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Abstract - This work analyzes the mapping of applications onto 
generic regular Networks-on-Chip (NoCs). Cores must be placed 
considering communication requirements, so as to minimize the 
overall application execution time and energy consumption. We 
expand previous mapping strategies by taking into consideration 
the dynamic behavior of the target application and thus potential 
contentions in the intercommunication of the cores. 
Experimental results for a suite of 22 benchmarks and various 
NoC sizes show that a 42% average reduction in the execution 
time of the mapped application can be obtained, together with a 
21% average reduction in the total energy consumption for state-
of-the-art technologies. 

1. Introduction 
New technologies allow many millions of transistors 

integrated onto a single chip and thus the implementation of 
complex systems-on-chip (SoC) that need special 
communication resources to handle very tight design 
requirements. In addition, deep sub-micron effects pose 
formidable physical design challenges for long wires and 
global on-chip communication. Many designers propose to 
change the full synchronous design paradigm to a global 
asynchronous and local synchronous (GALS) design 
paradigm [1]. GALS design subdivides the application into 
sub-applications. Each sub-application is a synchronous 
design physically placed inside a tile, and the communication 
between tiles is provided by an asynchronous communication 
resource. A network-on-chip (NoC) is an infrastructure 
essentially composed by a set of routers interconnected by 
communication channels. A NoC is suitable to deal with the 
GALS paradigm, since it provides asynchronous 
communication, high scalability, reusability, reliability, and 
efficient energy consumption [2]. 

An application composed by a set of existing cores, such 
as processors and memories together with their 
communication channels, must be mapped onto a physical 
network structure. To fulfill this goal, many mapping 
strategies have been proposed, which look for an ideal 
placement of the cores. For instance, in [3] and [4] a model 
based on a weighted graph reflecting the communication 
capacity of each channel is used. However, previously 
published approaches tend to overestimate the channel 
occupation, thus requiring extra bandwidth to ensure that all 
communications are performed within the allocated time. The 
overall effect is a major increase in the energy consumption. 
In addition, models like the ones presented in [3] and [4], 
which are based on weighted graph, are appropriated to model 
applications where the communication need is estimated in 
advance and not during the application execution. Hence, a 
conservative approach must be taken by the designer 
regarding bandwidth requirements, increasing the energy 
consumption of the NoC. 

In this paper we introduce a new model, called CDM, 
which captures the dynamic behavior of the messages of an 
application. This new model allows a CAD tool to take into 
account the varying necessity of bandwidth along the 
execution of an application and hence helps reduce the total 
energy consumption of the system. Comparing our approach 
with previous published work, we achieve an average 
reduction of 42% in application execution time, at the same 
time reducing the total energy consumption of the system by 
21% for state-of-the-art technologies, for a suite of 22 
benchmarks and various NoC sizes. 

The remaining of this paper is organized as follows. 
Section 2 discusses previous work related to the application-
mapping problem. Section 3 describes our target architecture. 
Section 4 explains the mapping strategy to reduce the 
application execution time and the energy consumption on the 
target architecture. Section 5 presents experimental results, 
and Section 6 draws final conclusions. 

2. Related Work 
Hu and Marculescu [3] propose a mapping approach 

called communication weighted model (CWM), based on an 
application characterization graph (APCG), where the weight 
of a channel corresponds to the bit volume of the messages 
transmitted over this channel. With this model, they show that 
it is possible to reduce the energy consumption by more than 
60%, when compared to ad-hoc mapping solutions. 

Murali and De Micheli [4] implement a similar solution. 
Their CWM is also characterized by an application graph, 
which they call core graph. Their algorithm maps cores onto a 
mesh NoC architecture under bandwidth constraints, with the 
goal of minimizing the average communication delay. 

Ye, Benini and De Micheli [5] propose a model to 
evaluate the energy consumption in a communication 
infrastructure considering switches, internal buffers, and 
interconnect wires. The same authors, in [6], describe the 
contention problem in NoCs and the associated performance 
reduction. They recommend a solution employing a routing 
algorithm that minimizes the energy consumption, because 
the required buffers in the network are reduced. 

In all approaches that use the CWM strategy, essential 
information regarding the exact time instant at which 
messages are exchanged is lost. 

We have developed experimental work that shows that for 
embedded applications and random benchmarks this 
information cannot be neglected. By not considering the 
varying nature of the communication bandwidth requirements 
along the execution of an application, the mapping algorithm 
can produce solutions that require in average 40% more 
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execution time than a minimal solution. On the other hand, by 
introducing the communication bandwidth variability in the 
model, our tool can reduce both the application execution 
time and the energy consumption. 

Our approach is based on a communication dependence 
model (CDM), where the application graph transports the 
knowledge of dependences between messages. The placement 
of the cores onto the NoC is based on this extra information, 
relating the amount of bits to be transmitted with the moment 
when the communication must take place. Moreover, the 
energy model presented in [5] is extended to consider static 
energy consumption, which is very relevant in new sub-
micron technologies. This work assumes that application tasks 
are previously partitioned and assigned into a set of cores. 

3. Target Architecture Description 
Mapping approaches such as CDM and CWM are useful 

for all communication infrastructures where mappings may 
affect the overall performance, like hierarchical busses and 
NoCs. This paper approaches only NoCs as target 
architecture, with a 2D-mesh topology and composed by ϕ × 
ω tiles. Figure 1 depicts that each tile τ contains a router r and 
a core c. 
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Figure 1 – Schematic of the target architecture 

Tile-based architectures require the implementation of 
routing algorithms to transmit packets across the network. 
Routing algorithms can be divided into two classes: 
deterministic and adaptive. Deterministic routing algorithms 
completely specify the path from the position of the source 
tile to the position of the target tile. In adaptive routing 
algorithms, the possible paths depend on the network traffic. 
Adaptive routing algorithms increase the number of possible 
paths and require more resources because of their complexity. 
Therefore, we decided to choose the deterministic XY routing 
algorithm, which is free from deadlocks and livelocks and still 
route with minimal path [7]. Other works also use the same 
routing policy, like in [3] and [4], so that the comparison with 
our work may be based on the same ground rules. The 
algorithm behavior can be summarized in two steps: (i) first, 
packets are routed along the X-axis until they reach the target 
tile column; (ii) packets are then routed along the Y-axis until 
they reach the target tile row. 

4. Problem Formulation 
The problem of mapping application cores onto NoCs is a 

complex one. The designer splits the application tasks into 
cores. Each core has given computation and communication 
requirements, which can be obtained through simulation and 
profiling techniques. To better understand the mapping 
application problem, we present three definitions. 
Definition 1: A communication weighted graph is a directed 
graph CWG = <C, M>, where C = {c1, c2, …, cn} represents 
the set of application cores, corresponding to the set of CWG 
vertices. Let Wij be the weight that corresponds to the bit 
volume of all messages exchanged between cores ci and cj, 
then the set M = {(ci, cj, Wij) | ci, cj ∈ C} symbolizes the traffic 
volume of all messages between all application cores. CWG 
has an equivalent definition to APCG [3] and core graph [4]. 
Definition 2: A communication dependence graph is a 
directed graph CDG = <V, D>. Let vq = (ca, cb, wab) be the q-th 
message from core ca to core cb with bit volume wab. 
V = {v1, v2, …, vk} denotes the set of all messages between all 
application cores and correspond to the set of CDG vertices, 
and D = {(vi, vj) | vi, vj ∈ V} represents the set of message 
dependences, corresponding to the set of CDG edges. Edges 
are non-valued, and the edge direction means message 
dependence. 
Definition 3: A communication resource graph is a directed 
graph CRG = <Γ, L>, where Γ = {τ1, τ2, …, τp} denotes the 
set of tiles, corresponding to the set of CRG vertices, and 
L = {(τi, τj) | τi, τj ∈ Γ} designates the set of routing paths 
between tiles, corresponding to the set of CRG edges. p is the 
total number of tiles and is equal to ϕ × ω (Figure 1). CRG 
has an equivalent definition to the architecture 
characterization graph [3] and to the NoC topology graph [4]. 

The CDM approach implies the extraction of message 
dependence from the application cores. This means that all 
messages are relatively ordered by their dependences. On the 
other hand, the CWM approach does not take the 
communication ordering into consideration. Only the volume 
of bits exchanged between cores is considered in the CWG 
[3][4]. As a consequence, CWM cannot prevent contentions, 
thus disabling the precise estimation of the application 
execution time, and require a conservative approach, 
increasing bandwidth requirements and hence energy 
consumption. 
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Figure 2 – CDG (a), CWG (b) and CRG (c) examples 

To a better understanding of these concepts, Figure 2 
depicts the CDG of a hypothetical example, where four cores 
C = {A, B, C, D} exchange six messages with communication 
rates between 25 and 50 units. Figure 2(a) shows the CDG, 
which highlights the message interdependences. Figure 2(b) 
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shows the equivalent CWG, and Figure 2(c) portrays a CRG 
where C is arbitrarily mapped onto a 2x2 NoC. Since the set 
of CDG vertices contains information of all messages and 
cores, CWG can be obtained from CDG. 

4.1 Energy Model 
The energy consumption of the application is originated 

from both cores and network operation. This work focuses 
only on NoC energy consumption and presents a model to 
estimate dynamic and static energy consumption. This energy 
model is used as an objective function to evaluate the cost of 
each mapping. It is important to notice that the consumption 
of the cores is independent of the mapping, as this is the same 
assumption also found in [3][4]. 

Static energy consumption is mainly originated from 
subthreshold leakage current and is proportional to application 
execution time and the number of gates. Usually, static energy 
contributes with the smallest part of total energy consumption. 
However, for sub-micron technologies, the leakage current 
cannot be neglected, and the static energy becomes a 
meaningful part of total energy consumption, reaching up to 
20% in state-of-the-art technologies [8]. Dynamic energy 
consumption is proportional to switching activity, which 
happens when packets move across the NoC dissipating 
energy inside each router and on the router interconnection 
wires. 

Our energy model computes static and dynamic power 
dissipation to estimate the total energy consumption of the 
NoC. This work uses an approach similar to the one presented 
in [3] and [4] and extends the concepts to static energy 
consumption. We use the same concept of bit energy Ebit to 
estimate the dynamic energy consumption for each bit when 
the bit flips its polarity from the previous value. Ebit is split 
onto dynamic energy EWbit consumed on the switch wires, 
dynamic energy EBbit consumed on the buffers, dynamic 
energy ESbit consumed on the logic gates of each switch, and 
dynamic energy ELbit consumed on the links between tiles, as 
described in equation 1. 
(1) Ebit = EWbit + EBbit + ESbit + ELbit 

EBbit, ESbit and EWbit model the total energy consumed by a 
bit passing through a router. EBbit depends on the buffer size 
and technology to estimate how many bit flips occur to write, 
read, and preserve the information. When technology and 
routing policy are defined, EBbit and ESbit can be estimated by 
electrical simulation. For regular mesh NoCs, with square 
dimension tiles, it is reasonable to estimate that ELbit is the 
same for all NoC interconnections. While ELbit is directly 
proportional to tile dimension, EWbit becomes negligible for 
large tiles, since EWbit does not depend on the increase of tile 
size. This makes equation 2 a reasonable estimation for bit 
dynamic energy consumption. 
(2) Ebit = EBbit + ESbit + ELbit 

Equation 3 computes the dynamic energy consumed on the 
NoC by a bit traffic from core ci to cj, where η corresponds to 
the number of routers that the bit goes through. 

(3) jcic
bit

,
E  = η (ESbit + EBbit) + (η - 1) ELbit 

Let λq be the bit volume of each message vq ∈ V. Then, 

qv
bitE  = λq × jcic

bit
,

E  | (ci, cj) ∈ vq. 

Equation 4 gives the total amount of NoC dynamic energy 
consumption EDyNoC, which considers all bit flips during the 
transmission of messages across the NoC. 

(4) EDyNoC = ∑
=

k

0q

qv
bitE  

The static power consumption of each router PSRouter is 
proportional to the number of powered elements, with a very 
small influence of switching activity. With p representing the 
number of tiles, equation 5 computes the NoC static power 
consumption PStNoC. 
(5) PStNoC = p × PSRouter 

Static energy consumption is proportional to the total 
number of gates dissipating static power and to the execution 
time texec. Thus, equation 6 computes NoC static energy 
consumption EStNoC. 
(6) EStNoC = PStNoC × texec 

Finally, equation 7 gives the total NoC energy 
consumption ENoC, which computes the consumption of static 
and dynamic energies. 
(7) ENoC = EStNoC + EDyNoC 

With the objective of inserting the energy parameters into 
the CDM and CWM approaches, a NoC was described and 
synthesized to a 0.35micron TSMC ASIC standard cell 
library. The synthesis result is a netlist of cells. The 
manufacturer supplies energy values for the standard cell 
library, allowing the extraction of ESbit, EBbit, ELbit, and PSRouter 
parameters. These parameters are independent from 
application and NoC dimension. On the other hand, p and texec 
are application-dependent parameters. The execution time texec 
is measured in clock cycles, considering a 100 MHz operation 
frequency, and p is greater or equal to the number of cores in 
the application. 

4.2 Comparing Communication Algorithms 
As both communication weighted algorithms (CWAs) and 

communication dependence algorithms (CDAs) implement 
solutions for NP-complete problems [3][4], we have used a 
simulated annealing search method to reach the best mapping 
solutions in both cases. Moreover, we have also implemented 
exhaustive search methods, so that we could compare the 
quality of the solution. 

For both modeling approaches the algorithms start from an 
initial mapping, evaluate the mapping cost, and search for a 
new mapping that reduces the previous cost until reaching a 
stop condition. CRG edges and vertices represent 
communication resources: links and routers, respectively. For 
both algorithms, cost variables are associated to each CRG 
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edge and vertex to store the corresponding part of the 
mapping cost. The mapping objective function is defined as 
the sum of all cost variables of CRG edges and vertices. The 
CWA and CDA objective functions are not the same. While 
CWA searches only for mappings that reduce the dynamic 
energy consumption, as it is described in equation 4, CDA 
also evaluates static energy consumption, which is 
proportional to execution time, as it is described in equation 7. 
As a result, CDA indirectly searches for mappings that reduce 
the overall execution time. 

The initial mapping of CDA or CWA is selected by 
randomly associating application graphs (CWG or CDG) with 
CRG; i.e. all cores ∈ C are randomly mapped onto a possible 
tile ∈ Γ. To compute the mapping objective function, all cost 
variables of CRG edges and vertices are initially reset. 

Let tiles τi and τj be mappings of cores ca and cb, 
respectively. For CWA, all bits of the communication channel 
(ca, cb), represented by Wab, are associated to the 
correspondent cost variable of vertices and edges of CRG, 
starting from τi, following the XY routing algorithm and 
ending in τj. The cost variable of each CRG edge computes 
the dynamic energy of a link by multiplying Wab by ELbit, and 
the cost variable of each CRG vertex computes the dynamic 
energy of a router by multiplying Wab by ESbit + EBbit. The sum 
of all cost variables of CRG results in the total dynamic 
energy EDyNoC, for a given mapping. The goal of CWA is to 
find mappings that reduce EDyNoC. EStNoC is not computed 
because this model is inappropriate to capture the time taken 
by the whole application. 

While CWG considers only the communication volume, 
CDM captures the message dependences. Messages that have 
producer-consumer precedence can not be concurrent. 
However, temporally independent messages can occur at the 
same time and may consequently lead to package contention. 
To obtain benefits from this time notion, to each edge and 
vertex of CRG a cost variable list is associated, where each 
list position contains the energy sum of all independent 
messages that share the same communication resource. The 
algorithm considers the worst case, i.e. all independent 
messages that share the same communication resource 
produce contention. The message contention implies a larger 
application execution time texec and consequently more static 
energy dissipation EStNoC. Therefore, CDA minimizes the 
probability of contentions by searching core mappings that 
spread the messages over parallel links. 

The total delay of messages depends on the mapping, on 
the bandwidth, and on the number of bits. The algorithm 
computes the total delay of messages by adding the message 
delay only when messages are dependent from each other or 
when independent messages occupy the same communication 
resource. With the total delay of messages we apply equation 
6 to obtain EStNoC. Similarly to CWA, for CDA all bits of the 
message vc = (ca, cb, wab), represented by wab, are associated to 
the correspondent vertices and edges of CRG, starting from τi, 
following the XY routing algorithm, and ending in τj. The 
cost variable list of a CRG edge computes the dynamic energy 
of a link, in a given period, by multiplying wab by ELbit. The 

cost variable list of a CRG vertex computes the dynamic 
energy of a router, in a given time period, by multiplying wab 
by ESbit + EBbit. The sum of all cost variables of CRG results in 
the total dynamic energy EDyNoC, for a given mapping. CDA 
uses equation 7 as an objective function to evaluate the 
mapping cost. The goal of the CDM algorithm is to find 
mappings that minimize ENoC. 

If the mapping cost achieved with a new mapping is 
smaller than the one previously stored, the current mapping 
and cost are saved for further comparison. Simulated 
annealing may accept worse mappings, depending on the 
temperature, which is a convergence parameter of the 
algorithm. While the stop condition has not yet been reached, 
a new mapping is randomly chosen, and the cost is evaluated 
again. While simulated annealing considers parameters as 
initial temperature and number of iterations, the stop 
condition for an exhaustive search requires the evaluation of 
all mappings. 

In embedded applications like the graphical ones used in 
this work, the number of messages between cores is much 
larger than the number of cores. Since each vertex of CDG 
represents a message between two cores and each vertex of 
CWG represents a core, CDGs are larger than CWGs, 
implying more CPU time and more data storage area for the 
algorithm execution. A comparison between CDA and CWA 
is presented in Section 5. 

4.3 Comparing Communication Models 
The main advantages of CWM are (i) easy extraction of 

the application core graph (CWG), since this can be done by 
simulation techniques; (ii) low computational complexity; and 
(iii) the accurate estimation of EDyNoC, since dynamic energy 
may be well computed by the total bit traffic in the NoC. On 
the other hand, the extraction of CDG is hard to be 
automatically obtained, since simulation allows the extraction 
of the possible message ordering, but not the message 
dependences. This implies that CDGs have to be described in 
design time by hand, and this is an error prone task. The 
greater complexity of CDM directly reflects in the complexity 
of the algorithm to deal with it, which increases the 
computation time and the memory usage. However, CDM 
captures both the bit volume, which allows computing the 
value of EDyNoC, and the message ordering, which allows 
estimating the instants of time when more than one message 
can pass through the same link, and consequently avoiding 
such occurrence by a better core mapping. Such approach is 
pessimistic, since not all communications that can occur 
concurrently will happen concurrently. Even so, the overall 
application performance tends to increase, if potential 
contentions were avoided. 

The global communication behavior of a certain 
application can be expressed as a function of start of 
transmission times, bit volume, and transmission rate of each 
message. For many applications, the exact determination of 
communication needs at design time may not be possible, 
since it depends on the specific input data that can only be 
available at runtime. These data have an important influence 
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on the bit volume of messages and less or no influence on 
other parameters. The order in which messages are 
transmitted is usually not changed, since it depends on the 
algorithm executed by the application, which is usually fixed 
in embedded systems. Since CDM models the dependency 
between messages, a feature not available in CWM, it allows 
evaluating the potential for contention among dependent 
messages, even without the precise knowledge of the exact bit 
volume for each message. This capacity enables to find 
mappings that further reduce energy consumption and 
execution time. Simultaneously, it makes CDM less sensitive 
to input data variations at runtime, as it will be shown in the 
next section. 

4.4 Problem Illustration 
This section illustrates the application of the CDM and 

CWM approaches with the same hypothetical example of 
Figure 2, where two mappings imply different execution times 
and energy consumptions. It is also shown that CWM is not 
suitable to capture such differences, since this model 
computes the same energy consumption for both mappings. 
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Figure 3 – Two mappings with energy estimated by CWA 

Figure 3 illustrates two mappings of the example shown in 
Figure 2. Just for illustration purposes, this example assumes 
that ESbit + EBbit = ELbit = 1. 10-12 J. Each vertex and edge of 
CRG is annotated with its total amount of energy 
consumption. As CWM cannot capture contention problems, 
CWA estimates that both mappings consume the same energy 
(805 × 10-12 J). 

Figure 4 shows the same mappings of Figure 3, now 
evaluated with CDM. Each edge and each input link of each 
vertex is annotated with its energy at a given slice of time. For 
instance, in Figure 4 (a) the tile corresponding to core D is 
annotated with 35S1 and 25S1, which means that there are 2 
messages with 35 and 25 bits, respectively. These two 
messages are concurrent – see Figure 2(a) – and are annotated 
in the cost variable list of vertex D. Both use the SOUTH (S) 
link of core D (one from A to D and the other from C to D) 
increasing the overall execution time of the application and, 
consequently, the static energy EStNoC. Just for illustration 
purposes, consider t the necessary number of clock cycles to 
transfer one bit from one tile to its neighbor tile and 
PStNoC = 1 10-12 J/t the power consumed by clock cycle. In this 
case, the energy consumption and execution time are 2.7% 
and 20% greater, respectively, when comparing mapping (a) 
with mapping (b). These differences are only captured with 
CDA. We emphasize that when the number of messages and 

cores of the application increases these differences also 
increase, as it will be shown in Section 5. The overhead in 
performance requirements of CWA-like approaches is the 
cause of extra power dissipation. In the experiments of the 
next section we show that the CDM approach can remove this 
overhead. 

Energy = 955 × 10-12 J 
Execution time = 150 t 
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Execution time = 125 t 
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Figure 4 – Mappings of the Figure 3 estimated by CDM 

5. Experimental Results 
Table 1 summarizes the characteristics of 22 applications 

mapped onto 8 different NoC sizes (NS). There are 4 
embedded applications (a distributed Romberg integration [9], 
an 8-point Fast Fourier Transform [10], and 2 image 
applications for object recognition and image encoding) with 
some variations, in a total of 8 embedded applications. The 
remaining applications are benchmarks randomly generated 
by a proprietary system, which is similar to TGFF [11]; 
however, our system describes a benchmark by a CDG, which 
represents message dependence and bit volume of each 
message. The chosen application characteristics are: number 
of cores (NC), number of messages between cores (NM), and 
total amount of bit traffic during application execution (TBT). 
NS is equivalent to the number of CRG vertices, NC 
corresponds to the number of CWG vertices, and NM matches 
the number of CDG vertices. 

Table 1 – NoC dimensions and application characteristics 

 NS NC NM TBT 
2 x 2 3; 4; 4 15; 12; 23 213; 450; 23,234 
3 x 2 5; 6; 6 43; 17; 43 78,817; 174; 49,003 
2 x 4 7 33 23,235 
3 x 3 7; 9; 9 16; 18; 32 1,600; 1,860; 43,120 
2 x 5 8; 9; 10 24; 51; 22 2,215; 23,244; 322,221 R

an
do

m
 

be
nc

hm
ar

ks
 

3 x 4 11 62 123,337 
3 x 2 5 16 1,600 
2 x 4 5; 8 16; 18 1,600; 5,930 
3 x 3 8 31 4,655,025 
3 x 4 10; 12 15; 25 3,100; 2,578,920 
8 x 8 62 344 9,799,200 Em

be
dd

ed
 

ap
pl

ic
at

io
ns

 

10 x 10 93 415 562,565,990 
 

For each application, the best mapping achieved with 
CWM is compared to the best mapping achieved with CDM. 
Gains obtained with CDM when compared to CWM are 
summarized in Table 2. ES represents evaluations obtained by 
exhaustive search, while SA symbolizes evaluations obtained 
with simulated annealing algorithm. ETR gives the average 
execution time reduction, and ECS denotes the average 
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energy consumption saving, for a given technology, when the 
best mapping obtained with CDM is compared to the best one 
obtained with CWM. ECS0.35 column refers to values obtained 
from 0.35micron technology, and ECS0.07 column refers to 
values obtained by scaling results from 0.35micron to 
0.07micron [8]. 

Table 2 – Average energy consumption saving and execution 
time reduction obtained from comparison of CWM and CDM 

evaluations 

 Algorithm NS ETR ECS0.07 ECS0.35 
2 x 2 32 % 16 % 0,51 % 
3 x 2 39 % 17 % 0,54 % 
2 x 4 31 % 15 % 0,48 % 
3 x 3 43 % 25 % 0,8 % 
2 x 5 50 % 27 % 0,86 % R

an
do

m
 

be
nc

hm
ar

ks
 

ES / SA 

3 x 4 47 % 25 % 0,8 % 
3 x 2 39 % 17 % 0,54 % 
2 x 4 31 % 15 % 0,48 % 
3 x 3 43 % 25 % 0,8 % ES / SA 

3 x 4 47 % 25 % 0,8 % 
8 x 8 44 % 22 % 0,7 % Em

be
dd

ed
 

ap
pl

ic
at

io
ns

 

SA 10 x 10 51 % 28 % 0,89 % 
 Total average 42 % 21 % 0,67 % 

 

As seen in the ETR column, CDM results, in average, a 
reduction of 42% of execution time when compared to CWM. 
The ECS0.35 column illustrates a very small energy 
consumption saving, since the static leakage current is not that 
important for this technology generation. However, for sub-
micron technologies, where the static dissipation is more 
relevant, there is a significant reduction in energy 
consumption (21% in average), as we can see in column 
ECS0.07. In addition, Table 2 shows a slight tendency of better 
energy consumption savings and execution time reduction 
when the NoC size increases. Finally, results obtained with 
exhaustive search are very similar to the ones achieved with 
simulated annealing. For all small NoCs (up to 3x4 or 2x5), 
both algorithms reached the same results. For larger ones (8x8 
and 10x10), it is not possible to find optimal mappings with 
the exhaustive search within a reasonable computation time. 

The mapping cost evaluation of CWA considers mainly 
the number of links between cores. At the same time, the 
number of messages has higher influence in CDA, because 
messages cannot occupy the same link at the same time. This 
leads the CWA computational complexity to be proportional 
to the number of links (NL) and the CDA computational 
complexity to be proportional to the number of messages 
(NM). In embedded applications, NM may be much larger 
than NL. However, the increase in CPU time with the increase 
of the NM/NL ratio is practically linear and has a small slope. 
In our experiments, the worst case of CDA took only 15% 
more CPU time then CWA.  

The main drawback of CDA is associated to the extra 
memory to run the algorithm, since for CDA all vertex and 
edges of CRG preserve a list of concurrent messages, while 
CWA implies the use of only one data element for each vertex 
and edge. In our experiments, the worst case of CDA took 26 
times more memory than CWA. 

6. Conclusions 
This paper addressed the problem of mapping application 

cores onto NoCs. A communication dependence model 
(CDM) is introduced and compared to a communication 
weighted model (CWM). We conclude that a mapping 
algorithm that implements CDM is able to reduce some 
application requirements, when compared to a mapping 
algorithm that implements CWM. Experimental results show 
an average reduction of 42% in the application execution 
time. The CDM approach also reduces the energy 
consumption. For instance, for a 0.07micron technology an 
average of 21% in energy savings is achieved. This reduction 
is obtained because CDM may avoid or, at least, reduce 
message contention, while CWM may not. Moreover, to map 
applications where the communication needs of each core are 
not known at design time, CDA may also achieve mappings 
that reduce the energy consumption and execution time, while 
CWA may not. Algorithms that implement CDM present only 
a moderate increase in the execution time when compared to 
algorithms that implement CWM, with much better mapping 
results. 
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