolic array as is proposed in this paper.

B. Systolic Array Multiplier

In a high-complexity system, area restriction is very
crucial and affects the final performance of the system. The
systolic multiplier allows us to get high processing speed as
well as limited resource consumption.

The DG for M-bit multiplier performing p(i)=u(i)w(i) is
shown in Fig. 3 for the case of M =4. The DG obtained can
now be safely projected in the ij-direction, [1 1]. The default
schedule is used. The data flow pattern divides the DG into
upper and lower part as shown with dashed line in Fig. 3,
each part resulting in systolic array with different
interconnection. At the same time, output data are produced
from every node, resulting in a large number of output port
in the SFG generated by the ij-projection. To circumvent this
problem, it is possible to extend the index space [9] of the
DG, so the output occurs at points that will be mapped to the
boundary nodes of the SFG only. The modified DG using
procedure of index space extension is shown in Fig. 4. When
the modified DG is projected along the ij-direction, the SFG
with input and output port on the boundary node only is
obtained. The systolic array for 4-bit multiplier with two
ports, one for input and one for output each, is shown in Fig.
5. Output data emerge from the rightmost node and the array
use M cells. Multiplicands stay in cells, multipliers and
results move in the opposite direction.

Fig. 3. DG for 4-bit multiplier

Fig. 4. Modified DG using index space extension

Fig. 5. Systolic array for 4-bit multiplier with two ports and internal
structure of the cell

C. Super-Systolic Array

Making cells of systolic array themselves systolic array
results in even higher degree of concurrency and even lower
resource consumption, referring to the original systolic array
as a super-systolic array.

An example of super-systolic array for convolution is
depicted in detail in Fig. 6. Each cell of systolic array for
convolution contains multiplier and adder. To get higher
processing speed and area minimization, multiplier is
designed again using systolic array, making systolic array
for convolution a super-systolic array and the cell of systolic
array for convolution a super-cell. The cell of a
super-systolic array consisting of another systolic array is
referred to as a super-cell. Internal structure of each cell is
identical and is shown in Fig. 6.

To compare the performance of systolic array for
convolution shown in Fig. 2 with that of super-systolic array
for convolution shown in Fig. 6, we implement each of them
on XCV200 with approximate Gate count 220,000, 2352
SLICEs[10]. The inputs, u(i) and w(i),are set to 16-bit each
in this implementation. Fig. 7 and Fig.8 show
implementations for each design and their implementation
reports are listed in Table 1.

From the results, we can see that design using
super-systolic array utilizes chip resource more efficiently
and shows even higher performance than design using
systolic array.

Fig. 6. Super-systolic array for convolution

Fig. 7. Schematic for systolic array for convolution

Fig. 8. Schematic for super-systolic array for convolution

TABLE 1.

Implementation reports

Implementation SLICE
Average

connection
delay (ns)

Average connection
delay on the 10
worst nets (ns)

Systolic Array 632 2.060 5.494

Super-Systolic
Array 384 1.597 4.200

III. Simulation, Synthesis, and Implementation

Each of the systolic array multiplier and super-systolic
array for convolution was modeled and simulated in RT
level using VHDL[11], and synthesized to a schematic using
Synopsys design compiler[12-13].

Simulation result using Synopsys VHDL simulation for
4-bit systolic multiplier is shown in Fig. 9.

Fig. 9. Simulation waveform for systolic multiplier

For two data streams w(i)’s -- 1, 8, C, and D -- and u(i)’s

-- 2, 9, B, and F -- in hexadecimal each, the simulation result,
i.e., the result of convolution, is shown in Fig. 10. Note that
the successive output values 2, 19, 6B, ED, 171, 143, and C3
in hexadecimal occur periodically.

Fig. 10. Simulation waveform for super-systolic array for
convolution

A synthesized schematic using Synopsys design compiler
for super-systolic array for convolution is shown in Fig. 11
and internal structure of its cell, i.e., the super-cell is shown
in Fig. 12. Note that super-cell of super-systolic array for
convolution contains another systolic array, that is, systolic
multiplier in this design. A schematic for systolic multiplier
and internal structure of its cell is shown in Fig. 13 and Fig.
14.

Fig. 11.Synthesized schematic for super-systolic convolution array

Fig. 12. Synthesized schematic for the cell of super-systolic
convolution array

Fig. 13. Synthesized schematic for systolic multiplier

Fig. 14. Synthesized schematic for the cell of systolic multiplier

After being synthesized by Synopsys design compiler,
super-systolic array for convolution was automatically
implemented using Apollo tool provided by AVANT!. Used
cell library is based on mµ35.0 1-poly 4-metal CMOS
technology. The layout is shown in Fig. 15.

Fig. 15. Layout for super-systolic array for convolution

IV. Conclusions

This paper demonstrates a super-systolic array performing

convolution. Making cells of systolic array themselves
systolic array yields high-performance, bringing about high
degree of concurrency. We refer to this architecture of
systolic array consisting of another systolic array in a
hierarchical manner as a super-systolic array.

High-performance real-time signal processing calls for the
enhancement of concurrent computational capability.
Systolic array offers a promising solution to this
computational need and presages a technological
breakthrough in signal/image processing applications.
Super-systolic array approach has value in handling
signal/image processing applications in which data rates are
usually very high and the computational requirements are
extremely demanding because fundamental DSP operations
such as convolution/correlation, FFTs, FIR or IIR filters can
be implemented using systolic array.

Designs based on super-systolic array architecture are
simple, modular, expandable, and yield high-performance.
Research on this architecture is particularly worthwhile in
view of the fact that VLSI makes the implementation of
systolic array chip feasible.

References

[1] S.Y.Kung, VLSI Array Processors, Prentice Hall, 1988.
[2] H.T.Kung, “Why Systolic Architectures?,” Computer
Vol.15, No.1, pp.37-46, January 1982.
[3] H.T.Kung and C.E. Leiserson, "Systolic Arrays (for
VLSI)," Sparse Matrix Proc., Academic Press, Orland, fla.,
pp.256-282, 1979.
[4] S.Y.Kung, ”On Supercomputing with Systolic/Wavefront
Array processors,” IEEE, vol72, no.7, July 1984.
[5] K.T.Johnson, A.R.Hurson, “General Purpose Systolic
Arrays,” IEEE Computers, pp.20-31, Novemver 1993.
[6] H.I.Saleh, A.H.Khalil, M.A.Ashour, A.E.Salama, “Novel
serial-parallel multipliers,” IEEE Proc., vol.148, pp.183-189,
August 2001.
[7] S.Sunder, F.El-Guibaly, A.Antoniou, “Area-efficient
multipliers for digital signal processing applications,” IEEE
Trans. Circuit Syst.-II, Analog Digit. Signal Process., 43, (2),
pp.90-95, 1996.
[8] K.M.Ellethy, M.A.Bayoumi, “Systolic Architecture for
modulo multiplication,” IEEE Trans. Circuit Syst.-II, Analog
Digit. Signal Process., 42, (11), pp.725-729, 1995.
[9] S.K.Rao, Regular Iterative algorithms and Their
Implementation on Processor Arrays, Ph.D. thesis, Stanford
University, Stanford, California, 1985.
[10] The Programmable Logic Data Book. Xilinx, Inc. 1984.
[11] Y.C.Hsu, K.F.Tsai, J.T.Liu and E.S.Lin, VHDL
Modeling for Digital Design Synthesis, Kluwer Academic
Publishers, 1995.
[12] K.C. Chang, Digital Systems Design with VHDL and
Synthesis, IEEE Computer Society Press, 1999.
[13] Weng Fook Lee, VHDL Coding and Logic Synthesis
with Synopsys, Academic Press, 2000.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

