
3B-2

A Processor Core Synthesis System in IP-based SoC Design

Naoh TOMONO+ Shunitsri KOHARAt Jumpei UCHIDAt Yuichiro MIYAOKAt
Nozomu TOGAWAt.?* hlasao YANAGISAWAt Tatsuo OHTSUKIt

t Department of Computer Science, Wmeda University * Department of Information and Media Sciences, The University of Kitakyushu
* Advanced Research institute for Science and Engineering, Wseda University

email.tomonoByanagi.comm.wascda.ac.jp

Abstract- This paper proposes a new design
methodology for SoCs reusing hardware IPS. In our
approach, after system-level HW/SW partitioning, we
use IPS for hardware parts, but synthesize a new pro-
cessor core instead of reusing a processor core IP. Sys-
tem performs efficient parallel execution of hardware
and software by taking account of a response time of
hardware IP obtained by the proposed caiculation al-
gorithm. We can USE! optimal hardware IPS selected by
the proposed hardware IPS selection algorithm. The
experimental results show effectiveness of our new de-
sign methodology.

I. INTRODUCTION
The increased complexity of System-On-Chip (SoC)

designs makes it difficult for designers to meet the de-
mands from market such as short t imotemarket, small
gate count and high-performance. In practice, hard-
ware/software cc-design [l] and IP-based design [Z] are
proposed in order to build the required complexity in a
short time. Another methodology is that after the hard-
ware/software partitioning, a designer reuses thc hard-
ware IPS for hardware, and the processor core IPS for
software.

However, the designers do not always find the suitable
IPS that match the application. Some IPS have excess
performance and some do not have enough performance.

In our approach, after the hardware/software partition-
ing, a designer uses hardware IPS for hardware: but syn-
thesizes new processor core instead of reusing processor
core IPS. Synthesizin.g processor core can compensate thc
excess or deficient performance of hardware IPS.

In this paper we propose a new processor COPC synthesis
system which is hardwarelsoftwarc co-synthesis system
based on rcsponse time of hardware IPS. A processor core
synthesized by the system can execute another operation
while hardware IPS execute the operations. The system
can also select the suitable IP by a selection algorithm
if thcre are some IPS which have the same functions but
different performances.

Figure 1 shows a frame work based on the proposed
processor core synthesis system. A designer describes the
specification of application by systemC [4. After eval-
uating and validating the performance required for the
application, the designer decides which part of the spec-
ification is implemented by hardware or software (hard-
ware/software partitioning). Then the hardware part is
implemented by hardware IPS, and the software part is
implemented by processor core synthesized by proposed

Process4r core
Syntheeis Syatam

roceeaer O b j e c t

Fig. 1. A framework.

system. The optimized processor core can absorb t h e cx-
cess or deficient performance of hardware IPS.

The system requires the response timc of hardware IPS
at the scheduling, but it was difficult to know the response
time in advance. The designers selected one hardware
IP by their experienccs and intuitions if there were some
hardware IPS which have the same functions but different
performances.

111 this paper, we propose a calculation algorithm of
response time of hardware IPS and a hardware IP auto-
selection algorithm. The calculation algorithm can au-
tomatically calculate the response time of hardware IPS.
The hardware 1P auto-selection algorithm can select the
suitable IP for the input application from some IPS having
the same functions but different performance.

This paper is organized as follows. Section I1 defines
a architecture of IP-based SOC. Section 111 proposes a
processor core cosynthesis system which is the key issue
in the proposed systcni. Section IV shows several experi-
mental results compared with existing processors. Section
V gives concluding remarks.

11. TARGET ARCHITECTURE
Figure 2 shows an architecture model of IP-based SOC.

The architecture is consisted of an processor core, a mem-

0-7803-8736-8/05/$20.00 02005 IEEE. 286 ASP-DAC 2005

Fig. 2. An architecture model of IP-based SoC .

Proseraor
Core

Fig. 3. An architecture model of processor core .

w* n

---c
rICPI

--- - - -_-___ c-3"

ory and several hardware IPS which are connected each
other via a shared bus. Our approach is first the input
appIication is partitioned into hardware/software parts,
then the hardware parts are implemented by hardware
IPS, and the software parts are implemented by a proces-
sor core.

In the following section, we define the processor core,
the hardware IP and the interface of both units.

A . Processor Core
Figure 3 shows an architecture of the VLIW-type pro-

cessor core which is consisted of B processor kernel and
some optional hardware units. The architecture is based
on [6],

A Proccssor kernel is (1) a RISC-type kernel or (2) a
DSP-type kernel. A ItISC-type kernel. has the five pipeline
stages composed of IF (instruction fctch), ID {instruction
decode), EXE (execution), MEM (memory access) and
WE (write back) stages. A DSP-type kernel has the three
pipeline stages composed of IF, ID and EXE stages. The
processor core can add the optional hardware units, such
as functional unit (ALU, multiplier and so on) and ad-
dressing unit shown in Figure 3, to the processor kernels.

The processor core has basic instructions, parallel in-
structions and hardware-IP-instructions. The basic in-
structions are based on a general digital signal processor
(41. The parallel instruction executes more than one ba-
sic instructions. A processor core synthesis system deter-
mines which combination of basic instructions should be
a parallel instruction based on an application program.
The hardware-IF-instructions are described in the follow-
ing section.

B. Interface
The interface between processor core and hardware IP

is based on ARM Coprocessor Interface [5] . The ARM
Coprocessor Interface defines signal interface and instruc-
tion interface.

W I P I

,---------I

M I P 2 ~ H I P " ~

B.l Signal Interface

Figure 4 shows an connection of the processor core and
the hardware IPS. The processor core can connect up to
16 hardware IPS. The processor core communicates with
hardware IPS via three handshake signals as follows:

1. nCPI (Processor + IPS) A processor core wants to execute

2. CPA (IP + Processor) There are no hardware IPS which

3. CPB (IP + Processor) Hardware IP can not execute the
hardware-IP-instruction immediately since the it is exe-
cuting another hardware-IP-instruction.

hardware-IP-instruction.

can execute the hardware-IP-instruction.

B.2 Instruction Interface

Processor core sends hardware IPS three h'ardwareIP-
instructions: (a) CDP (Coprocessor Data Operation), (b)
LDC/STC (Coprocessor load and store operations) and
(c) MCR/MRC (Register transfer operations). The for-
mat of hardware-IP-instruction is as follows:

CDP RW#, OP#
LDC HW#, N, Rd, Rn, offset
STC HW#, N, Rd. Rn. offset'
MRC HW#, Rdi, Rd2
MCR HW#, Rdl, Rd2

CDP performs processing operation on the data held in the
hardware IP's register. Each hardware. IP is numbered
and a processor core defines one HW IP to which it wants
to send an CDP instruction by HW#. OP# shows which
one of the operations the hardware IP have should be
executed.

LDC/STC transfer data between a hardware IP and mem-
ory.

MCR/MRC transfer data between a processor core register
and a hardware IP register.

C. hardware IP
Figure 5 shows an architecture of a hardware IP. It has

a detapath, some registers, an instruction pipeline to hold
the hardware-IP-instructions from the processor core and
an instruction decode logic to decode the hardware-IP-
instructions. .

111. PROCESSOR CORE SYNTHESIS SYSTEM
Figure 6 shows the proposed processor core synthesis

Given an application program written in the system.

287

Shared Bus

I I Hardware I P I I
Datapath

Fig. 5. An architecture model of n hardware IP

SystemC language 131 and time constraint, the applica-
tion is partitioned into hardware/software parts as shown
in Figure 1. The CWL (Component Wrapper Language)
[SI descriptions of hardware IPS which have the functions
of hardware parts arc also the input of the systcm. The
system synthesizes a hardware description of a processor
core and generates object code for the processor core and
selected hardware 1P's data.

Our approach is as follows:
1. Compile: First the system assumes a processor core to

which all the hardware units are added and runs an a p
plication program on the assumed processor core. The
compiler generates an assembly code which is minimum
execution time and maximum area since there are no lim-
itations of hardware units [6].

2. Processor core WW/SW partitioning: Second, the
system replaces a part of hardware with software by elim-
inating hardware units added to a processor kernel one by
one. The execution time of the assembly code becomes
longer but the required area for processor,core to run it
becomes smaller [SI. '

3. The system repeats process 2 while the execution t h e
of the asse~nbly code satisfies the timing constraint and
obtains a processor core satisfying the timing coiistraint
with a small area.

We explain the corisistents of the system.
response time calcukator calculates the response time of

hardware IP from the input CWL description.
pre-processor (SW extractor) extracts a SW description

of an application from the system-level description.
profiler profiles software parts of the application from the

system-level description.
compiler assumes a processor core to which all the hardware

units are added and runs an application program on the
assiimed processor core. The compiler generates an as-
sembly code. This assembly code is minimum execution
time and maximum area since there are no liniitations of
hardware units.

processor core HW/SW partitioner replaces a part of
hardware with software by eliniinating hardware units
added to a processor kernel one by one. The execution
time of the assembly code becomes longer but the re-
quired area for processor core to run it becomes smaller.

HW XP auto-selector automatically selects the suitable
hardware IP for the application from several hardware

I

Fig. 6. A processor core synthesis system.

IP candidates which have the same functions but have
different performances.

hardware generator generates a hardware description of

assembler generates the object code of the application p r e

See 161 for the compiler and the processor core HW/SW
partitioner, and see [7] for the hardware generator. The
pre-processor and the assembler are simple ones. We focus
on the response time calculator and the HW IP a n t e
selector in the following section.

A. response time calculator
We propose an algorithm t o calculate the response time

of hardware IP from the CWL, the interface description
language. We define the response time as; after the hard-
ware IP receives the hardware-IP-instruction from the
processor core, the response time is the time consumed
by a hardware IP to cxceute a HW-IP-instruction.

CWL is a language used to define the interface specifi-
cations of the target IF correctly. Such interface specifi-
cations include specifications of logical signal changes as
well as structural specifications, such as 1/0 pin informa-
tion.

The CWI, is consisted by four major sections; po r t ,
alphabet, word. sentence. Our algorithm focuses on
word section.

Figure 7 shows the calculation flow. The word section
defines the pattern of each transaction in normal repre-
bentation. We classifies the word section into four expres-
sions.
Basic expression is the most frequently used, consisted of

the processor core.

gram run on the processor core.

alphabet and regular expressions.

288

I

a#/b
a&b

d / b

Fig. 7. A response time calculation flow .
that "a" ends.
"b'! starts after "a" ends.
"6" starts at the same time
that "a" starts.
"b" starts at after "a" x t. y

max{x, y}

Hierarchical expression represents the word hierarchically.
Parallel expression without synchronization

represents the parallel processing such as pipeline.

parallel processing including synchronization.
Parallel expression with synchronization represents the

In the response time calculator, thkse four expressions
are applied to the different algorithms separately as shown
in Figure 7.

Figure 8 shows an example of the responsc time cal-
culation algorithm. The word section is extracted from
the CWL description. The example is a parallel. expres-
sion without synchronization, shown in the leftmost box
in Figure 7 since there is the keyword "SERIAL".

A calculation algorithm for parallel expression without
synchronization is:

1. Calculate the clock cycles of "SERIAL". "SERIAL" is con-
sisted of the alphabet and regular expressions. We sum
up all the alphabet taking account of regular expressions.
In Figure 8, since all the alphabet (a lphabet a, b, c) is
counted as one cycle, readcommand is calculated a:

readcommand = 1 x 8 + 1 x 3 + 1

= 12 (1)

The basic expression is calculated in the same way as
equation (1).

2. Calcuiate the response time of "PARALLEL". "PARALLEL"
is consisted of SERIAL uords, alphabet and parallel no-
tation shown in Table I. The readtransaction is caIcu-
iated a5 shown in Figure 8. We calculate the PARALLEL
word from the last consistent with taking account of par-
aliel notations k~ shown in table I. In Figure &, the last
consistent p a r i t y e r r o r takes 8 cycles and the next one
r e a d p a r i t y takes 14 cycles. The relation between both
consistents is "'&" which means parityerror starts at the
same tinie that r e a d p a r i t y start,s and Lhe response time
is calculated as:

max{par i tye r ro r , readpar i ty} = 14 (2)

YAlN i~ calculrted
word: f m the top m n l l s t c n t

SERIAL : _1 = I f f i k
r e a d c m a n d . 8181 b131 c ; 1 2

readpar i ty ; - 14

p a r i t y e r r o r ' ... : -c 6 PAWL I S calculated from ths
1st consistent

PARALLEL :
readtransaction : r e a d c m a n d &/ readpar i ty & D a r i t y e r r o r .

12

endword U
marill 6) = 14

I readtransa6ttlan - 12 + 14 = 26

Fig. 8. An example of the response time calculator .

TABLE I
PARALLEL NOTXTIOXS AND CLOCK CYCLES.

Notation 1 Meaning I Cycles
a#b I "b" starts at the same time I x + y

I starts.

Repeat this calculation to the top consistent and we can
obtain the response time of the readtsansaction.

The proposed algorithms calculate the maximum clock
cycles it could take. Therefore, it can calculate more pre-
cisely if the processing time docs not rely on the quality
of the data. And the more the designer writes the CWL
in detail, the more the calculation result is precise.

B. HW IP Auto-selector
Wc also propose a hardware IP autc-selector which se-

lects the suitable one from several hardware IPS having
the same functions but different performances. The ob-
jective is to minimize the area of synthesized processor
core and hardware IPS. The input of the hardware IF'
auto-selector is;

1. a timing constraint of the application,

2. the firstest assembly code obtained from the compiler,
3. profile information from the profiler

4 . the data of reusable hardware IPS (area and response time

The configuration of the processor core obtained from
the processor core HW/SW partitioner varies by the hard-
ware IF. Hardware IP auto-selector feeds back the configu-
ration of the processor core to the processor core HW/SW
partitioner and finds the optimal configuration. Hence we
propose the algorithm which makes the number of trial
minimum.

Figure 9 shows the flow of the hardware IP autc-
selector. The selector reduces the hardware IP candidates
from the hardware IF database by a candidate reduction
algorithm. Then it selects one hardware IP from the can-
didates by a selection algorithm.

obtained from the response time calculator).

289

Fig. 9. A flow of the hardware IP auto-selector .

Candidates Reduction Algorithm The hardware IF
auto-selector obtains the number of hardware IP instruc-
tions from the input profile information. Let us consider
there are several hardware IPS which have the same func-
tions. i-th hardware IF includes n operations. Let IC be
one of the n operations. Since the total processing time
of the hardware IP is response time x number of instruc-
tions, the total processing time of i-th hardware IP (Si)
is defined as:

(3)

where Tik is a response time of k-th operation in i-th
hardware IP. I z k is the total number of k-th operations in
i-th hardware IP executed in the application.

The auto-selector arranges all the hardware IPS in as;
cending order of the area and numbers them. It arranges
all combinations of the hardware IPS if the designer de-
cides to use two or more hardware IPS. S, given by the
equation (3) is expected to be in reverse. if the two hard-
ware IPS, j and j - 1, have the relation S,-, < S,, then
j t h hardware IP is eliminated.

Selection Algorithm After the hardware IPS are elim-
inated by the reduction algorithm, The auto-selector
searches minimum combination of processor core and
hardware IPS.

The hardware IP candidates have the trade-off between
area and performance. The selection algorithm searches
the minimum hardwxe IP (combination) which satisfies
the timing constraint by the binary search. The key of
the search is the arca of hardware IP (total arca of the
combination).

Figure 10 shows the selection algorithm. The auto-
selector selects the suitable hardware IP (combination)
by log, n trials if the number of hardware IP candidate is
n.

IV. EXPERIMENTAL RESULT

In the expriment, we use two application examples: the
JPEG Encoder and the 3D-Animation.

They were paritioned into hardware/software part. The
hardware part was UCT in the JPEG encoder and hard-
ware T&L in the 3D-animation. Then we applied the
proposed processor core synthesis system to these appli-
cations. '

Input: a timing constraint, assembly code obtained from com-
piler, profile information and data of hardware IF candidate
Output: assembly code, processor care architecture, instruction
set and selected hardware IP.
Stepl-1. Calculate the total area of all Combinations of hard-
ware IP candidates and arrange them in ascending order.
Stepl-2. Let xi be the total area of i-th combination (Ct) , n
be the number of combinationand c k be the target combination.
The initial k is n/2.
Stepl-3. Let t be the number of trial and the initial t is 0.
The minimum total area of processor core and combination of
hardware IPS is a in the trial process. and let T be the data
(assembly code, processor core architecture, instruction set and
data of hardware IP) of this trial.
S t e p 2 Add 1 to the t . If t > logan , go to Step3. input the
data of c k with timing constraint and execution profile to the
processor core HW/SW partitioner.

1.

2.

If no solution which satisfies the timing constraint is ob-
tained, replace k = k + - and repeat StepS.

If the solution which satisfies the timing constraint is ob-
tained. let yt the sum of the area of the obtained processor
core and 2 i; , and

(a) if t = 1 or yt < a , replacek and a, k = k - n,a = pt

n
2t

2 t
respectively and repeat Step2.

2
(b) if yt > a, replace k k = k + and repeat Step2

StepS. Output T and finish searchiw

Fig. 10. A hardware IP selection algorithm I

A. JPEG Encoder
We gave some time constraints to the application. Ta-

ble I1 shows the area, execution time and hardware con-
figurations of the synthesized processor core.

The JPEG encoding system is consists of four major
parts:

Image Fragmentation

DCT (Discrete Cosine Transform)

Quantization
Huffman Coding

In the design frame work shown in Figure 1, We par-
titioned off these parts into hardware/software parts and
decided DCT to be implemented by hardware IP. We used
Xilinx [9] 2-D DCT as a hardware IP. The response time
of the hardwarc IP obtained by the calculation algorithm
was 285 cycles.

B. 3D-Animation
We prepared six types of the T&L hardware IP shown in

Table I11 in order to validate the effectiveness of hardware-
IP- selector.

Table IV shows the area, execution time and hardware
configurations of the synthesized processor core in some
time constraints.

G! Discussion
In order to compare our results with the general pur-

pose processors, We prepare the RlSC processor having 5
stage pipelines: 32 32-bit registers, 32-bit instruction sets
and the multiplier. We applied this processor core to the
target architecture shown in Figure 2.

290

TABLE I1
AREA, EXECUTION TIME A N D HARDWARE CONFIGURATIONS OF SYNTHESIZED PROCESSOR CORE (JPEG ENCODER).

Hardware configuration

120.0 113.740
130.0 129.799
150.0 146.212
170.0 169.273
175.0 174.058

TABLE IV

Timig consts Execution time System area Pmrmcarea Hardware configuration HW IP
AREA: EXECUTION TlhlE AND HARDWARE CONFIGURATIONS OF SYNTHESIZED PROCESSOR CORE (3D-ANlhlATlON).

#ALUs #Fie#
24.0 23.751 40.188014 4.795864 RISC AIJU*2,Mult*3 19
28.0 27.491 21.945339 2.820687 RISC ALU*l,hI~ilt*l 12

34.0 33.788 21.217409 2.092757 RISC ALU*l.Mult*l 13
40.0 39.117 21.122514 1.997862 DSP A-LU*l,h?rilt*l 14

30.0 29.852 21.878155 2.753503 RJSC ALU*l ,Mul t* l l l

TABLE 111

I Name 1 Area I remonse time I
T H E SPECIFICATION OF T&L HAHDbV;\RE IPS.

67.927146
100.462142 34
i98.067130 29

TABLE V
THE AREA .4ND EXECLiTlON TILIE OF GENEICAL PUKPOSE RISC

PROCESSOR.

Application 1 Area(pm2] [Execution time[ms]
.JPEG encoder 1 2,107,831 I 225.621

I 3D animation I 2.107.831 I 41.8291tis1 I

Table V shows the area arid the execution time of pro-
cessor cores. In the 3D-animation, we use the Hardware
IP A in the Figure 111.

In Tables I1 and IV, our results show that compared
with the general purpose processor corc, the execution
time of JPEG encoder was reduced 42%, and that of 3D-
animation was reduced 20% though the area was almost
the same.

In Table IV, Hardware IP A was selected in most case.
Because the synthesized processor core and hardware IP
can run in parallel, high performance of the hardware IP
is not required for a11 the applicationb. Under the sevcre
timing constraints, Hardwarc IP B mas selcctcd. There-
fore, the hardware IP selector selects thc suitable hard-
ware IP up to the timing constraint of the application.

Overall the experimental results demonstrate that our
processor core synthesis system effectively generates syn-
thesizable processor cores based on application programs.

V. CONCLUSION
This paper proposed a processor core synthesis system

based on the IP-based SOC. This paper also proposed two
key issues for the system: hardware IP response time cal-

culation algorithm and hardware IP auto-selection a l p
rithm. The experimental results demonstratc that the
system synthesizes processor corm effectively according
to the features of an application program and synthesized
processor cores have higher performances compared with
general purpose processors.

The future work is the interface of processor core and
hardware IPS. It is difficult to find the hardware IP de-
fined in the section I1.C. We will build a interface synthesis
system for the proposed architecture,

ACKNOWLEDGEMENTS
We would like to thank Dr.Kei Suzriki and Mr.Hiroshi

Ara at Hitachi, Ltd., Central Research Laboratory
for many interesting discussions and suggestions which
helped shape this paper.

PI

I21

131
141

151

REFERENCES
1. J. Huang and A. &I. Despain? “Synthesis of instruction sets
for pipelined rnicroprocessors,” in Proc. 91st DAG, pp. 5-11>
1994.
J. A. Rowson arid A. Sangiovanni-Vinceirtclli, “Interface-
Rased Design,“ in Proceedangs of the Design Automataon Con-
ference, pp. 178-183: June 1997.
httl,://~,ww.systemc.org/
NEC, http://www.ic.nec.co.jp/micro/micro.htmi
http://www.arni.coni/

IS] N. Togawa, M. Yanagisawa, and T. Ohtsuki! A hard-
ware/software cosynthesis systcrn for digital signal processor
cores,’’ IEICE Trarrsactions on F7indamentals of Electronics,
Communications and Computer Sciences, vol. E82-A, no.11,
l‘JY<j.

[7] M. Haraabe, A. Nose: N. Togarva. At. Yanagisawa and T.
Ohtsuki, ‘‘A4 generation system for hardware description of
pipelined processors,’! Technical Report Of IEICE, VLD97-
117, ICD97-222,1998 (in Japanese).

html/index.htm.
[E] Hitachi, LLd., h t t p : //koigakubo.hitachi .co.~p/-sl/cxl/

PJ] Xilirix Inc., “2-D Discrete Cosine Transform v2.0,” h t t p : / /
vuv.xilinx.com/.

29 1

http://www.ic.nec.co.jp/micro/micro.htmi
http://www.arni.coni
http://vuv.xilinx.com

