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Abstract— Nowadays, variable delay arithmetic units have
been used for implementing a datapath of a target system in pur-
suit of performance improvement. However, adoption of vari-
able delay arithmetic units requires modification of a typical syn-
chronous control unit design methodology. A telescopic arith-
metic unit based methodology is one of representative methodolo-
gies to design synchronous control units for variable delay dat-
apaths. In this paper, we propose two optimization methods for
it. Proposed optimization techniques will be analyzed in order to
show their performance improvement effects explicitly.

I. INTRODUCTION

Although synchronous system designers still assume that
all the component arithmetic units of a datapath operate with
their own fixed delays, variable delay arithmetic units, in short
VDAUs, have started to be implemented and used in pursuit of
performance improvement of target systems[1, 2, 3]. How-
ever, adoption of VDAUs requires modification of a typical syn-
chronous control unit design methodology.

[1, 2] proposed how to synthesize VDAUs, which were called
telescopic arithmetic units, in short TAUs, automatically, and
how to modify an original finite state machine, in short FSM,
into a new FSM which can control a variable delay datapath
with TAUs respectively. Although they achieved noticeable and
pioneering results, their work is not optimized enough in fol-
lowing two aspects. The first, concurrent execution among
VDAUs are not supported enough and unnecessary synchroniza-
tions are required. The second, selection of proper clock cy-
cles is restricted. In [3], a synchronous independent controller
is built for each operation, and all the controllers are integrated
into a global control unit. Although the method can guarantee
that resulting control units are able to preserve original con-
currency among operations, resulting control units may suffer
from a rapid area increase with the increase of the number of
operations in system specifications.

In this paper, we propose two optimization methods in order
to ameliorate above two problems of the previous approach[1,
2]. The core features of our proposed new optimization meth-
ods are “to support concurrent executions among VDAUs com-
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pletely” and “to reduce idle time of VDAUs by lowering the
lower bound for selection range of clock cycles”.

II. PRELIMINARIES

A. Variable delay arithmetic units

A telescopic arithmetic unit[1, 2], in short TAU, consists of
the following two parts, an arithmetic unit and a completion
signal generator as shown in Fig. 1. The arithmetic unit part
of a TAU is exactly the same as general synchronous arithmetic
units. The completion signal generator, which is a distinctive
part of VDAUs, generates a completion signal when it decides
that computation for input operands is over. For convenience
of an explanation, we define two variables LD(Long Delay) and
SD(Short Delay). Actually, LD corresponds to the worst case
delay of the arithmetic unit. Note that the real computation
time varies according to input operands although general syn-
chronous arithmetic units are assumed to have the worst and
fixed computation time for easy design. Therefore, we can di-
vide whole input operands into two groups; the first group is
the set of input operands requiring computation time not larger
than SD, and the second group is the set of remaining input
operands not belonging to the first group. Intuitively speak-
ing, a completion signal generator is the set of input operands
belonging to the first group. Therefore, it produces ‘1’ for in-
put operands which can be computed within SD, and thus we
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Fig. 2. (a) An original dataflow graph (b) A corresponding TAUBM
FSM(‘C’: a completion signal from a TAU styled multiplier)

know whether the corresponding computation is over within
SD or not by checking the value of the completion signal gen-
erated from the completion signal generator1. An automatic
synthesis method of the completion signal generator was also
developed in [1, 2].

B. A synchronous control unit generation method based on
TAUs

In addition to development of TAUs, [1, 2] developed a
method to modify an original FSM into a new FSM which is
able to control a variable delay datapath including TAUs. we
call it TAU based methodology, in short TAUBM. Although the
initial TAUBM was developed to be applied to the modification
of any given FSM, we restrict our discussion to FSMs corre-
sponding to controllers for dataflow graphs, in short DFGs be-
cause we intend to implement the proposed method under our
high-level synthesis tool. An FSM modification method based
on TAUBM is as follows[1, 2]; [step 1] If a time step T i includes
TAU operations, divide the corresponding state S i into Si and
S′

i. Here, a TAU operation represents an operation to which
a TAU is allocated. [step 2] For the case where the TAU con-
sumes LD, state transitions, Si → S′

i → Si+1, are generated.
For the other case where the TAU requires SD, a state transi-
tion, Si → Si+1, is generated. In Si → S′

i, register enable
signals are not generated because allocated TAUs do not finish
their corresponding TAU operations. In order to make a deci-
sion between Si → Si+1 and Si → S′

i, a completion signal
‘C’ from the TAU is considered in the input set of an FSM. We
call the finally modified FSM a TAUBM FSM. Fig. 2 shows an ex-
ample DFG and a corresponding TAUBM FSM respectively. For
the more detailed explanation about a modification procedure,
please refer to [1, 2]. Note that execution latencies of TAUBM

FSMs vary because different state transition paths are selected
according to the values of completion signals from TAUs. For
example, execution latency of TAUBM FSM in Fig. 2(b) varies
between 4 and 6 clock cycles according to the value of a com-
pletion signal ‘C’.

1In [1], the completion signal ‘1’ is generated for input operands which can
not be processed within SD. However, in this paper, we take an opposite way
for convenience.

III. OPTIMIZATION OF TAUBM SYNCHRONOUS CONTROL

UNITS FOR VARIABLE DELAY DATAPATHS - I

The most distinctive feature of TAUBM is that TAUs constitut-
ing a variable delay datapath spend 1 or 2 clock cycles selec-
tively according to their input operands. Although only TAUs
spend variable computation time, original TAUBM often require
unnecessary synchronizations with TAUs for other arithmetic
units. If the ratio of input operands requiring SD for a TAU,
‘P’, is big, the synchronization may not be critical. How-
ever, otherwise, performance degradation due to the unneces-
sary synchronization is not negligible. You should note that ‘P’
is not the variable that system designers can control. That is,
the value of ‘P’ depends on the set of input operands entirely.
Therefore, in the optimization method I, we remove all the un-
necessary synchronizations and reduce bad effects of low ‘P’
by supporting concurrent executions among arithmetic units
completely. The following is a simple algorithm to derive a
new FSM through the optimization method I.

ALGORITHM 1 Derivation of a new FSM through the
optimization method I
DerivationOfFsmInOptimization-I() {

Generate an initial state S0;
Cstates = RecursiveGenerateAllChildStates(S0);}

RecursiveGenerateAllChildStates(Si) {
Generate the set of child states, Cstates, for Si;
Forall Cstates(i)

RecursiveGenerateAllChildStates(Cstates(i)); }
The function RecursiveGenerateAllChildStates(Si) in

above algorithm generates all successor states which can
be reachable from the state Si by activating all operations
whose input operands and allocated arithmetic unit is avail-
able. Therefore, FSMs derived in Algorithm 1 generate all the
reachable states according to the delays of TAUs. For better un-
derstanding of the concept of the optimization method I, com-
pare two FSMs in Fig. 2(b) and Fig. 3. They are FSMs, which
are derived by applying TAUBM and the optimization method
I respectively, for a DFG in Fig. 2(a). Here, we assume that
a TAU styled multiplier is allocated to operations 2 and 3. In
TAUBM, since the 2nd stage of a TAU styled multiplier is spent
selectively according to input operands, we should not allo-
cate some operations to the same time interval the 2nd stage
of the TAU is allocated to. Therefore, operation 1, which is a
successor of operation 0, should be delayed until operation 3
is over, although it can be started once operation 0 is over as
shown in Fig. 2(a). However, the optimization method I en-
ables the corresponding FSM to activate operations as soon as
possible because it explores all the reachable states according
to the delays of TAUs. For example, in Fig. 3, operation 1 is
always activated in the 2nd time step and operations 0, 1 and 3
can be performed in 2 clock cycles irrespective of the delay of
TAU operation 3 in both state transition paths S0 → S2 → S3

and S0 → S1 → S3, while they spend 2 or 3 clock cycles in
TAUBM. Operations 2, 4 and 5 are also same.

For performance analysis, we define the execution latency
of a TAUBM FSM as LTTAU =

∑i=N−1

i=0
CC · P k(i) + 2 · CC ·



TABLE I
Comparison between TAUBM FSMs and new FSMs obtained by the optimization method I

DFG Resources States(FF) LTTAU(ns) States(FF) LTOPT1(ns) Performance Enhancement

3rdFIR ×:2, +:1 6(3) [45][49.4, 57.1, 63.7][75] 10(4) [45][49.2, 56.2, 61.8][75] [0.4%, 1.6%, 2.9%]

5thFIR ×:2, +:1 7(3) [75][81.9, 92.5, 99.4][105] 19(5) [75][77.9, 82.7, 86.3][90] [4.9%, 10.6%, 13.2%]

2ndIIR ×:2, +:1 7(3) [75][80.7, 90.3, 97.5][105] 15(4) [75][77.9, 82.7, 86.3][90] [3.5%, 8.4%, 11.5%]

Diff. ×:2, +:1, -:1 7(3) [60][68.6, 82.9, 93.8][105] 24(5) [60][68.1, 80.7, 90.6][105] [0.7%, 2.7%, 3.4%]

×: SD(×)=15ns, LD(×)=20ns / +, -: FD(+, -)=15ns / FF: the number of flip-flops
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Fig. 3. A new FSM obtained by the optimization method I for Fig. 2(a)

(1 − P k(i)). Here, CC, k(i) and N represent a new clock cycle
selected according to the value of SD, the number of TAUs in
the i-th time step, and the number of time steps. Note that
LTTAU varies according to the value of ‘P’. For example, in
the case of Fig. 2(b), the execution latency is (6-2P)·CC. In the
worst case, ‘P’ is 0, LTTAU is 6·CC, but in the best case, ‘P’
is 1, LTTAU is 4·CC. Contrary to TAUBM, new FSMs derived
in the optimization method I activates operations, whose input
operands and allocated arithmetic unit is available, as soon as
possible in all the state transition paths and thus they can acti-
vate some operations at the same time step which 2nd stages of
TAUs are allocated to. Therefore, new FSMs always guarantee
performance as good as corresponding TAUBM FSMs at least,
and improve average performance. For example, a new FSM in
Fig. 3 always spend 4 clock cycles irrespective of the various
delays of the TAU.

In order to check the effects of the optimization method I in
aspects of performance and area, we derived FSMs for several
DFG benchmarks through TAUBM and the optimization method
I respectively, and Table I shows the analysis results. In the
aspect of area, it seems that the optimization method I requires
larger circuit areas because the number of states(5 th column)
for corresponding FSMs is more than the number of states(3 rd

column) for TAUBM FSMs. This is due to the fact that new FSMs
include all reachable states. However, the goal of the adop-
tion of VDAUs such as TAUs is to improve the performance of
targeted systems. Latencies in 4th column and 6th column
are latencies for FSMs obtained by TAUBM and the optimiza-
tion method I. Each result for latencies consist of [best case],
[cases where P is equal to 0.9, 0.7 and 0.5], [worst case]. The
last column shows the resulting performance enhancement ra-
tios. As you can see, the optimization method I can guarantee
performance improvement in spite of additional area overhead,

and thus we can conclude that it is useful for the main goal of
adoption of VDAUs such as TAUs.

IV. OPTIMIZATION OF TAUBM SYNCHRONOUS CONTROL

UNITS FOR VARIABLE DELAY DATAPATHS - II

Although the selection of a small sized clock cycle presents
larger flexibility for scheduling and corresponding controller
generation[6, 7], a small sized new clock cycle, which is se-
lected according to the value of SD of a TAU, does not always
guarantee good performance in TAUBM because wrong selec-
tion of SD may make operations spend multiple time steps
counterbalancing performance benefits of TAUs. Therefore, al-
though the value of SD can be selected freely and the corre-
sponding TAU can be synthesized according to the selected SD

automatically[1], the selection of SD should be performed very
carefully.

When we select the value of SD, we should consider fol-
lowing two things; the first is that SD should be larger than
the fixed delay of other arithmetic units excepts TAUs. Oth-
erwise, arithmetic units whose fixed delays are larger than
SD cannot finish their operations within SD and 2nd stages of
some TAUs will be always required. The second is that 2·SD is
larger than LD because TAUs spend 2 time steps at most. From
above two facts, the following selection range of SD can be de-
rived; Max(LD/2, Max(FD0, FD1, ..)) ≤ SD ≤ LD. Here,
Max(FD0, FD1, ..) represents maximum fixed delay among
other arithmetic units except TAUs. Note here that it is not
good to select SD similar to LD since (2· SD)-LD means the idle
time of the corresponding TAU. Therefore, it is better to select
SD near to LD/2 in order to minimize the idle time. However,
Max(FD0, FD1, ..) is a direct hurdle to the selection of SD

near to LD/2. In order to remove the hurdle , we can consider
following two approaches. The first one is to adopt the new
arithmetic units with smaller fixed delays. The second one is
to replace the current non TAU styled arithmetic units with cor-
responding TAUs. The first approach is actually trivial. There-
fore, in this section, we consider the second approach and we
call it the optimization method II.

We would like to explain how to apply the optimization
method II through a simple example. For a DFG in Fig. 2(a),
we assume that a TAU styled multiplier ‘M’, whose short delay,
SD(M) and long delay LD(M) are 15ns and 20ns, and an adder
‘A’, whose FD(A) is 15ns, are allocated. In this case, if a clock
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new FSM obtained by the optimization method II

cycle is set to 15ns according to the value of SD(M), idle time
as much as 10ns occurs whenever the TAU styled multiplier re-
quires LD(M) as shown in CASE 1 of Fig. 4(a). Although de-
signers hope to minimize idle time by selecting smaller SD(M),
it always does not lead to performance improvement because
of FD(A). That is, if we select new SD(M) smaller than FD(A),
the corresponding adder always spends 2 time steps because
a clock cycle is adjusted to new SD(M) as shown in CASE 2

of Fig. 4(a). However, assume that we replace the current
fixed delay adder with a TAU styled adder ‘A’, whose SD(A)

and LD(A) are 10ns and 15ns respectively. Then, things are
changed; addition operations also spend 1 or 2 clock cycles
selectively according to input operands instead of spending
2 time steps as shown in CASE 3 of Fig. 4(a). As a con-
sequence, selection range of SD for a TAU styled multiplier
changes into Max(LD(M)/2, SD(A)) ≤ SD(M) ≤ LD(M)

from Max(LD(M)/2, FD(A)) ≤ SD(M) ≤ LD(M), and thus
additional minimization of idle time becomes possible with the
adoption of a TAU styled adder. Fig. 4(b) shows a new FSM
obtained by the optimization method II when we assume that a
TAU styled multiplier and a TAU styled adder are allocated.

For the analysis of effects of the optimization method II,
we applied it to several DFG benchmarks, and Table II shows
analysis results. For LTTAU in 3rd column, each latency con-
sists of [best case], [average case] and [worst case]. Average
latency is obtained under the assumption SD ratio ‘P’ is 0.8.
For LTOPT2 in 4th column, we assume that TAU styled adder
and subtractor, whose SDs are 10ns, are allocated. Therefore,
we should resynthesize TAU styled multipliers so that their SD

may be 10ns, and thus SD ratio ‘P’ is changed. In our experi-
ment, we assume that ‘P’ is reduced to ‘0.9 · P’, ‘0.7 · P’ and
‘0.5 · P’. Under the assumption, Table II shows that selection
of new SD under adoption of additional kinds of TAUs can lead
to the performance improvement.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose two optimization methods for
TAUBM. The core features of them are “to support concurrent
executions among VDAUs completely” and “to reduce idle time
of VDAUs by lowering the lower bound for selection range of
clock cycles”. Experimental results show that proposed opti-

TABLE II
Latency comparison between TAUBM FSMs and new FSMs optimized by

the optimization method II

DFG Resources LTTAU(ns) LTOPT2(ns)

3rdFIR ×:2, +:1 [45][53.4][75] [30][37.6, 41.3, 44.4][60]

5thFIR ×:3, +:1 [75][87.7][105] [50][61,1, 65.1, 67.8][100]

2ndIIR ×:2, +:1 [75][85.8][105] [50][59.6, 62.1, 66.8][100]

Diff. ×:2, +:1, -:1 [60][76.2][105] [40][54.4, 60.6, 65.2][70]

×: SD(×)=15ns→ SD(×)=10ns, LD(×)=20ns

+, -: FD(+, -)=15ns, SD(+, -)=10ns, LD(+, -)=15ns

mization techniques are effective in the aspect of performance.
In order to take advantage of VDAUs such as TAUs in practi-

cal CAD environment, we concentrate our efforts on automating
the proposed methods and integrating them into our high-level
synthesis tool. Moreover, establishment of hardware resource
library including VDAUs have been performed.
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