
ar
X

iv
:c

s/
05

02
02

7v
1

 [
cs

.O
S]

 4
 F

eb
 2

00
5

Markets are Dead, Long Live Markets

Kevin Lai∗

Abstract

Researchers have long proposed using economic approaches
to resource allocation in computer systems. However, few
of these proposals became operational, let alone commer-
cial. Questions persist about the economic approach re-
garding its assumptions, value, applicability, and relevance
to system design. The goal of this paper is to answer these
questions. We find that market-based resource allocation is

useful, and more importantly, that mechanism design and
system design should be integrated to produce systems that
are both economically and computationally efficient.

1 Introduction

A key advantage of the Internet, peer-to-peer file shar-
ing networks, and systems like PlanetLab [1] is the
sharing of computational resources. This provides a va-
riety of benefits, including higher utilization, increased
throughput, lower delay (due to dispersion of resources
in the network), and higher reliability. However, re-
source allocation remains an issue. The problem is how
to allocate a shared resource fairly, with economic effi-
ciency (where efficiency is the ratio of the total actual
benefit to all users to the optimal benefit), and at low
cost.
Scheduling algorithms like Proportional Share are a

partial solution. The problem with PS is determining
how to set the weights. Assuming that the values of
tasks varies over time, no single set of weights will suf-
fice. Setting of weights cannot be left to users because
they have a strong incentive to always ask for the high-
est possible weight. Having the system administrator
set weights is error-prone and time-consuming.

Economics and game theory offer an alternative.
The area of mechanism design is concerned with algo-
rithms where individuals optimizing their own utility
results in high overall utility. A market (or auction) is
an example. In the resource allocation context, as users
optimize the benefit that they receive from their appli-
cations, the mechanism optimizes the overall efficiency
of the resource allocation, without the intervention of
an administrator.
This is not a novel idea. Researchers [6] [9] proposed

this approach as early as 1988, and there were likely
earlier ones. Since then, several researchers [16] [11]
[13] [2] [10] have pursued it. Unfortunately, there have
been few implementations [16] [2] [4]. Given 17 years of
research, it is surprising that there is not even one com-
mercially or freely available system for market-based
resource allocation. Given the impact of poor resource
allocation on systems like PlanetLab, this appealing

∗kevin.lai@hp.com, Information Dynamics Laboratory,
HP Labs, Palo Alto, CA 94304

approach and a large body of enthusiastic publications,
why have so few systems been built? We believe the
lack of operational systems is because questions persist
in the minds of system designers about the value of the
economic approach, its applicability, and its relevance
to system design.

In this paper, we examine some of these questions
using a combination of qualitative arguments and sim-
ulation. We do not claim to have conclusive answer.
Instead, we hope to provide sufficient affirmative evi-
dence that more real systems should be built, deployed,
and evaluated.

2 An Example

In this section, we examine Proportional Share (PS)
scheduling as an example of the problem that market-
based resource allocation seeks to solve. PS gives user i
with weight wi a wi/

∑
w share of the resources. Using

PS hierarchically, the user can assign these resources to
his tasks. For example, if Alice has weight 2 and Bob
has a weight of 1, then Alice has two-thirds of the total
resources for her tasks and Bob has one third. Suppose
that this is necessary because Alice must process twice
as many queries as Bob. This works well if Alice is al-
ways doing something more important than Bob, but
sometimes Bob will have an important task (e.g., serv-
ing a client query) while Alice has a much less impor-
tant task (e.g., non-time-critical background jobs like
garbage collection). In this case, Alice’s task will still
get most of the resources. This is an economically inef-
ficient situation because although Alice receives some
small benefit, Bob receives much less than he could,
and the total benefit is much less than if Bob received
most of the current resources. This is a common sit-
uation because for most users and their applications,
the arrival process of important work is highly bursty
(e.g., a web/email/file server).

One solution is to rely on Alice to yield resources
(e.g., using nice or other means to set lower weights
on tasks) when doing less important tasks. Unfortu-
nately, Alice has an incentive to deny Bob the resources
and use them herself. This is an example “Tragedy
of the Commons” [7] where optimizing for individ-
ual utility results in low overall utility. On the other
hand, optimizing for overall utility depends on know-
ing the relative values of every task being run. Un-
fortunately, users cannot be relied on to accurately re-
port these values without an honesty incentive. Some
users may behave obediently by yielding resources or
honestly reporting task values, but those that do not
(strategic users) lower the efficiency of the system, and,
worse, provide an incentive for obedient users to be-

1

http://arxiv.org/abs/cs/0502027v1

come strategic.

Another solution is to have a system administra-
tor monitor the system and dynamically change the
weights of the users to maintain high efficiency. How-
ever, this is expensive, time-consuming, and error-
prone, and it is does not scale to large numbers of users
and resources.

Market-based resource allocation addresses this
problem. For example, Alice and Bob are issued a cur-
rency with income rates in the ratio 2 to 1. They use
these credits to bid for resources in a market where
user i with bid bi receives a wi/

∑
w share of the re-

sources. When a user has used her share, then her bid
is deducted from her balance of credits. Since Alice
is aware that garbage collection is a less critical task
than serving client queries, she will spend fewer credits
when doing the former and more doing the latter. The
mechanism provides an incentive for users to truthfully
reveal how much they value resources. This allows Bob
to get more resources than Alice when he is processing
queries and she is doing garbage collection. Over the
long-term, Alice can still process twice as many queries
as Bob (assuming similar workloads).

3 Resource Allocation Markets

In this section, we examine some questions about
market-based resource allocation.

3.1 What benefits do markets provide

over long-term PS?

In long-term Proportional Share, user i’s share of the
resources is wi/

∑
w over a longer time period (e.g.,

a week or year) than the 10 milliseconds of a typical
CPU scheduler. This provides some of the flexibility of
a market-based system.

However, long-term PS is not sufficient to reach eco-
nomic efficiency. It does not encourage users to shift
usage from high demand periods to low demand peri-
ods. It also does not encourage users to shift usage from
high demand resources to low demand resources. For
example, a system could have high demand for CPU
cycles, but low demand for physical memory. In a typ-
ical application of PS, the CPU and memory would be
allocated separately and applications would have no
incentive to use more memory and fewer CPU cycles
[14].

A related solution is to use fixed pricing. For exam-
ple, each CPU cycle costs $10 and each memory page
costs $1. A user in this example has a strong incen-
tive to use more memory to save CPU cycles, so this
begins to address the multi-resource problem. Pricing
also provides a way for applications to express quality-
of-service needs. For example, an application may not
need many cycles, but instead needs them quickly af-
ter an interrupt has occurred [5]. Time slices could be
priced differently based on how quickly they are sched-
uled.

Figure 1: Fixed and Variable Pricing. This figure
shows a variable demand curve over time and how its effi-
ciency compares to a fixed pricing curve.

The problem is how these prices should be set. Fig-
ure 1 shows that no fixed price is as efficient as a
variable price, assuming variable demand. In the left
regime, the demand is below the fixed price, so the
buyer is unwilling to buy the resource and the utility
that the buyer would have gained by using the resource
is unrealized (indicated by the striped area under the
demand curve). In the middle regime, someone is will-
ing the pay the fixed price, so that buyer is able to use
the resource and gains some utility (indicated by the
gray area under the demand curve). Assuming that
the seller chooses the optimally efficient buyer (i.e.,
the one willing to pay the most), then the difference
between the demand curve and the fixed price is un-
realized profit for the seller (indicated by the striped
gray area). Unrealized profit contributes to overall in-
efficiency in some cases (see § 3.3). However, without
a covert channel, a fixed price seller cannot distinguish
among the demand curves of potential buyers, so the
actual buyer’s demand curve will probably be lower
than the optimal buyer’s and the area between them
is more unrealized utility. In general, the more vari-
able the demand, the worse the efficiency loss of fixed
prices.

One definition of a market is a way to set prices so
that they follow the demand. As a result, most, if not
all of the utility under the demand curve in Figure 1
would be realized.

3.2 Are markets fair?

Markets allow users to save currency. Could this al-
low a user to save enough currency to starve out other
users? Are markets unfair in some other way?

Whether markets are fair depends on the market and
the definition of fair. One definition is that all users
receive resources in proportion to an exogenously de-

2

termined weighting system. For example, if Alice has a
weight of 2 and Bob has a weight of 1, Alice should get
twice the resources of Bob over an arbitrarily long time
interval. Assuming that Alice and Bob have demand
curves that equally correlated with the overall demand,
the market described in § 2 is fair by this definition.
One variation of this definition is to restrict the

timescale used to measure the resource usage. For ex-
ample, within an hour interval, if Alice and Bob want
resources, she should always get twice the resources
that he gets, even though he saved up his credits and
she spent hers. This is useful to prevent starvation by
those who mis-manage their resources. Another possi-
bility is that Bob saves up credits over a long period of
time and then spends them all at once, thus starving
out Alice. In both cases, the system can monitor Al-
ice and Bob’s credits and redistribute credits from the
wealthy to the poor. This reduces the degree of un-
fairness, but also reduces efficiency because Alice and
Bob have a reduced incentive manage resource usage
carefully.
The conclusion is that markets are not inherently un-

fair. System designers can tune a market-based system
to make the tradeoff between efficiency and fairness
that is appropriate for their users.

3.3 Are markets useful when real

money is not involved?

Economic mechanisms provide an intuitive mapping
between resource allocation and a business model for
selling resources. However, in some cases, the resources
are just being shared and not sold (e.g., employees shar-
ing machines in their company’s data center).
Markets are still useful in these situation. The sim-

plest configuration is an open-loop economy, where the
resource owner issues credits to users who can then
spend them on resources. The main efficiency gain re-
sults from users having an incentive to truthfully reveal
the value of their tasks (as shown in § 4).
Another alternative is a closed loop economy where

users both consume and provide resources. PlanetLab
could be run this way. A closed loop economy provides
more incentives for efficiency than an open loop one: as
prices rise, so does providers’ profit, which increases the
incentive to provide resources. This raises competition
and eventually causes prices to fall. At no point in this
cycle is real money necessarily involved.

3.4 Are markets predictable?

Markets may allocate resources efficiently on average,
but prices for resources fluctuate, so how can users pre-
dict the cost of the resources that they need?
In this context, we define predictability (i.e., perfor-

mance isolation or quality-of-service) as the ability to
provide a fixed amount of resources over a period of
time with high probability, regardless of the demand
put on the system. An example of an application need-
ing predictability is a web server that needs to serve n

Parameter Value

Users 10

Running Time 1000s

Task Interarrival Gaussian, µ: [1s, 120s], σ: µ/2

Task Size Gaussian, µ: 10, σ: 5

Task Deadline Gaussian, µ: 75, σ: 37.5

Task Value Uniform, range: (0, 1]

Table 1: Simulation parameters

requests per second with 99% of requests served within
d seconds.

The market from § 2 can provide this capability by
adding the ability to reserve fixed shares, where a share
is a fixed percentage of a resource (e.g., .1% of a 1 GHz
CPU = 1 MHz). These shares have a fixed duration
and are sold using an auction. The operator of the
example web server calculates the resources necessary
to meet his needs and bids for those resources. The
cost of this approach is that resource may be under-
utilized because some resources may be reserved, but
go unused.

Although similar to techniques used in non-market
systems [12] [14] [5], the market allows the predictabil-
ity mechanism to be used more efficiently. The prob-
lem with these systems is the difficulty in deciding how
much of the resource should be devoted to best-effort
service and how much to reserved service. The opti-
mal split will likely vary significantly over time. Users
would prefer reserved service if the cost to them is
equal, but reserved resource are less efficient than best-
effort because of the potential for under-utilization.
The benefit of the market is in forcing users to consider
whether they really require reserved resources and in
helping the system determine reserved/best-effort split.
High bids for reserved service will cause users who can
tolerate best-effort to do so and indicate to the sys-
tem to reserve more resources. Low bids will do the
opposite.

4 Simulation Results

In this section, we present preliminary simulation re-
sults quantifying the efficiency gains of a market. The
basic idea is to simulate a single CPU server running
the CPU-intensive tasks of several users. We examine
different resource allocation algorithms and different
user behaviors.

The simulation parameters are summarized in Ta-
ble 4. A user may have more than one pending
task, but users only run one task at a time. If a
task completes by the deadline, then the user receives
value ∗ size utility, otherwise There is one server pro-
viding resources for tasks. A task finishes when it ac-
cumulates resources equal to its size. A user can run
one task, switch to a new task, and then switch back
to the first task without cost.

The server uses one of two resource allocation

3

schemes: Proportional Share or Market Proportional
Share. With Proportional Share, the server allocates
its resources to tasks according to the weight assigned
by the task’s owner. With Market Proportional Share,
users have an income of $1 credit per second. If Alice
spends 1 credit and Bob spends 2, then Alice’s task gets
.66 resources, while Bob’s task gets .33. The income
can be saved.

We simulate three different user behaviors: obedient,
strategic without a market, and strategic with a mar-
ket. Obedient users assign a weight to their tasks equal
to the task’s value. Non-market strategic users assign
the maximum possible weight to all of their tasks. Mar-
ket strategic users budget their credits according to
the task. The idea is to spend more credits on more
valuable tasks and to apportion the credits over the
lifetime of the task. Market strategic users assign the
following credits per second to run their most valuable
task: (balance ∗ value)/(deadline − now). balance is
the user’s current credit balance, value is the value of
the user’s most current valuable task, deadline is the
deadline of that task, and now is the current time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
.0

05

 0
.0

1

 0
.0

15

 0
.0

2

 0
.0

25

 0
.0

3

 0
.0

35

 0
.0

4

M
ea

n
U

til
ity

 /
T

im
e

Task Arrival Rate

No Market, Obedient
No Market, Strategic

Market, Strategic

Figure 2: The utility of different user behaviors and mech-
anism as a function of system load.

Figure 2 shows the simulation results. The y-axis is
the mean utility per host per time unit. The x-axis
shows the mean task arrival rate in the system and is
a measure of overall system load. Each point in the
graph is a run of the simulator.

As the load increases to the right, the obedient users
without a market are able to maintain a high level of
utility. However, users have no incentive to be unilat-
erally obedient. Instead, their incentive is to strategi-
cally give a high weight to all their tasks. The plot
of the non-market strategic users shows that they are
able to maintain a high level of utility when the sys-
tem is lightly loaded (from 0.0 to 0.0125), but as the
load saturates the system, utility drops to zero. At this
point the system wastes resources running tasks that
never meet their deadlines and therefore provide no
utility. In a system without a mechanism or significant
social pressure, some users inevitably become strategic.
To counter this, we use the market mechanism. The

strategic users are forced to truthfully reveal the value
of their tasks and the system can maintain the same
high level of utility as when all users were obedient.

5 Integrated Mechanism and

System Design

Mechanism design is traditionally part of economics
while system design is part of computer science. Why
should they be done in concert? How much benefit
would be provided by adding an existing mechanism,
such as bartering or EBay, to a separately designed
system?
A long-standing principle [8] in system design is to

separate policy and the computational mechanism used
to implement the policy (not the economic mechanism
in the mechanism design sense). However, as Clark,
et al. [3] point out, policy and computational mecha-
nism cannot truly be separated because the mechanism
defines what policies are possible.
This would not be a problem if computational mech-

anism designers provided interfaces for efficient and
scalable policies, but this has not been the case. For
example, the market from § 2 requires statistics on re-
source usage (e.g., CPU cycles, memory pages, disk
blocks) and dynamic control over allocation. However,
many systems do not export detailed information on
usage or allow dynamic control of allocations [15]. An-
other example is that several computational mecha-
nisms assume a bartering policy. However, bartering
economies have very little fluidity. It is difficult to find
a mutually satisfying partner for each transaction and
the complexity of determining the exchange rates of n
resources is O(n2).
Even using an efficient economic mechanism from

other contexts can result in poor efficiency in a com-
putational environment. Unlike many other resources,
the latency to access a computational resource is criti-
cal because changes in demand are unpredictable. For
example, one possible economic mechanism for compu-
tational resources is to auction them on EBay. Auc-
tions on EBay are tuned for human bidding so they
typically take hours to close. The problem is that a
web server’s demand may be spiking right now. By
the time the auction closes, the high load will have dis-
sipated. The web server’s operator could try to antic-
ipate load and purchase capacity in advance, but this
results in unused capacity.
In general, a pure mechanism designer is likely to

design an economic mechanism with high economic
efficiency, but with little concern for traditional sys-
tems metrics of computational efficiency, reliability, se-
curity, complexity, and ease-of-use. Pure systems de-
signers have generally done the inverse. This is a di-
rect consequence of a strict interpretation of the pol-
icy/mechanism separation principle. Instead, we advo-
cate that systems designers embrace mechanism design
as a first-order concern to eventually produce systems
than can be both economically and computationally

4

efficient.

References

[1] http://planet-lab.org.

[2] B. N. Chun and D. E. Culler. Market-based Propor-
tional Resource Sharing for Clusters. Technical Report
CSD-1092, University of California at Berkeley, Com-
puter Science Division, January 2000.

[3] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in Cyberspace: Defining Tomor-
row’s Internet. In ACM SIGCOMM, 2002.

[4] K. Coleman, J. Norris, G. Candea, and A. Fox. On-
Call: Defeating Spikes With a Free-Market Applica-
tion Cluster. In Proceedings of the IEEE Conference

on Autonomic Computing, 2004.

[5] K. J. Duda and D. R. Cheriton. Borrowed-Virtual-
Time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose schedular. In Symposium

on Operating Systems Principles, pages 261–276, 1999.

[6] D. Ferguson, Y. Yemimi, and C. Nikolaou. Microeco-
nomic Algorithms for Load Balancing in Distributed
Computer Systems. In International Conference on

Distributed Computer Systems, pages 491–499, 1988.

[7] G. Hardin. The Tragedy of the Commons. Science,
162:1243–1248, 1968.

[8] R. Levin, E. Cohen, W. Corwin, F. Pollack, and
W. Wulf. Policy/Mechanism Separation in Hydra.
In ACM Symposium on Operating Systems Principles,
1975.

[9] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T.
Howard. Enterprise: A Market-like Task Scheduler
for Distributed Computing Environments. In B. A.
Huberman, editor, The Ecology of Computation, num-
ber 2 in Studies in Computer Science and Artificial
Intelligence, pages 177–205. Elsevier Science Publish-
ers B.V., 1988.

[10] C. Ng, D. Parkes, and M. Seltzer. Strategyproof Com-
puting: Systems Infrastructures for Self-Interested
Parties. In Workshop on Economics of Peer-to-Peer

Systems, June 2003.

[11] O. Regev and N. Nisan. The Popcorn Market: Online
Markets for Computational Resources. In Proceedings

of 1st International Conference on Information and

Computation Economies, pages 148–157, 1998.

[12] I. Stoica, H. Abdel-Wahab, and K. Jeffay. On the Du-
ality between Resource Reservation and Proportional
Share Resource Allocation. In Multimedia Computing

and Networking, volume 3020 of SPIE Proceedings Se-

ries, pages 207–214, February 1997.

[13] N. Stratford and R. Mortier. An Economic Approach
to Adaptive Resource Management. In Workshop on

Hot Topics in Operating Systems, pages 142–147, 1999.

[14] D. G. Sullivan and M. I. Seltzer. Isolation with Flexi-
bility: a Resource Management Framework for Central
Servers. In Proceedings of the USENIX Annual Tech-

nical Conference, pages 337–350, 2000.

[15] C. A. Waldspurger. Memory Resource Management
in VMware ESX Server. In Proceedings of the Sympo-

sium on Operating Systems Design and Implementa-

tion, 2002.

[16] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. S. Stornetta. Spawn: A Dis-
tributed Computational Economy. Software Engineer-

ing, 18(2):103–117, 1992.

5

	Introduction
	An Example
	Resource Allocation Markets
	What benefits do markets provide over long-term PS?
	Are markets fair?
	Are markets useful when real money is not involved?
	Are markets predictable?

	Simulation Results
	Integrated Mechanism and System Design

