Deriving a New Efficient Algorithm for Min-Period Retiming*

Hai Zhou
ECE, Northwestern University, Evanston, 1L 60208

Abstract

A new efficient algorithm is derived for the minimal period
retiming problem by formal methods. Contrary to all previ-
ous algorithms, which used binary search to check feasibilities
on a range of candidate periods, the derived algorithm checks
the optimality of a current period directly. It is much simpler
and more efficient than previous algorithms. Experimental
results showed that it is even faster than ASTRA, an efficient
heuristic algorithm. Since the derived algorithm is incremen-
tal by nature, it also opens the opportunity to be combined
with other optimization techniques.

1 Introduction

Since its creation twenty years ago by Leiserson and Saxe [11],
retiming has firmly established its reputation as one of the
most effective techniques for sequential circuit optimization.
The past twenty years have seen retiming’s steady improve-
ments on performance and continuous expansions into new
areas. Recent progresses on semiconductor technology saw
an increase on the number of global wires whose delays are
longer than one clock period [8, 1], and retiming is again a
promising technique that could be leveraged [14].

In this paper, we solve the retiming problem by algorithm
derivation (also known as program derivation) that was advo-
cated and pioneered by Dijkstra [4] among many others. We
have two purposes in mind when writing this paper: first, it
records a new angle to look at the retiming and a new algo-
rithm for the minimal period retiming problem; second, using
the retiming as an example, we hope to bring to the awareness
of CAD researchers the advantages of algorithm derivation.
For the second purpose, we also give a brief introduction to
program derivation.

Given a sequential circuit, the retiming changes the loca-
tions of flip-flops (registers) in the circuit without changing
its function. Its validity is guaranteed by the basic opera-
tion of moving flip-flops from the inputs to the outputs of
a gate, or vice versa. In this paper, we only focus on the
minimal period retiming problem, that is, moving the flip-
flops to minimized the clock period that is decided by the
longest delay between two consecutive flip-flops. Since Leis-
erson and Saxe [11], the minimal period retiming problem
has always been solved through a sequence of fixed period re-
timing problems each of which checks whether a given clock
period is feasible. With a list or an interval of candidate clock
periods, a binary search is used to find the smallest feasible
period. If the candidate periods form a continuous range, the
binary search approach only gives a fully polynomial-time ap-
proximation scheme (FPTAS) [10], that is, the running time
is dependent on the required precision.

We did not expect any new result when we set up to derive
an algorithm for the minimal period retiming problem. But
the first surprise is the discovery that neither the fixed period
retiming problem nor the binary search comes naturally in the
derivation, or we can say that they never come into the pic-
ture during our derivation. The derived algorithm iteratively
shortens the longest combinational path in the circuit, and
when that can no longer be done, declares that an optimum

*This work was supported by NSF under CCR-0238484.

has been reached. This philosophy is quite different from that
of binary search with fixed period retiming. The main ques-
tion answered in each step of the binary search approach is
whether a given clock period is feasible, but the main question
in each step of our derived algorithm is whether any smaller
clock period is achievable. Because of this subtle difference,
the optimality of a feasible clock period in the binary search
approach can be established only indirectly, that is, through
the infeasibility of the next smaller period. However, in the
derived algorithm, the optimality of the current clock period
can be certified directly.

It should be noted that even in a newer algorithm, FEAS,
presented by Leiserson and Saxe [12] and adopted later by De
Micheli [2] and Evan et al. [5], binary searches with feasible
period checking were still used. Therefore, even though the
FEAS algorithm looks similar to our derived algorithm, our
algorithm is different and better. Furthermore, our algorithm
can be easily modified for the initial state computation similar
to [5].

2 Algorithm derivation in guarded commands

Algorithm derivation (or program derivation) is a formal method
for developing algorithms. Dijkstra [4] is a classical reference
in this area and the guarded commands [3] are usually used
in the program derivation.

The language of the guarded commands mainly has four
kinds of statements: assignment, composition, selection, and
repetition. An assignment statement is of the form

vi,v2,... := E1,E2,...

which concurrently assigns the value of each expression on
the right hand side to the corresponding variable on the left
hand side. Given two statements S1, S2, a composition is
the statement S1; S2 that executes S1 followed by S2.

A guarded command has the following form.

<boolean expression>—<statement>

The statement at the right of the arrow could be a composite
statement. A set of guarded commands can be used to form
a selection statement.

if <guarded command>{[Kguarded command>} fi

When more than one guards in a selection statement are true,
any statement after a true guard may be selected to execute.
This introduces nondeterminacy. When no guard is true, a
selection statement is defined as abort. The other way to or-
ganize guarded commands is by a repetition statement, which
is defined as follows.

do <guarded command>{[[<guarded command>} od

Whenever there is any true guard in the repetition, a state-
ment after any true guard may be executed. This is repeated
until all the guards are false. As we can see, nondeterminacy
is also allowed here.

The benefit of guarded commands in algorithm derivation
is the clean formal definition of their semantics [4, 3]. Based
on Floyd [6] and Hoare [9], the semantics of a statement S is
defined to truthify a predicate R upon a given predicate P.
And this is represented as a Hoare triple:

{r} s {R}

The predicate calculus [7] is used to express predicates in the
algorithm derivation. It has the usual syntax of the first order
logic. The only difference is on quantification. The general
form of a quantification over x is exemplified by

(*z,y: R: P),

where x and y are distinct index variables, R is a predicate
that gives the ranges of z and y, and P is an expression on
which % is applied. The universal and existential quantifica-
tions in logic are thus represented as

(Vz :: P(z)) and (3z :: P(x)).

A problem can be formally specified by the predicate that
the variables must satisfy when the program terminates. This
predicate is usually called the post-condition of the program.
The algorithm derivation is a goal-driven activity that studies
the post-condition and finds a sequence of statements to fulfill
it. Besides the program, the intermediate predicates between
statements will also be decided in the derivation. Therefore,
the proof of the correctness of a algorithm is developed hand-
in-hand with the program.

It should be noted that any non-trivial algorithm must
have at least one repetitive statement—otherwise the process-
ing length of the algorithm will not be longer than the pro-
gram length and thus cannot do much. Therefore, a criti-
cal task in the algorithm derivation is to partition the post-
condition and to decide which part should be kept as an invari-
ant and which part should be fulfilled through the repetition.

3 Deriving an algorithm for min-period retiming

Circuit retiming is perhaps the most effective structural opti-
mization technique for sequential circuits. It moves the regis-
ters within a circuit without changing its function. The min-
imal period retiming problem needs to minimize the longest
delay between any two consecutive registers, which decides
the clock period.

The problem can be formally described as follows. Given
a directed graph G = (V, E) representing a circuit—each node
v € V represents a gate and each edge e € FE represents
a signal passing from one gate to another—with gate delays
d:V — RT and register numbers w : E — N, it asks for
a relocation of registers w’ : E — N such that the maximal
delay between two consecutive registers is minimized.

To guarantee that the new registers are actually a reloca-
tion of the old ones, a label r : V. — Z is used to represent
how many registers are moved from the outgoing edges to
the incoming edges of each node. Using this notation, the
new number of registers on an edge (u,v) can be computed
as w'(u,v) = w(u,v) + r.v — r.u. Furthermore, to avoid ex-
plicitly enumerating the paths, we introduce another label
t:V — RT to represent the output arrival time of a gate,
that is, the maximal delay of the gate output from any preced-
ing register. Based on the notations, the validity of a retiming
(r,t) is defined by the following conditions.

PO(r) : (Y(u,v) € E :: w(u,v) +rv —ru > 0)
P1(t) : Mv eV to>dw)
P2(r,t) : V(u,v) € E:ru—ro=w(u,v):tw—tu>dwv)

We use a predicate P to denote the conjunction of the above
conditions:

P(r,t) 2 PO(r) A P1(t) A P2(r, 1)

The optimality of a retiming (r,t) is given by the following
condition.

P3: (vr',t": P(r',t') : max .t < max.t')

where
max.t £ (maxv:v €V :tw).

Since we only talk about a valid retiming (r',¢') in the sequel,
to simplify the presentation, we often omit the range condition
P(r',t'); the meaning will be clear from the context.

The condition PO states that a valid retiming should have
non-negative number of registers on any edge. The conditions
P1 and P2 defines a lower bound on the arrival time ¢, that
is, the arrival time of a gate is at least the summation of the
gate delay and the arrival time of its fanins. The condition
P3 states that among all valid retimings—those satisfy PO,
P1, and P2-, the current (r,¢) has a minimal max .t.

Among all the conditions, P3 gives the optimality con-
dition and is the most complex one. Based on the idea of
maintaining simple invariants, we consider an initialization
as follows to truthify PO, P1, and P2.

r,t:=0,d;
do
(u,v)€EAr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v:=t.utd.v
od

Our plan is to have a loop (i.e. repetitive statement) after the
initialization to iteratively make P3 true while maintaining
the other conditions. This means that —P3 will be used as
the loop condition; we will study what can be done under
-P3.

—P3 means that we have another valid retiming (r’,t')
such that max.t > max.t’. Therefore, we have (Vv : t.v =
max.t: t'.v < t.v). If the longest path [that gives t.v starts
from wu, then [has no register, or equivalently, w.l+7r.v—r.u =
0. But since t'.v < t.v, there must be at least one register on
I in retiming (r',t'), or w.l+7".v —r".u > 0. This is stated as
the following property.

Mo:tw<to: Qu:tu=du:rv—ru<r.v—r.u)

It should also be noted that it is not the absolute values of r
but their differences that are relevant in the retiming. If (r,t)
is a solution to a retiming problem, then (r+c¢, t), where ¢ € Z
is an arbitrary constant, is also a solution. Therefore, we can
move r “closer” to r’ by allocating more registers between u
and v, that is, by either decreasing r.u or increasing r.v. We
know that v can be easily identified by t.v = maz.t. In order
to find u, we will keep yet another label p: V' — V such that
p.v is the starting node of the longest combinational path to
v for any v € V. No matter whether r.v or r.p.v is selected to
change, the amount of change should be only 1 since we do not
want to over-adjust r. It means that, after the adjustment, we
still have r.v —r.p.v < r’.v —r'.p.v, or equivalently r.v —r".v <
r.p.v — r’.p.v. Assume we decide to increase r.v. The arrival
time t.v can be immediately reduced to d.v. This operation
is given by the following guarded command.

(Idr’,t’::max.t’<max.t)At.v=max.t —
r.v,t.v,p.v:= r.v+l,d.v,v

Since registers are moved in the above operation, the con-
dition P2 may be violated. To restore it, we may execute the
same repetition statement as in the initialization after each
operation, as in the following form.

(Ir’,t’::max.t’<max.t)At.v=max.t —
r.v,t.v,p.v:= r.v+l,d.v,v;
do
(u,v)€EAr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.u+td.v,p.u
od

However, this kind of programming will aggressively update ¢
after each adjustment of r, and its only purpose is to keep P2
invariant when r is changed. Alternatively, we can weaken the
invariant to be maintained, and allow P2 to be violated tem-
porally and restored later. This can be done by putting the
two guarded command within the same repetition statement;
it increases the flexibility in their execution orders.

(dr’,t’::max.t’<max.t)At.v=max.t —
r.v,t.v,p.v:= r.v+l,d.v,v
[(u,v)EEAr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.utd.v,p.u

The execution of the second guarded command will in-
crease t. If we use maxT to represent the max .t before the
operations, very likely, such ¢ increases may cause t.y > maxT
for some y € V. Similarly, based on the assumption (Ir',¢' ::
max .t' < maxT), we must have r.y — r.p.y < r’.y — r’.p.y.
Therefore 7.y should also be increased. This can be included
in the above commands through a simple modification.

(dr’,t’::max.t’<maxT) At.v>maxT —
r.v,t.v,p.v:= r.v+tl,d.v,v
] (u,v)EEAT.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.u+d.v,p.u

The difference between the two cases of increasing r is that
in the first case we have t.v = max .t but in the second case
it may not be true. With ¢t.v = max .t, there is no edge (v, z)
such that r.v —r.x = w(v, x), and thus the execution of r.v :=
r.v+1 cannot destroy PO. Without it, that is not guaranteed.
Similar to our handling of P2, we can either maintain PO
through a repetitive updating of r after each operation or
allow it to be violated temporally and restored later. We
select the second option since it renders more flexibility. It
gives us one more guarded command in addition to the above
two.

(Jr’,t’::max.t’<maxT) At.v>maxT —
r.v,t.v,p.v:= r.v+l,d.v,v
] (u,v)EEATr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.u+d.v,p.u
[(u,v)€EEATr.u-r.v>w(u,v) —
r.v,t.v,p.v:=r.u-w(u,v),t.utd.v,p.u

The condition —P3, that is (Ir',¢' :: maz.t’ < maxT),
guarantees that the above iterative operations to push down
t.v > maxT will terminate within finite steps. This comes
from the fact that each time after r.v for any v € V is in-
creased, it is guaranteed that there exists a u € V such that
ro —rau < 1w —1r.u, or equivalently rv —r'.v < rau—1r'u.
Therefore (maxv : v € V : r.v — r’.v) cannot be increased
during the operations. When the iterations terminate, we
will have a valid retiming (r,¢) such that max.t < maxT.
Therefore, we can reset the maxT and start the process again.
Once again, we introduce a guarded command parallel to the
above three instead of introducing a hierarchy. The algorithm
currently has the following scheme.

r,t,p,maxT := 0,d,1,0;
do
(u,v) €EAr.u-r.v=w(u,v)At.v-t.u<d.v —

t.v,p.v := t.utd.v,p.u

| maxT<t.v — maxT:=t.v

od

{P(r,t) Amax.t=maxT}

do

(dr’,t’::max.t’<maxT) At.v>maxT —

r.v,t.v,p.v:= r.v+l,d.v,v

| (u,v)EEAr.u-r.v>u(u,v)At.v<t.utd.v —
t.v,p.v := t.utd.v,p.u

l (u,v)EEAr.u-r.v>ulu,v) —
r.v,t.v,p.v:=r.u-w(u,v),t.u+td.v,p.u

| P(r,t)Amax.t<maxT — maxT:=max.t

od

{P(r,t) Amax.t=maxTA(Vr’,t’::max.t’>maxT)}

The invariant of the second repetitive statement is now very
weak—perhaps only includes P1; the post-condition comes
from the negation of the guards.

The remaining task to complete the algorithm is the calcu-
lation of the predicate (Ir', ¢ :: max.t’ < maxT). We already
know that if it is true then (maxv:v € V : r.v —r’.v) cannot
be increased. This implies that there is at least a node v such
that r.v does not change. We use a label m : V. — V for
each node v to point to the “safe-guard” node p.v when r.v is
increased. Since r.v — r.p.v + w.l = 0 before the increase and
w.l >0 (I is a path from p.v to v), we know that

Mmoo eV irv—rmo<1)

is an invariant, which means that r.v is at most one larger than
r.m.v. The condition (Ir',#' :: max.t’ < maxT) guarantees
the predicate

Vv:mw eV irv—rw<rmo—1r.mu),

which ensures that the label m will not form any cycle. This
means that m will form a forest where the roots have r = 0
and a child can have a r at most one larger than that of its
parent. Therefore, if (Ir',¢ :: max.t’ < maxT), then, for
any 0 < i < |V|, there must be at least ¢ nodes whose r are
smaller than . A violation of any of these conditions presents
an evidence for (Vr',t' :: max.t’ > maxT)-that is, maxT is
optimal. Therefore, we can simply extend the above scheme
with the m pointers and monitor these optimality evidences—
that is, (v : rv > |V| = 1) V (Vv s 7o > 0) or m forms a
cycle.

The monotonic decrease of maxT implies a monotonic
strengthening of the predicate (Ir',¢ :: max.t’ < maxT).
In other words, we have

maxTi > maxTy =

((3r',¢ :: max .t' < maxTs) = (I, : max.t’ < maxTy)).

It shows that the operations done under a larger maxT; is
conservative and still valid under a smaller maxT52, and the
conditions given by (Ir',t' :: max.t’ < maxT;) are still true
if (3r',¢ :: max.t’ < maxTs). Therefore, we do not need to
reset any of r or m after each decrease of maxT. This gives
the beauty of the algorithm: it constructively pushes down
max .t, and at the same time prepares evidences to show that
max .t is optimal.

Based on the discussion, the complete algorithm is given
as follows.

r,t,p,m,maxT,cycle:=0,d,1,0,0,0;
do
(u,v)€EEAr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v := t.utd.v,p.u

| maxT<t.v — maxT:=t.v
od
{P(r,t) Amax.t=maxT}
do
—cycleAt.v>maxT —
if
m.v#0 — cycle:=(m forms a cycle)
 m.v=0 — skip
fi;
r.v,t.v,m.v,p.v := r.v+l,d.v,p.v,v
| (u,v)EEAr.u-r.v=w(u,v)At.v<t.u+d.v —
t.v,p.v:=t.u+d.v,p.u
l (u,v)EEAr.u-r.v>wlu,v) —
r.v,t.v,m.v,p.v:=r.u-w(u,v),t.u+td.v,u,p.u
| P(r,t)Amax.t<maxT — maxT:=max.t
od
{(3r,t: max.t=maxT)A(Vr’,t’::max.t’ >maxT) }

The correctness of the algorithm is readily provable by
using the predicate annotations in the program. It should
be noted that, since we start to change r before we know
(3", ¢ :: max.t’ < maxT), the post-condition only states
that maxT is the optimal period, but not that (r,¢) is an
optimal retiming. However, an optimal retiming can be eas-
ily computed if we store the feasible r before trying to push
the current maxT down. In the post-condition, the predicate
(3r,t :: max.t = maxT) is an invariant of the loop and the
predicate (Vr',t' :: max.t’ > maxT) is implied by cycle which
comes from the negation of all guards in the loop. The termi-
nation is guaranteed by the monotonic increase of r and the
upper bound of |[V| — 1 on them. In order to clear the doubt
on the possibility of an prohibitively long running time when
each reduction on mazx.t is too small, a bound on the worst
case running time is given in the following theorem.

Theorem 1 The worst case running time of the derived re-
timing algorithm is upper bounded by O(V*E).

Cautions should be used on this bound. First, a program
will usually have great running time variations on different
problem instances. The worst case time may only happen
in a few rare instances, and thus may not be a good indica-
tion of the efficiency on most other instances. Second, even
when the worst case happens, a bound may be loose due to
the difficulty to have an accurate analysis. Since only nec-
essary operations are conducted in each step of the derived
algorithm, it should be efficient in most instances. This is
confirmed by our experiments.

4 Experimental results

The derived retiming algorithm is implemented easily. The
nondeterminacy in the guarded commends is explored by us-
ing a queue of modified nodes. For comparison, we also got
the minimal period retiming code ASTRA [13] from Prof.
Sapatnekar. The parser and data preparation (e.g. changing
registers into edge weights and adding a host node connecting
POs and PIs) in ASTRA are also leveraged for the derived
retiming program. It should be noted that ASTRA used the
equivalence between retiming and clock skew optimization to
first do a continuous retiming and then locally move registers
to minimize skews [13]. Therefore, it is a heuristic algorithm
and may not give the optimal period if no clock skew is al-
lowed. All the test cases in the ISCAS89 benchmarks are
tested both on the derived algorithm and the ASTRA run-
ning on a Sun Ultra 10 machine. Since there is no gate delay
information on those benchmarks, the ASTRA is set to gen-
erate gate delays between 1 and 100. Reported in Table 1
are results for large test cases. For each test cases, it reports

circuit name, number of gates, the original period and the
optimal period (from the derived algorithm). The running
time of the derived algorithm (column “time”) and that of
the ASTRA (column “astra’) are reported for comparison.
For almost all cases, the derived algorithm outperforms the
ASTRA. For larger circuits and larger difference between the
original and optimal periods, the difference is even bigger.
The result is striking since we are comparing an exact al-
gorithm with a heuristic algorithm. Since the ASTRA only
reported the achieved clock period with clock skews but not
the amount of required skews, we cannot measure how far
away its results are from the optimal.

Table 1: Experimental Results

name #gates || clock period | time(s) || astra(s)
before | after
s1423 490 166 127 0.02 0.04
s1494 558 89 88 0.02 0.01
s9234 2027 89 81 0.12 0.19
s9234.1 2027 89 81 0.16 0.20
513207 2573 143 82 0.12 0.49
s15850 3448 186 T 0.36 0.57
s35932 12204 109 100 0.28 0.86
s38417 8709 110 56 0.58 1.46
s38584 11448 191 163 0.41 1.12
s38584.1 | 11448 191 183 0.48 1.26
References

[1] P. Cocchini. Concurrent flip-flop and repeater insertion for
high performance integrated circuits. In ICCAD, pages 268—
273, 2002.

[2] G. De Micheli. Synchronous Logic Synthesis: Algorithms for
Cycle-Time Minimization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits, 10(1):63-73, January
1991.

[3] E. W. Dijkstra. Guarded commands, nondeterminacy, and the
formal derivation of programs. CACM, 8:453-457, 1975.

[4] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

G. Even, 1. Y. Spillinger, and L. Stok. Retiming Revisited and
Reversed. IEEE Transactions on Computer-Aided Design of
Integrated Circuits, 15(3):348-357, March 1996.

R. W. Floyd. Assigning meanings to program. In Proc. Amer.
Math. Soc. Symposia in Applied Mathematics, volume 19,
pages 19-31, 1967.

David Gries and Fred B. Schneider. A Logical Approach to
Discrete Math. Springer-Verlag New York, Inc., 1993.

[8] S. Hassoun and C. J. Alpert. Optimal path routing in single
and multiple clock domain systems. In ICCAD, pages 247—
253, 2002.

9] C. A. R. Hoare. An axiomatic basis for computing program-
ming. Communications of the ACM, 12(10):576-580, October
1969.

[10] Alexander T. Ishii, Charles E. Leiserson, and Marios C. Pa-
paefthymiou. Optimizing two-phase, level-clocked circuitry.
JACM, 44(1):148-199, January 1997.

[11] C. E. Leiserson and J. B. Saxe. Optimizing Synchronous Sys-
tems. Journal of VLSI and Computer Systems, 1(1):41-67,
Spring 1983.

[12] C. E. Leiserson and J. B. Saxe. Retiming synchronous cir-
cuitry. Algorithmica, 6(1):5-35, 1991.

[13] S.S. Sapatnekar and R. B Deokar. Utilizing the retiming-skew
equivalence in a practical algorithm for retiming large circuits.
IEEE TCAD, 15(10):1237-1248, October 1996.

[14] H. Zhou and C. Lin. Retiming for wire pipelining in system-
on-chip. IEEE TCAD, 23(9):1338-1345, September 2004.

[5

5

[7

