
PIII- 13

SoC Test Scheduling Using the B*-Tree Based Floorplanning Technique *

Jen-Yi Wuu‘, Tung-Chieh Chen’, and Yao-Wen Chang3
‘Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

’Graduate Institute of Electronics Engineering, NationaI Taiwan University, Taipei, Taiwan
’Department of Electronic Engineering & Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

j ywuu@eda.ee.ntu.edu.tw, tungchieh@ntu.edu.tw, ywchang@cc.ee.ntu.edu.tw

Abstract- We present i n this paper a new algorithm to co-optimize the
problems of test scheduling and core wrapper design under power
constraints for core-based SoC (System on Chip) designs. The problem of
test scheduling is first transformed into a floorplanning problem with a
given maximum height (test access mechanism width) constraint. Then,
we apply the B*-tree based floorplanning technique to solve the SoC test
scheduling problem. Experimental results based on the ITC’OZ
benchmarks show that our method is very effective and efficient-our
method obtains the best results ever reported for SoC test scheduling
with power constraint in every efficient running time. Compared with
recent works, our method achieves average improvements of 4.1% to
20.1%.

I. INTRODUCTION
In order to shorten the time-to-market, SoC designs with embedded cares

have become more and more popular. As a result, SoC testing has become an
important research problem, Thc major objeciive of SoC testing is to reduce
the test time. During the testing of the embedded cores, test access
mechanisms (TAMs) arc nsed to transport test vectors between SoC pins and
the core wrappers. The core wrapper forms an interface between a core and
the TAM. Since the TAM wires are limited to a certain number and the cores
usually have more pins than the TAM wires, the wrapper is also designed to
match the TAM width to the number of core pins when they do not match.
After the design of core wrappers, the problem of test scheduling arises. Test
scheduling is a process thst determines the start and finish times for each core
test and the assignment of‘the TAM wires to the tests so that the overall test
time is minimized. Therefore, given the number of SoC pins, the specific
parameters of the cores under test, and the maximum allowable power
consumption during test intervals, it is desired to solvc the co-optimization
problem of core wrapper design and test scheduling such that the overall test
time i s minimized.

A. Previous Work
Many recent works considered various aspects of the SoC test scheduling

problem. Most of the earlier works considered only some particular
objectives of the problem (i.e., solve some sub-problems). Since
co-optimization o f the SoC test problem such as core wrapper design, test
scheduling, and peak power dissipation, is essential for solving the real
problem, sevcral recent works have started to consider the co-optimization
issues,

Chakrabarty in [2] proposed an integer linear programming model for
minimizing test time by co-optimizing the bandwidth distribution and test bus
assignment. Iycnger et al. in [3] discussed the assignmcnt of TAM wires to
partitions. Huang et al. in [4] modeled the SoC test problem with power
constraints as a 3-D bin-packing problem and provided 3 heuristic to handle
the problem. Iyengar et al. in [I] presentcd an approach for the
co-optimization of the core wrapper.design and TAMs by using rectangle
packing and considering the assignment of non-consecutive TAM pins to core
wrappers. Zou et al. proposcd in [SI a method using simulated annealing (SA)
and the sequence pair representation to handle the problem. Xia et al. in [6]
presented an algorithm for co-optimizing test scheduling -and yrapper design
under power constraints by using an evolutionaty algorithm and the sequence
pair representation. Xia et al. also proposed an algorithm for assigning
non-consecutive TAM wires to core tests.

B. Our Contributioii
In this paper, we present a new approach to the problem of the

co-optimization of core wrapper design and test scheduling so that the SoC
. test time is minimized. In our approach, we first extend the wrappcr design
method presented in [5]. Then, we transform the test scheduling problem to a
floorplanning problem. The height of the floorplan corresponds to the TAM
width, and the width of the floorplan corresponds to the total test time. Since
the TAM width is given, the maximum height of the floorplan is determined.
Therefore, we find the floorplan with the minimum width, corresponding to a

* Thnr work was partially supponed by thc SpringSon, Inc. and the National Scicnce
Councll of Taiwan under Grant No’s. NSC 92-2220-8-002-013 and.
NSC-93-2752-E-OO2-008-PAE

test scheduling with the minimum test time.
We devclop a two-stage, low-temperature simulated annealing algorithm

based on the B*-tree floorplanning representation to find a desired floorplan
(and thus a desired test schedule). In thc first stage, we only deal with the
tests that have longer average test times. in the second stage, we add the
remaining tests into the final configuration of the first stage to obtain an
initial solution for simulated annealing. In particular, we use a
low-temperature simulated annealing scheme to preserve the main structure
of the scheduling result obtained from the first stage. Experimental results
(with and without power constraints) show that our algorithm can obtain the
best average test times among all published works. Further, our method is
very efficient.

The remainder of this paper is organized as follows. Section 2 formulates
the SoC test scheduling problems and gives an overview of our algorithm.
The methods of the wrapper design for the test cores are presented in Section
3. Section 4 shows how to transfer a test scheduling problem inKO a
floorplanning problem. Section 5 describes the B*-tree representation.
Section 6 presents the heuristic of two-stage annealing schedule. Section 7
considers the power constraints We present our experimental results based
on the ITC’OZ benchmark in Section 8 and give concluding remarks in
Section 9.

11. PROBLEM FORMULATION
Let an SoC design consist of N cores, and each core C,, where 1 5 i 5 N,

has n, data inputs, mi data outputs, bi bidirectional UO’s, siniscan inputs, and
sour, scan outputs. Let K be the total width of the TAMs. For each core Ci,
there are P, test patterns. Also, the maximum peak power consumption during
testing i s given.

Given the aforementioned inputs, the SoC test problem determines the
TAM architecture, the wrapper design for all the wrapper-based cores, and
the schedule for the core tests so that the overall test time is minimized and
the power consumption constraint is satisfied.

The SoC test problem can be divided into two parts: (1) the core wrapper
design: Optimize the core wrapper design for each TAM width under the
maximum TAM wire constraint and generate a set of wrapper designs for
each core; (2) test scheduling: Optimize the schedule for the core tests. It will
be clear later that we develop a two-stage, low-temperature simulated
annealing algorithm based on the B*-tree floorplanning technique to solve
the test scheduling problem.

111. SOC,CORE WRAPPER DESIGN
The SoC core wrapper is the interface between the TAM and the core.

Since large cores usually have more pins than the number of TAM wires used
to perfom the test of the core, the core wrapper may often need to perform
width adoption when the TAM width is not equal to the number of core pins.
Also, while different wrapper designs greatly affcct the test time of thc core,
optimizing wrapper design can improve the TAM efficiency and reduce the
test time. To calculate the test timc, T, for a wrapper we use the fallowing
cxpression [SI:

T - (1 +max(S,,S,))P+min(S,,S.), (1)
where S, is thc length of the wrapper’s input scan chain, S. is the length of the
wrapper’s output scan chain, and P i s the number of test patterns.

For cores with internal scan chains, we use the wrapper design algorithm
based on the Best Fit Decreasing (BFD) heuristic [3]: The internal scan
chains are first sorted in decreasing order of length and then assigned to a
wrapper scan chain whosc length after the assignment is the closest to, but
not exceeding the length of the current longest wrapper scan chain. If there is
no such wrapper scan chain available, the internal scan chain is assigned to
the current shortest wrapper scan chain. This process is then repeated for the
functional inputs and outputs.

For the cores without internal scan chains, we use the unbalanced design
introduced in [5] and allow different numbers of Sac pins to be assigned to
scan-in and to scan-out to achieve the optimal wrapper designs for the core.
Besides, we found that t h e previous works [4] and [5] considered one special
wrapper design for cores without intemal scan chains. It was claimed that if
given enough TAM wires to the inputs and outputs of the core, the test can he

0-7803-8736-81051$20.00 02005 IEEE. 1188 ASP-DAC 2005

completed without using a Chk-cyCk to scan idout. Therefore, the test time
for this core equals the patters needed to be tested. For example, for a core
with 17 inputs, 3 outputs, and 2666 patterns to test, if we assign 17 pins to
inputs and 3 pins to outputs, that is, a total of 10 TAM wires, the test'time
will be (1+0)*2666+0 = 2666 clock cycles.

Using the wrapper design methods discussed above, for each core we can
generate a set of wrapper configurations with the TAM wire usage from I to
K, where K is the maximum TAM wires allocated for the SoC test application.
Each wrapper configuration can be represented by a rectangle with width
equal to the test time of the core and height equal to the TAM wire usage.
Thus, each configuration can be represented by a two-tuple (W, T(WJ) ,
where W, is the number of TAM wires of the j - th wrapper configuration for
core i, and T(W,S is the corresponding tcst time. It can be shown that the
relationship between the test time and the wrapper width for a given core is a
"staircase" function. As defined in [I], the designs that represent the smaIlest
TAM width for a specific test time are known as Pareto-optimal designs.
Sincc the Pareto-optima1 designs use fewer TAM wires than those with the
samc test time, only these wrapper designs would be considered in the test
scheduling.

IV. TEST SCHEDULING PROBLEM
Given an SoC with K TAM wires, a set of N cores, and a set of

Pareto-optimal wrapper designs for each core, we intend to find an
assignment of TAM wires to each core test and to determine the test start time
for each test so that the overall test time is minimized. We can transform the
test scheduling problem into a floorplanning problem, where the height of the
floorplan represents the fixed number of TAM wires, K , and the width of the
floorplanning represents the SoC test time that has to be minimized. Each
core tcst is represented by a rectangle with width equal to the test time and
height equal to the TAM wire. Since at any time during the test, any TAM
wire can only be assigned to one core to perform the test, the rectangles in the
floorplanning problem transformed from the test scheduling problem cannot
overlap. Figure 1 shows a floorplan corresponding to the test schedule of the
ITC'02 benchmark circuit D695

A numbcr of floorplan representations have been proposed in recent years
Among them, the B*-trees 171 have been shown to be very efficient and
ctrective for various floorplan problems. For most floorplanning problems,
the E*-trees achieve the best results. Therefore, we shall solve the test
scheduling problem using the B*-tree floorplan representation.

Width T:EJq
Fig. 1. Test-schedule floorplan of D695

V. B*-TF~EE REPRESENTATION
A B*-tree is an ordered binary tree to represent a non-slicing or a slicing

floorplan [7]. Given a compacted placement P in which no module can either
move down or move left (called an admissible placement [I l l) , we can
represent it by a unique B*-tree T. (See Figure 2(b) for the B*-tree
rcprcsenting the placement of Figure 2(a).) The root of a B*-tree corresponds
to the module on the bottom-left comer. Using the depth-first-search (DFS)
procedure, the B*-tree T for an admissible placement P can be constructed in
a recursive fashion. Let R, denotes the set of modules located on the
right-hand sidc and adjacent to mi. The left child of the node ni corresponds to
the lowest module in R, that i s unvisited. The right child of n, represents the
lowest module located above m,, with its x-coordinate equal to that of m,

The B*-tree keeps the geometric relationship between two modules as
follows. If node nj is the leR child of node n,, module m, must be located on
the right-hand side of mi, with x, = x i + w,. Besides, if node n, is the right child
of node n,, module mj must be located above m,, with the x-coordinate of m,
equal to that of n,; Le.4 = x,. Also, since the root of T represents the
bottom-left module, the coordinate of the module is (xmor, y-;) = (0, 0). Each
y-coordinate can be computed by a contour data strucmre in amortized
constant time [7] [1 I].

In a classical floorplanning problem, the x-coordinates and the
y-coordinates of modules are determined to achieve the minimum enclosing
area or wirelength. Transforming a test scheduling problem to a floorplanning
problem, we model a test as a module. The x-coordinatc of a test represents
the start time of the test while the y-coordinate represents the TAM wire
assignment of the test. In a test-schedule floorplan, we set an upper bound for
the height of the floorplan (representing the TAM width) and aims at
minimizing the width of the floorplan. Therefore, the transformation of test
scheduling ,into a floorplanning problem makes the B*-tree based
floorplanning algorithm very suitable for this problem. Moreover, since we

1189

need to perform perturbation moves to search for neighboring solutions
frequently, the remarkable efficiency of the B*-tree representation for
performing tree operations would be a very significant advantage for our
problem.

tb) (0 7 0) (a) x
Fig. 2. An admissible placement and i ts corresponding B*-tree.

VI. SIMULATED ANNEALlNC
Simulated annealing was first introduced by Kirkpatric et al. in 1983 [9] .

In [SI, Zou et al. applied simulated annealing to SoC test scheduling.
Simulated annealing begins with an initial solution, and a neighboring
solution is generated by performing a perturbation on the current solution. If
the cost of the neighboring solution is lower than that of the current solution,
the neighboring solution is accepted. If the cost of the neighboring solution is
higher than that of the current solution, it is either rejected or accepted with
some probability. The probability of accepting an inferior solution is a
function of a parameter called temperature. The probability function is
defined as follows:

4 C -
p = e (7-1

where A C is the change in cost between the neighboring solution and the
current solution, and T is the temperature parameter which decreases as the
search time increases. At the beginning of the algorithm, the temperature
parameter is large; therefore, there is a high probability that inferior solutions
would be accepted. This feature of accepting inferior solutions makes
simulated annealing possible to escape from a local optimum and to reach
another region of the solution space that may contain the global optimum.
The temperature of each iteration decreases so the probability of accepting an
inferior solution is getting lower, and finally an optimal solution can be
obtained.

The solution space of the test scheduling problem consists of all
test-schedule floorplans that satisfy the following two constraints: (I) the
height of the floorplan cannot he larger than the TAM width, K, (2) no two
rectangles in the floorplan may overlap.

For SoC test scheduling, the minimization of the test time is our primary
concem. Thus, the cost function of the simulated annealing algorithm is set to
the width of the test-schedule floorplan (i.e., the overall test time) obtained
from the B*-tree representation discussed in the previous section.

We perturb a B*-tree to another by the following operations:
Opl: swapping two nodes.
Op2: move a node IO another place.
Op3: change the size of a module.

Opl deletes two nodes and inserts them into the corresponding positions in
the B'-tree. Op2 deletes a node from a B*-tree and inserts it to another
position. Op3 changes the size of a module. The probabilities of the three
perturbation moves are all set to 1/3.

In order to reduce the running time and to get an optimal solution more
efficiently, we propose a two-stage simulated annealing algorithm. In the first
stage, we choose from all core tests that are larger in average test area
(average test time multiplied by the TAM width). We deal with the larger
tests that comprise 85% to 95% of the total rectangular area of the test cores
in the first run. The remaining smaller tests are set aside temporarily at the
first run. Afier the first run, we add all other smaller tests set aside to the
left-most branch of the B*-tree. This floorplan is taken as the initial solution
of the second-stage simulated annealing. In the second stage, we u5e
low-temperamre simulated annealing to further improve the floorplanning
result to obtain better solutions. This heuristic is illustrated in Figure 3.
Figure 3(a) shows a solution found after the first stage while Figure 3(b)
shows a final solution slightly adjusted from the previous solution. Table 1
gives the experimental results on the ITC'02 benchmark P22810 using
one-stage and two-stage simulated annealing. As shown in the table, the
two-stage simulated annealing is more effective and efficient. Figure 4 shows
the pseudo-code of our algorithm.

VII. POWER CONSTRAINT
For the SoC test scheduling problem with power constraints, the peak

power dissipation at any time during the test cannot exceed a certain limit, Q,
also known as the SoC power budget. In order to compare with [6], we made
the same assumptions and ran our experiments for two cases: (1) the

maximum peak power is constant for a given core; (2) the maximum peak
power is a linear function of the width of the test data.

To deal with the test-scheduling problem with power constraints, we
calculate the maximum peak powcr consumption by building a power
histogram after a test-schedule floorplan solution is generated. In the cost
function of the simulated annealing algorithm, we added a penalty value that
is in proportion to the difference of thc power budget and the peak power
consumption of the test schedule. We made the same assumptions as in [6]
and used the ITC’OZ benchmark for the experiments; that is, for case [I) we
assume that the power numbers given in the benchmark represent the
maximum peak power dissipated during core testing; for case (2) we assume
that the given power numbers represent the maximum peak power when test
is performed using only one TAM wire; that is, for example, if three TAM
wires are used for a test, the given number of power dissipation for that core
will be multiplied by three.

Limit

5,753,~00,192

Fig. 3. (a) A stage-1 solution, (b) A resulting final solution obtained at
stage 2.

16-64 (P = f(TAM))
B*-SA [61
479285 489945

FI

Algorithm: SoC Test Scheduling
Input: C ~ set of SoC cores;

K - total width of the TAMS;
. Q - power budget;

Output: Test schedule for thc SoC tests
begin
I For each SoC corc
2

3 Find the Part:to-optimal designs
4

5

Generate a set of wrapper design with TAM width from
1 toK

Sort the cores bq- average test area (test time * TAM width)
in decreasing order

Make a set of cores CL consisting of the 85%-90% of total
test area so that for all cores in (C - CL) are smaller than
those in Cr

6
7 Simulated_Annealing();
8
9 . Simulated-Annealing(); //low initial tcmperature
10 . Output-Result();
end

Randomly build a binary tree with these cores in Cr

Insert set (C - Cr,) to the left edge of thetree

I. Pseudo-code o:our algorithm

TABLE 1
COMPAFUSON OF THE ONE-STAGE AND TWO-STAGE SIMULATED
ANNEALING BASED ON THE P22810 BENCHMARK.

VIII. EXPERIMENTAL RESULTS
In this section, we present the experimental results for OUT method based

on the ITC’02 SOC benchmarks [IO]. The proposed method was
implemented in C++ and executed on a PC with a Pentium 4 processor and
640 ME memoly.

Table 2 shows the comparison of our results and those of the prcvious
works. The numbers in bold face represent the best results ever reported.
B*-SA denotes our proposed algorithm. EA(C) and EA(nC) denote the
results reported from [6] for assignments of consecutive and non-consecutive
pins of test cores to TAM wires, respectively. It can be seen that our results
are generally better than the best previous works. Figure 5 shows the
normalized average test time of the previous works listed in Table 2. Our

improvements over the previous works range from 4.7% to 20.1%. In
addition, our method is very efficient: the CPU times were less than 30
seconds for all benchmarks One thing to note is that for some benchmarks
we listed our results in two rows and named our methods B*-SA(1) and
B*-SA(2) separately. In B*-SA(2) we considered the special core wrapper
design mentioned in Section 3. With this special wrapper design, it is passible
to compfete a test using less time. B*-SA(I) denotcs thc method without
using this special core wrapper configuration. For the benchmarks with only
one row of data for B*-SA, we obtained the same results for B*-SA(1) and

Table 3 shows the comparison of our results and those from [6] for H953
with the power constraint. This is the onIy ITC’O2 benchmark that includes
the power data for each core. In this benchmark, each core i s assigned a
non-negative integer (with no unit specified) reprcsenting the peak power
consumption. We worked on two assumptions, which are the samc as those in
[6], in order to make fair comparisons with [6]: (1) the maximum peak power
for a given core is constant throughout testing time, and (2) the peak power
dissipation for a given core is a lincar function of the number of TAM wires
used. For the cases with the first assumption, our results are exactly the same
as those in [6]. This may be attributed to the fact that the power budges are
not so tight that the optimal solution can be obtained easily. However, for the
cases with the sccond assumption, we consistently obtain a better rcsult under
each powcr limit. Table 3 gives the comparison. In Figure 6 , we show one of
our results under the power constraint of 5,753,800,192. This result is based
on the assumption that the peak power consumption is a linear function of the
number of TAM wires used, which was the same as in [6] . It should be noted
that we can obtain better results even using only thrce TAM wires; this
phenomenon reveals the fact that the TAM width does not affect the resulting
test times for the H953 benchmark, which conforms to the observation made
in [6]. Figure 7 shows the resulting test schedule of P22810 of 24 TAM
width.

B*-SA(2).

IX. CONCLUSIONS
We have presented the B*-tree based floorplanning technique for the

co-optimization of core wrapper design and test scheduling. The B*-tree
representation is used to represent the test schedule. Simulated annealing is
used to search for desired solutions. We also have proposed a two-stage
simulated annealing scheme, with each stage given a different set of tests,
Experimental results have shown that our method is very effective and
efficient. Our test scheduling results for power and test time optimization are
better than the most recent works.

Time
I)

Fig. 6. Test schedule of H953 and its corresponding power histogram.

Fig. 7. Test schedule of P22810 of 24 TAM width. There are 28 cores, and
the test time is 287,999 clock cycles.

TABLE 3
TEST SCHEDULING TIME UKDERTHE POWER CONSTRAINTS GIVEN IN 161
(RESULTS FOR H953)

Power I Number of TAM wires

6*109 419285 489945 1 . 21*109 1 119357 , I ’ 120861 1
3O*1Op 11 9357 11 9357

7*109 362733 368191
9*109 257141 257151

1190

TABLE 2
COMPARISOW OFTHE TEST SCHEDULING TIMES FOR THE ITC’02 BENCHMARKS. NOTE THAT THE PLATFORMS FOR €%*-SA, EA161, AND 131 ARE Pc, SUN
ULTRASPARC 5, SUN ULTRA 80, RESPECTIVELY, AND [SI, 111, AND 141 DO NOT REPORT THEIR CPU TIMES. (THE NUMBERS IN BOLD FACE DENOTE THE
BEST RESULTS EVE

ITC’OZ
Benchmark

I

P22R I0 k
I t P34392

i P93791

L- U226

L A566710

Method Test Time

B*-SA 39489
EA(W61 41533

EA(nC)[61 41809
41604 i; [31 41949

(Clack

[I 1 43723

[41 42716 v 438619
438783
438619

452639
462240
446684

B*-SA 935649
939855
939855
944768

1023820
998733

438619

E*-SA(2) 13333
EA(CJ[GI 13333
EA(nC)[61 13333

r51 13333
[4] 13416

E*-SA I 32545376
_ _ ~

32626782
42 I98943

E*-SA(I) 29765
E*-SA(2) 29765 * B*-SA(I)
B*-SA(21 1 7097

7432
---=- E V A

PI I 10530995

REFERENCES

24
Test Time

(Clock
Cycle)

26203
27982
27989
28064
30317
28327
28639

287999
292824
289237
289287
307780
361576
300723
635237
-

641514
637263
628602
759427
720858
681745
I 190565
-

1171 190
1184630
1169945

1192980
1200157

10666
8084

10666
10666
8084

1 2 4 ~ 9 5

I I

10750
22498601
22973206
22973206
23413604
27785885

20032
20032
21024

335334
335334

4870

I -
-
4862
5003

10453470
10453470

32 40
TestTime I TestTime

(Clock (Clock

19773 16149
21014
21142
21161
23021
21423

16908
17015
I6993
18459
17210

216747
226545 167792
228732 183133
218855 175946
246150 197293
3 12662 278360

544519 544579
544519 544579
544579 544579
544579 544579
591027 544579

886038
900368
878493
975016
899807

706820
724758
718005
794020
705164

900798 1 719880

6746
8084
8084
6746

5332
8000
8000
5332

17126866
17 1268 80
18838663
21735586

15302
14913

13522326
14249800
I426026 I

14794
14794

P I9041 307

335334 3;:;: 1 15890

335334 335334

3926

VI wires

Test Time
(Clack

48

13649
14240
14236
14183
15698
16403
15142

149592
153260
153525
147944
167256
268474
I67858
544579
544579
544579
544579
544579
544579
544579
609580
600986
611029
594575
627934
602613
607955

5333
5332
5333
5333
5332
5332

128 1 IO89
12700205
1281 1087

I5071730
14794
14794
I4794

335334
335334

3926
3926
3926

5228420
5228420

- -

1 2 s i i o u

56
Test Time

(Clock
_cycle)

11285
11988
12134
12085
13415
13023

’ 13208
129624
133094
130949
126947
145417
266800
145087
544579
544579
544579
544579
544579
544579
544579
517017
501057
520868
509041
568436
52 1806
521 168

5333
4080
5333
5333
4080
4080

11486602
11486599
I1486600
12573448
14945057

14794
14794
14794

335334
335334

3926
3926
3926

5228420

-

-

1

-

-
m ~ z o

(Clock Time

9885
10571
10788
10723
1 1604
12327

4
7

290

109591
136941
260639
128512
544579
544579
544579
544579
544579

14794
335334
335334

5228420
5228420

Cl] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On using rectangle schcduling with power constraints,” ICCAD, pp.100-105,2003.
packing for SOC wrapperfI‘AM co-optimization,” YTS, pp.253-258,2002. [71 Y.-C. Chang, Y.-W. Chang, G-M, Wu, and S.-W. Wu, “B*-Trees: A new
121 K. Chakrabarty, “Test scheduling for “based system using representation for non-slicing floorplans,” DAC, pp.458-463,2000.
mixed-integer linearprogramming,”l€~€ TCAD, pp.I1G3-1174,2000. [SI Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded core-based
[3] V. lyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test- system chips,” zTC, pp.130-143, 1998
access mcchanism co-optimization for System-on-chip,’’ I T c , [9] S. Kirkpatrick, C. D. Celatt, Jr., and M. P. Vecchi, “Optimization by
pp. 1023-1032,2001. simulated annealing,” pp.671-680, Science, Vo1.220, No.4598, 1983.
[4] Y. Huang, S. M. Reddy, W.-T. Cheng, and P. Reuter, “Optimal core [lo] E. J. Marinissen, V. Iyengar, and K. Chakmbarty. ITC’02 SoC Test
wrapper width sclection and SOC test scheduling based on 3-D bin packing Benchmarks, http://www.extra.research.philips.comiitcO2socbenchm/
algorithm,” ITC, pp.74-82,2002. [l I] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An 0-Tree representation
[SI W:Zou, S. M. Reddy, 1. Pomeranz, and Y Hum& “SOC test scheduling ofnon-slicing floorplan and its application.” DAC, pp.268-273, 1999.
using simulated annealing,” YTS, 2003.
[6] Y. Xia, M . Chrzanowska-Jeske, B. Wane, and M. Jeske, “Using a
distributed rectangle bin-packing approach for core-based SoC test

1191

http://www.extra.research.philips.comiitcO2socbenchm

