3B-2

A Processor Core Synthesis System in IP-based SoC Design

Naoki TOMONQ! Shunitsu KOHARA'
Nozomu TOGAWAD~

Masao YANAGISAWA'!

Jumpei UCHIDAT Yuichiro MIYAOKA'!
Tatsuo OHTSUKI!

t Department of Computer Science, Waseda University
1 Department of Information and Media Sciences, The University of Kitakyushu
* Advanced Research Institute for Science and Engineering, Waseda University.
email:tomono@yanagi.comm, waseda.ac.jp

Abstract— This paper proposes a new design
methodelogy for SoCs reusing hardware IPs. In our
approach, after system-level HW /SW partitioning, we
use IPs for hardware parts, but synthesize a new pro-
cessor core instead of reusing a processor core IP. Sys-
tem performs efficient parallel execution of hardware
and software by taking account of a response time of
hardware IP obtained by the proposed calculation al-
gorithm. We can use optimal hardware IPs selected by
the proposed hardware IPs selection algorithm. The
experimental results show effectiveness of our new de-
sign methodaology.

I. INTRODUCTION

The increased complexity of System-On-Chip (SeC)
designs makes it difficult for designers to meet the de-
mands from market such as short time-to-market, small
gate count and high-performance. In practice, hard-
ware/software co-design [1] and [P-based design [2] are
proposed in order to build the required complexity in a
short time. Another methodology is that after the hard-
ware/software partitioning, a designer reuses the hard-
ware IPs for hardware, and the processor core IPs for
software.

However, the designers do not always find the suitable
IPs that match the application. Some IPs have excess
performance and some do not have enough performance.

In our approach, after the hardware/software partition-
ing, a designer uses hardware IPs for hardware, but syn-
thesizes new processor corc ingtead of reusing processor
core 1Ps. Synthesizing processor core can compensate the
excess or deficient performance of hardware 1Ps.

In this paper we propose a new processor core synthesis
system which is hardware/software co-synthesis system
based on response time of hardware TPs.” A processor core
synthesized by the system can execute another operation
while hardware IPs execute the operations. The system
can also sclect the suitable IP by a selection algorithm
if there are some IPs which have the same functions but
different performances.

Figure 1 shows a frame work based on the proposed
processor core synthesis system. A designer describes the
specification of application by systemC [3]. After eval-
uating and validating the performance required for the
application, the designer decides which part of the spec-
ification is implemented by hardware or software (hard-
ware/software partitioning). Then the hardware part is
implemented by hardware IPs, and the software part is
implemented by processor core synthesized by proposed

0-7803-8736-8/05/$20.00 ©2005 1IEEE.

syaten-laval
Descoiprion
tapaci ficacick}

HW IP Databasa

Application
HW/SW Partitioning

N OIF
Iatarface
Damcripri.

Template

Byatan-lavel
Camsription
{architecturg)

Processor Core
Synthesis System

Object
Coda

system. The optimized processor core can absorb the ex-
cess or deficient performance of hardware [Ps.

The system requires the response time of hardware IPs
at the scheduling, but it was difficult to know the response
time in advance. The designers selected one hardware
IP by their experiences and intuitions if there were some
hardware IPs which have the same functions but different
performances.

In this paper, we propose a calculation algorithm of
response time of hardware TPs and a hardware IP auto-
selection algorithm. The calculation algorithm can au-
tomatically calculate the response time of hardware IPs.
The hardware IP auto-selection algerithm can select the
suitable IP for the input application from some IPs having
the same functions but different performance.

This paper is organized as follows. Section II defines
a architecture of IP-based SoC. Section III proposes a
processor core cosynthesis system which is the key issue
in the proposed system. Section IV shows several experi-
mental results compared with existing processors. Section
V gives concluding remarks.

Frocessor
HDL
M

Fig. 1. A framework.

II. TARGET ARCHITECTURE

Figure 2 shows an architecture model of IP-based SoC.
The architecture is consisted of an processor core, a mem-

286

ASP-DAC 2005

Memory

Brocessor
Coxe

IPL

Fig. 2. An architecture model of IP-based SoC .

RISC kernet
DSP kernel

Inece
-

Fig. 3. An architecture model of processor core .

ory and several hardware IPs which are connected each
other via a shared bus. Our approach is first the input
application is partitioned into hardware/software parts,
then the hardware parts are implemented by hardware
IPs, and the software parts are implemented by a proces-
SOr core. .

~ In the following section, we define the processor core,
the hardware IP and the interface of both units.

A. Processor Core

Figure 3 shows an architecture of the VLIW-type pro-
cessor core which is consisted of a processor kernel and
some optional hardware units. The architecture is based
on [6].

A Processor kernel is (1) a RISC-type kernel or (2) a

" DSP-type kernel. A RISC-type kernel has the five pipeline
stages composed of IF (instruction fetch), ID {instruction
decode), EXE (exccution), MEM (memory access) and
WB (write back) stages. A DSP-type kernel has the three
pipeline stages composed of IF, ID and EXE stages. The
processor core can add the optional hardware units, such
as functional unit (ALU, multiplier and so on) and ad-
dressing unit shown in Figure 3, to the processor kernels.

The processor core has basic instructions, parallel in-
structions and hardware-TIP-instructions. The basic in-
structions are based on a general digital signal processor
(4]. The parallel instruction executes more than one ba-
sic instructions. A processor core synthesis system deter-
mines which combination of basic instructions should be
a parallel instruction based on an application program.
The hardware-IP-instructions are described in the follow-
ing section.

B. Interface

The interface between processor core and hardware 1P
is based on ARM Coprocessor Interface [5]. The ARM
Coprocessor Interface defines signal interface and instruc-
tion interface.

Prosessor
Gore

HIP

P2

:
1
LR
!
!

Fig. 4. A connection between processor core and hardware IPs .

B.1 Signal Interface

Figure 4 shows an connection of the processor core and
the hardware IPs. The processor core can connect up to
16 hardware IPs. The processor core communicates with
hardware IPs via three handshake signals as follows:

1. nCPI {Processor — IPs) A processor core wants to execute
hardware-IP-instruction.

2. CPA (IP — Processor) There are no hardware IPs which
- can execute the hardware-IP-instruction,

3. CPB (IP — Processor) Hardware IP can not execute the
hardware-IP-instruction immediately since the it is exe-
cuting another hardware-IP-instruction.

B.2 Instruction Interface

Processor core sends hardware IPs three hardware-IP-
instructions: (a) CDP (Coprocessor Data Operaticn), (b)
LDC/STC (Coprocessor load and store operations) and
{¢) MCR/MRC (Register transfer operations). The for-
mat of hardware-I1P-instruction is as follows; '

CDP HW#,
LDC Hu#,

CP#

N, Rd, Rn, offset
STC HW#, N, Rd, Rn, offset’
MRC HW#, Rdl, RdZ

MCR Hw#, Rdl, Rd2

CDP performs processing operation on the data held in the
hardware IP's register. Each hardware [P is numbered
and a processor core defines one HW IP to which it wants
to send an CDP instruction by HW#. OP# shows which
one of the operations the hardware IP have should be
executed.

LDC/STC transfer data between a hardware IP and mem-
ory.

MCR/MRC transfer data between a processor core register
and a hardware IP register.

C. hardware IP

Figure 5 shows an architecture of a hardware IP. It has
a detapath, some registers, an instruction pipeline to hold
the hardware-IP-instructions from the processor core and
an instruction decode logic to decode the hardware-IP-
instructions.

ITI. PROCESSOR CORE SYNTHESIS SYSTEM

Figure 6 shows the proposed processor core synthesis
system. Given an application program writien in the

287

Shared Bus

Hardware IP

Register<

Inetvuction
pipeline

Datapath

L
Insrruetion
decoder

Fig. 5. An architecture model of a hardware IP .

SystemC language [3] and time constraint, the applica-
tion is partitioned into hardware/software parts as shown
in Figure 1. The CWL {Component Wrapper Language)
[8] descriptions of hardware IPs which have the functions
of hardware parts are also the input of the system. The
system synthesizes a hardware description of a processor
core and generates object code for the processor core and
selected hardware IP’s data. ;
Our approach is as follows:

1. Compile: First the systemn assumes a processor core to
which all the hardware units are added and runs an ap-
plication program on the assumed processor core. The
compiler generates an assembly code which is minimum
execution time and maximum area since there are no lim-
itations of hardware units [6].

2. Processor core HW /SW partitioning: Second, the
system replaces a part of hardware with software by elim-
inating hardware units added to a processor kernel one by
one. The execution time of the assembly code becomes
longer but the required area for processor,core to run it
becomes smaller [6].

3. The system repeats process 2 while the execution time
of the assembly code satisfies the timing counstraint and
obtains a processor core satisfying the timing constraint
with a small area.

We explain the consistents of the system.

response time calculator calculates the response time of
hardware IP from the input CWL description.

pre-processor (SW extractor) extracts a SW description
of an application from the system-level description.

profiler profiles software parts of the application from the
system-level description. .

compiler assumes a processor core to which all the hardware
units are added and runs an application program on the
assumed processor core. The compiler generates an as-
sembly code. This assembly code is minitnum execution
time and maximum area since there are no limitations of
hardware units.

processor core HW /SW partitioner replaces a part of
hardware with software by eliminating hardware units
added to a processor kernel one by one. The execution
time of the asserably code becomes longer but the re-
quired area for processor core to run it becomes smaller.

HW 1P auto-selector automatically selects the suitable
hardware IP for the application from several hardware

m 1P
Interface
Dascription)

atm Lyval rindng

Conmtzaint

Dwscripeica
tarchitacturs

Frofiles

orefile

ce Processor Revponce T4
[ime mxcraceaz caleutarer

iFiratere)

BM IF Alto-Salector

Proceasoz Cocw
H¥/EM Paztitionar

brocessor cor.
Arendtactare
Paramatez

sulactad
W IP Data

Hardwara
Genarater

Fig. 6. A processor core synthesis system .

[P candidates which have the same functions but have
different performances.

hardware generator generates a hardware description of
the processor core.

assembler generates the object code of the application pro-
gram run on the processor core.

See [6] for the compiler and the processor core HW/SW
partitioner, and see [7] for the hardware generator. The
pre-processor and the assembler are simple ones. We focus
on the response time calculator and the HW IP auto-
selector in the following section.

A. response time calculator

We propose an algorithm to calculate the response time
of hardware IP from the CWL, the interface description
language. We define the response time as; after the hard-
ware IP receives the hardware-IP-instruction from the
processor core, the response time is the time consumed
by a hardware TP to execute a HW-IP-instruction.

CWTL is a language used to define the interface specifi-
cations of the target [P correctly. Such interface specifi-
cations include specifications of logical signal changes as
well as structural specifications, such as I/0 pin informa-
tion.

The CWL is consisted by four major sections; port,
alphabet, word, sentence. Our algorithm focuses on
word section.

Figure 7 shows the calculation flow. The word section
defines the patfern of each transaction in normal repre-
sentation. We classifies the word section into four expres-
sions.

Basic expression is the most frequently used, consisted of
alphabet and regular expressions.

288

L
CWL Demcription

word
Extraction

Expression
Judgemant

KEYWORD

RD
"SERIAL" "PRIVATE" othars

¥

Parallel B
with aync.

r

Bamic expression
Calculator

A
Hierarchical
axpression

cal

Reaponca bime
of BM 1P

Fig. 7. A response time calculation flow .

Hierarchical expression represents the word hierarchically.

Parallel expression without synchronization
represents the parallel processing such as pipeline.

Parallel expression with synchronization represents the
parallel processing including synchronization.

In the response time calculator, these four expressions
are applied to the different algorithms separately as shown
in Figure 7.

Figure 8 shows an example of the response time cal-
culation algorithm. The word section is extracted from
the CWL description. The example is a parallel expres-
sion without synchronization, shown in the leftmost box
in Figure 7 since there is the keyword “SERIAL”.

A calculation algerithm for parallel expression without
synchronization is: '

1. Calculate the clock cycles of “SERIAL". “SERIAL” is con-
sisted of the alphabet and regular expressions. We sum
up all the alphabet taking account of regular expressions.
In Figure &, since zil the alphabet (alphabet a, b, c)is
counted as one cycle, readcommand is calculated as:

I1x8+1x3+1
= 12

readcommand =
(1)

The basic expression is calculated in the same way as

equation {1}.

2. Calculate the response time of “PARALLEL”. “PARALLEL”
is consisted of SERIAL words, alphabet and parallel no-
tation shown in Table I. The readtransaction is calcu-
lated as shown in Figure 8 We calculate the PARALLEL
word from the last consistent with taking account of par-
ailel notations as shown in table I. In Figure 8, the last
consistent parityerror takes 8 cycles and the next one
readparity takes 14 cycles. The relation between both
consistents is ““&” which means parityerrorstarts at the
same time that readparity starts and the response time
is calculated as: '

max{parityerror, readparity} = 14

(2)

SERIAL ie c!lcula"»ad

worgéﬁl;\L' from the top consisient -
readcommand © a{8! b3l c [—= 12
readparity — 14
parityerror @ - —= & PARALLEL is calculated from the

last consistent

PARALLEL -
readtransaction : readsommand &/ readparity & parityerror:
12 i4 [
endword
max {4, 6} = 14
readtransaction —e 12+14=26

Fig. 8. An example of the response time calculator .

TABLE I
PARALLEL NOTATIONS AND CLOCK CYCLES.

Notation Meaning Cycles

a#tb ”b" starts at the same time x+ ¥
that "a" ends.

a#/b "b* starts after "a” ends. -

akb "b” starts at the same time | max{x, y}
that "a” starts.

ak/b "h" starts at after “a” x4y
starts,

Repeat this calculation to the top consistent and we can
obtain the response time of the readtsansaction.

The proposed algorithms calculate the maximum clock
cycles it could take. Therefore, it can calculate more pre-
cisely if the processing time does not rely on the quality
of the data. And the more the designer writes the CWL
in detail, the more the calculation result is precise.

B. HW IP Auto-sclector

We also propose a hardware [P auto-selector which se-
lects the suitable one from several hardware IPs having
the same functions but different performances. The ob-
jective is to minimize the area of synthesized processor
core and hardware TPs. The input of the hardware TP
auto-selector is;

1. a timing constraint of the application,
2. the firstest assembly code obtained from the compiler,
3. profile information from the profiler

4. the data of reusable hardware IPs (area and response time
obtained from the response time calculator).

The configuration of the processor core obtained from
the processor core HW/SW partitioner varies by the hard-
ware IP. Hardware IP auto-selector feeds back the configu-
ration of the processor core to the processor core HW/SW
partitioner and finds the optimal configuration. Hence we
propose the algorithm which makes the number of trial
minimum. '

Figure 9 shows the flow of the hardware IP auto-
selector. The selector reduces the hardware IP candidates
from the hardware IP database by a candidate reduction
algorithm. Then it selects one hardware TP from the can-
didates by a selection algorithm.

289

B 3F Candidaten

Hw 1P
Candidatan
Reduction

B 1P fandiacen

oI
Balection

=

Fig. 9. A flow of the hardware IP auto-selector .

Candidates Reduction Algorithm The hardware IP
auto-selector obtains the number of hardware IP instruc-
tions from the input profile information. Let us consider
there are several hardware IPs which have the same func-
tions. 4-th hardware IP includes n operations. Let k be
one of the n operations. Since the total processing time
of the hardware IP is response time x number of instruc-
tions, the total processing time of i-th hardware IP (S;)

is defined as:
8= Z Tikdin,
x

where Tjy, is a response time of k-th operation in i-th
hardware 1P, I;;, is the total number of k-th operations in
i-th hardware IP executed in the application.

The auto-selector arranges all the hardware IPs in as;
cending order of the area and numbers them. It arranges
all combinations of the hardware IPs if the designer de-
cides to use two or more hardware IPs. S given by the
equation {3) is expected to be in reverse. if the two hard-
ware IPs, 7 and j — 1, have the relation S;_1 < §;, then
jth hardware IP is eliminated.

(3)

Selection Algorithm After the hardware IPs are elim-
inated by the reduction algorithm, The auto-selector
searches minimum combination of processor core and
hardware IPs.

The hardware [P candidates have the trade-off between
area and performance. The selection algorithm searches
the minimum hardware IP (combination) which satisfies
the timing constraint by the binary search. The key of
the search is the area of hardware IP (total area of the
combination).

Figure 10 shows the selection algorithm. The auto-
selector selects the suitable hardware IP (combination)
by log, n trials if the number of hardware IP candidate is
Ti.

IV. EXPERIMENTAL RESULT

In the expriment, we use two application examples: the
JPEG Encoder and the 3D-Animation.

They were paritioned into hardware/software part. The
hardware part was DCT in the JPEG encoder and hard-
ware T&L in the 3D-animation. Then we applied the
proposed processor core synthesis system to these appli-
cations. '

Input: a timing constraint, assembly code obtained from com-
piler, profile information and data of hardware IP candidate
Output: assembly code, processor core architecture, instruction
set and selected hardware IP.

Stepl—1. Calculate the total area of all combinations of hard-
ware IP candidates and arrange them in ascending order.
Stepl-2. Let z; be the total area of i-th combination (C'5), n
be the number of combination and ¢, be the target combination.
The initial k is n/2.

Step1-3. Let t be the number of trial and the initial ¢ is 0.
The minimum total area of processor core and combination of
hardware IPs is ¢ in the trial process. and let r be the data
(assemnbly code, processar core architecture, instruction set and
data of hardware IP) of this trial.

Step2. Add 1 to thet. Ift > log,n, go to Step3. input the
data of ¢, with timing constraint and execution profile to the
processor core HW /SW partitioner.

1. If no solution which satisfies the timing censtraint is ob-
ki3
tained, replace k = k + 5 and repeat Step2,
2. If the solution which satisfies the timing constraint is ob-
tained, let 43 the sum of the area of the obtained processor

core and zj, and
n

(a) ift=1or gy < a, replacek anda,k:k—vz-z,

a =Yt
respectively and repeat StepZ.

(b) ifyt > a, replace k k =k + ;—t and repeat Step2.

Step3. Output r and finish searching .

Fig. 10. A hardware IP selection algorithm .

A. JPEG Encoder

We gave some time constraints to the application. Ta-
ble II shows the area, execution time and hardware con-
figurations of the synthesized processor core.

The JPEG encoding system is consists of four major
parts:

e Image Fragmentation

e DCT (Discrete Cosine Transform)
e (QQuantization

e Huffman Coding

In the design frame work shown in Figure 1, We par-
titioned off these parts into hardware/software parts and
decided DCT to be implemented by hardware IP. We used
Xilinx [9} 2-D DCT as a hardware IP. The response time
of the hardware TP obtained by the calculation algorithin
was 285 cycles. ‘

B. 8D-Animation ¢

We prepared six types of the T&L hardware IP shown in
Table IIl in order to validate the effectiveness of hardware-
IP- selector.

Table IV shows the area, execution time and hardware
configurations of the synthesized processor core in some
time constraints.

C. Discussion

In order to cornpare our results with the general pur-
pose processors, We prepare the RISC processor having 5
stage pipelines, 32 32-bit registers, 32-bit instruction sets
and the multiplier. We applied this processor core to the
target architecture shown in Figure 2.

290

TABLE II
AREA, EXECUTION TIME AND HARDWARE CONFIGURATIONS OF $YNTHESIZED PROCESSOR CORE (JPEG ENCODER).

Timing consts || Execution time Area Hardware configuration
[ms] {ms] [m?] Kernel #ALUs #Regs
120.0 113.740 4,106,806 | RISC ALU*2, Muit*2 20
130.0 129.799 2,288,954 | RISC ALU*1, Mult*1 5
150.0 146.212 1,758,458 | RISC ALU*1, Mult*1 6
170.0 169.273 1,623,141 DSP ALU*1, Mult*1 6
175.0 174.058 1,582,719 | DSP ALU*1, Mult*1 5
TABLE IV

ARFA, EXECUTION TIME AND HARDWARE CONFIGURATIONS OF SYNTHESIZED PROCESSOR CORE (3D-ANIMATIOI\').

Timig consts || Execution time | Systemarea | Processorcorearea Hardware configuration HWIP
[ns] [ns] [mm?] [mm?2] eroel H#ALUs ghep
24.0 23.751 40.188014 | 4.795864 | RISC ALU*2,Mult+3 19 B
28.0 27.491 21.945339 | 2.820687 | RISC ALU=1 Mults] 12 A
30.0 29.852 21.878155 | 2.753503 | RISC ALUsiMult+l11 A
34.0 33.788 21.217409 | 2.092757 [RISC ALU+I,Mult+113 A
40.0 39.117 21122514 1.997862 D5P ALU*L Mult+1 14 A
R culation algorithm and hardware IP auto-selection algo-

THE $SPECIFICATION OF T&L HARDWARE [Ps.

Name Area response time
[mm?] [eycles]
A 19.124652 98
B 35.392150 50
C 51.639648 38
s} 67.927146 a7
E 100.462142 34
F 198.067130 29
TABLE V
THE AREA AND EXECUTION TIME OF GENERAL PURPOSE RISC
PROCESSOR.
Application | Area{pm?] | Execution time[ms]
JPEG encoder 2,107,831 225.621
3D animation | 2,107,831 41.829(ns]

Table V shows the area and the execution time of pro-
cessor cores. In the 3D-animation, we use the Hardware
IP A in the Figure III.

In Tables II and IV, our results show that compared
with the general purpose processor core, the execution
time of JPEG encoder was reduced 42%, and that of 3D-
animation was reduced 20% though the area was almost
the same.

In Table IV, Hardware IP A was selected in most case.
Because the synthesized processor core and hardware IP
can run in parallel, high performance of the hardware [P
is not required for all the applications. Under the severe
timing constraints, Hardware IP B was selected. There-
fore, the hardware IP selector selects the suitable hard-
ware 1P up to the timing constraint of the application.

Overall the experimental results demonstrate that our
processor core synthesis system cffectively generates syn-
thesizable processor cores based on application programs.

V. CONCLUSION

This paper proposed a processor core synthesis system
based on the IP-based SoC. This paper also proposed two
key issues for the system: hardware [P response time cal-

rithm. The experimental results demonstrate that the
system synthesizes processor cores effectively according
to the features of an application program and synthesized
processor cores have higher performances compared with
general purpose processors.

The future work is the interface of processor core and
hardware IPs. It is difficult to find the hardware IP de-
fined in the section II.C. We will build a interface synthesis
system for the proposed architecture.

ACKNOWLEDGEMENTS

We would like to thank Dr.Kei Suzuki and Mr. Hiroshi
Ara at Hitachi, Ltd., Central Research Laboratory
for many interesting discussions and suggestions which
helped shape this paper.

REFERENCES

(1] 1. J. Huang and A. M. Despain, “Synthesis of instruction sets
for pipelined microprocessors,” in Proc. 31st DAC, pp. 5-11,
1994,

[2] J. A. Rowson and A, Sangiovanni-Vincentelli, “Interface-
Based Design,” in Proceedings of the Design Automation Con-
ference, pp. 178-183, June 1997.

http:/ /www.systemc.org/

http://www.arm.com/

N. Togawa, M. Yanagisawa, and T. Ohtsuki, “ A hard-
ware/software cosynthesis system for digital signal processor
cores,” IEICE Tronsactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. ER2-A, no.11,
1999,

[7] M. Hamabe, A. Nose, N. Togawa, M. Yanagisawa and T.
Ohtsuki, “A genecration system for hardware description of
pipelined processors,” Technical Report Of IFICE, VLD9T-
117, ICD97-222, 1998 (in Japanese).

Hitachi, Ltd., http://koigakubo.hitachi.co.jp/ sl/cwl/
html/index.htm.

[8] Xilinx Inc., “2-D Discrete Cosine Transform v2.0,” http://
vww.xilinx.com/.

|

4] NEC, http://www.ic.nec.co.jp/micro/micro.html
]
]

8

291

http://www.ic.nec.co.jp/micro/micro.htmi
http://www.arni.coni
http://vuv.xilinx.com

