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Abstract- We present i n  this paper a new algorithm to co-optimize the 
problems of test scheduling and core wrapper design under power 
constraints for core-based SoC (System on Chip) designs. The problem of 
test scheduling is first transformed into a floorplanning problem with a 
given maximum height (test access mechanism width) constraint. Then, 
we apply the B*-tree based floorplanning technique to solve the SoC test 
scheduling problem. Experimental results based on the ITC’OZ 
benchmarks show that our method is very effective and efficient-our 
method obtains the best results ever reported for SoC test scheduling 
with power constraint in every efficient running time. Compared with 
recent works, our method achieves average improvements of 4.1% to 
20.1%. 

I. INTRODUCTION 
In order to shorten the time-to-market, SoC designs with embedded cares 

have become more and more popular. As a result, SoC testing has become an 
important research problem, Thc major objeciive of SoC testing is to reduce 
the test time. During the testing of the embedded cores, test access 
mechanisms (TAMs) arc nsed to transport test vectors between SoC pins and 
the core wrappers. The core wrapper forms an interface between a core and 
the TAM. Since the TAM wires are limited to a certain number and the cores 
usually have more pins than the TAM wires, the wrapper is also designed to 
match the TAM width to the number of core pins when they do not match. 
After the design of core wrappers, the problem of test scheduling arises. Test 
scheduling is a process thst determines the start and finish times for each core 
test and the assignment of‘the TAM wires to the tests so that the overall test 
time is minimized. Therefore, given the number of SoC pins, the specific 
parameters of the cores under test, and the maximum allowable power 
consumption during test intervals, it is desired to solvc the co-optimization 
problem of core wrapper design and test scheduling such that the overall test 
time i s  minimized. 

A. Previous Work 
Many recent works considered various aspects of the SoC test scheduling 

problem. Most of the earlier works considered only some particular 
objectives of the problem (i.e., solve some sub-problems). Since 
co-optimization o f  the SoC test problem such as core wrapper design, test 
scheduling, and peak power dissipation, is essential for solving the real 
problem, sevcral recent works have started to consider the co-optimization 
issues, 

Chakrabarty in [2] proposed an integer linear programming model for 
minimizing test time by co-optimizing the bandwidth distribution and test bus 
assignment. Iycnger et al. in [3] discussed the assignmcnt of TAM wires to 
partitions. Huang et al. in [4] modeled the SoC test problem with power 
constraints as a 3-D bin-packing problem and provided 3 heuristic to handle 
the problem. Iyengar et al. in [ I ]  presentcd an approach for the 
co-optimization of the core wrapper.design and TAMs by using rectangle 
packing and considering the assignment of non-consecutive TAM pins to core 
wrappers. Zou et al. proposcd in [SI a method using simulated annealing (SA) 
and the sequence pair representation to handle the problem. Xia et al. in [6] 
presented an algorithm for co-optimizing test scheduling -and yrapper design 
under power constraints by using an evolutionaty algorithm and the sequence 
pair representation. Xia et al. also proposed an algorithm for assigning 
non-consecutive TAM wires to core tests. 

B. Our Contributioii 
In this paper, we present a new approach to the problem of the 

co-optimization of core wrapper design and test scheduling so that the SoC 
. test time is minimized. In our approach, we first extend the wrappcr design 
method presented in [5]. Then, we transform the test scheduling problem to a 
floorplanning problem. The height of the floorplan corresponds to the TAM 
width, and the width of the floorplan corresponds to the total test time. Since 
the TAM width is given, the maximum height of the floorplan is determined. 
Therefore, we find the floorplan with the minimum width, corresponding to a 
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test scheduling with the minimum test time. 
We devclop a two-stage, low-temperature simulated annealing algorithm 

based on the B*-tree floorplanning representation to find a desired floorplan 
(and thus a desired test schedule). In thc first stage, we only deal with the 
tests that have longer average test times. in the second stage, we add the 
remaining tests into the final configuration of the first stage to obtain an 
initial solution for simulated annealing. In particular, we use a 
low-temperature simulated annealing scheme to preserve the main structure 
of the scheduling result obtained from the first stage. Experimental results 
(with and without power constraints) show that our algorithm can obtain the 
best average test times among all published works. Further, our method is  
very efficient. 

The remainder of this paper is organized as follows. Section 2 formulates 
the SoC test scheduling problems and gives an overview of our algorithm. 
The methods of the wrapper design for the test cores are presented in Section 
3. Section 4 shows how to transfer a test scheduling problem inKO a 
floorplanning problem. Section 5 describes the B*-tree representation. 
Section 6 presents the heuristic of two-stage annealing schedule. Section 7 
considers the power constraints We present our experimental results based 
on the ITC’OZ benchmark in Section 8 and give concluding remarks in 
Section 9. 

11. PROBLEM FORMULATION 
Let an SoC design consist of N cores, and each core C,, where 1 5 i 5 N, 

has n, data inputs, mi data outputs, bi bidirectional UO’s, siniscan inputs, and 
sour, scan outputs. Let K be the total width of the TAMs. For each core Ci, 
there are P, test patterns. Also, the maximum peak power consumption during 
testing i s  given. 

Given the aforementioned inputs, the SoC test problem determines the 
TAM architecture, the wrapper design for all the wrapper-based cores, and 
the schedule for the core tests so that the overall test time is minimized and 
the power consumption constraint is satisfied. 

The SoC test problem can be divided into two parts: (1) the core wrapper 
design: Optimize the core wrapper design for each TAM width under the 
maximum TAM wire constraint and generate a set of wrapper designs for 
each core; (2) test scheduling: Optimize the schedule for the core tests. It will 
be clear later that we develop a two-stage, low-temperature simulated 
annealing algorithm based on the B*-tree floorplanning technique to solve 
the test scheduling problem. 

111. SOC,CORE WRAPPER DESIGN 
The SoC core wrapper is the interface between the TAM and the core. 

Since large cores usually have more pins than the number of TAM wires used 
to perfom the test of the core, the core wrapper may often need to perform 
width adoption when the TAM width is not equal to the number of core pins. 
Also, while different wrapper designs greatly affcct the test time of thc core, 
optimizing wrapper design can improve the TAM efficiency and reduce the 
test time. To calculate the test timc, T, for a wrapper we use the fallowing 
cxpression [SI: 

T -  (1 +max(S,,S,))P+min(S,,S.), ( 1 )  
where S, is thc length of the wrapper’s input scan chain, S. is the length of the 
wrapper’s output scan chain, and P i s  the number of test patterns. 

For cores with internal scan chains, we use the wrapper design algorithm 
based on the Best Fit Decreasing (BFD) heuristic [3]: The internal scan 
chains are first sorted in decreasing order of length and then assigned to a 
wrapper scan chain whosc length after the assignment is the closest to, but 
not exceeding the length of the current longest wrapper scan chain. If  there is 
no such wrapper scan chain available, the internal scan chain is assigned to 
the current shortest wrapper scan chain. This process is then repeated for the 
functional inputs and outputs. 

For the cores without internal scan chains, we use the unbalanced design 
introduced in [ 5 ]  and allow different numbers of Sac pins to be assigned to 
scan-in and to scan-out to achieve the optimal wrapper designs for the core. 
Besides, we found that t h e  previous works [4] and [5] considered one special 
wrapper design for cores without intemal scan chains. It was claimed that if 
given enough TAM wires to the inputs and outputs of the core, the test can he 
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completed without using a Chk-cyCk to scan idout. Therefore, the test time 
for this core equals the patters needed to be tested. For example, for a core 
with 17 inputs, 3 outputs, and 2666 patterns to test, if we assign 17 pins to 
inputs and 3 pins to outputs, that is, a total of 10 TAM wires, the test'time 
will be (1+0)*2666+0 = 2666 clock cycles. 

Using the wrapper design methods discussed above, for each core we can 
generate a set of wrapper configurations with the TAM wire usage from I to 
K, where K is the maximum TAM wires allocated for the SoC test application. 
Each wrapper configuration can be represented by a rectangle with width 
equal to the test time of the core and height equal to the TAM wire usage. 
Thus, each configuration can be represented by a two-tuple (W, T(WJ) ,  
where W, is the number of TAM wires of the j - th wrapper configuration for 
core i, and T(W,S is the corresponding tcst time. It can be shown that the 
relationship between the test time and the wrapper width for a given core is a 
"staircase" function. As defined in [I], the designs that represent the smaIlest 
TAM width for a specific test time are known as Pareto-optimal designs. 
Sincc the Pareto-optima1 designs use fewer TAM wires than those with the 
samc test time, only these wrapper designs would be considered in the test 
scheduling. 

IV. TEST SCHEDULING PROBLEM 
Given an SoC with K TAM wires, a set of N cores, and a set of 

Pareto-optimal wrapper designs for each core, we intend to find an 
assignment of TAM wires to each core test and to determine the test start time 
for each test so that the overall test time is minimized. We can transform the 
test scheduling problem into a floorplanning problem, where the height of the 
floorplan represents the fixed number of TAM wires, K ,  and the width of the 
floorplanning represents the SoC test time that has to be minimized. Each 
core tcst is represented by a rectangle with width equal to the test time and 
height equal to the TAM wire. Since at any time during the test, any TAM 
wire can only be assigned to one core to perform the test, the rectangles in the 
floorplanning problem transformed from the test scheduling problem cannot 
overlap. Figure 1 shows a floorplan corresponding to the test schedule of the 
ITC'02 benchmark circuit D695 

A numbcr of floorplan representations have been proposed in recent years 
Among them, the B*-trees 171 have been shown to be very efficient and 
ctrective for various floorplan problems. For most floorplanning problems, 
the E*-trees achieve the best results. Therefore, we shall solve the test 
scheduling problem using the B*-tree floorplan representation. 

Width T:EJq 
Fig. 1. Test-schedule floorplan of D695 

V. B*-TF~EE REPRESENTATION 
A B*-tree is an ordered binary tree to represent a non-slicing or a slicing 

floorplan [7]. Given a compacted placement P in which no module can either 
move down or move left (called an admissible placement [ I l l ) ,  we can 
represent it by a unique B*-tree T. (See Figure 2(b) for the B*-tree 
rcprcsenting the placement of Figure 2(a).) The root of a B*-tree corresponds 
to the module on the bottom-left comer. Using the depth-first-search (DFS) 
procedure, the B*-tree T for an admissible placement P can be constructed in 
a recursive fashion. Let R, denotes the set of modules located on the 
right-hand sidc and adjacent to mi. The left child of the node ni corresponds to 
the lowest module in R, that i s  unvisited. The right child of n, represents the 
lowest module located above m,, with its x-coordinate equal to that of m, 

The B*-tree keeps the geometric relationship between two modules as 
follows. If node nj is the leR child of node n,, module m, must be located on 
the right-hand side of mi, with x, = x i  + w,. Besides, if node n, is the right child 
of node n,, module mj must be located above m,, with the x-coordinate of m, 
equal to that of n,; Le.4 = x,. Also, since the root of T represents the 
bottom-left module, the coordinate of the module is (xmor, y-;) = (0, 0). Each 
y-coordinate can be computed by a contour data strucmre in amortized 
constant time [7] [ 1 I]. 

In a classical floorplanning problem, the x-coordinates and the 
y-coordinates of modules are determined to achieve the minimum enclosing 
area or wirelength. Transforming a test scheduling problem to a floorplanning 
problem, we model a test as a module. The x-coordinatc of a test represents 
the start time of the test while the y-coordinate represents the TAM wire 
assignment of the test. In a test-schedule floorplan, we set an upper bound for 
the height of the floorplan (representing the TAM width) and aims at 
minimizing the width of the floorplan. Therefore, the transformation of test 
scheduling ,into a floorplanning problem makes the B*-tree based 
floorplanning algorithm very suitable for this problem. Moreover, since we 
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need to perform perturbation moves to search for neighboring solutions 
frequently, the remarkable efficiency of the B*-tree representation for 
performing tree operations would be a very significant advantage for our 
problem. 

tb) ( 0 7 0 )  (a) x 
Fig. 2. An admissible placement and i ts  corresponding B*-tree. 

VI. SIMULATED ANNEALlNC 
Simulated annealing was first introduced by Kirkpatric et al. in 1983 [ 9 ] .  

In [SI, Zou et al. applied simulated annealing to SoC test scheduling. 
Simulated annealing begins with an initial solution, and a neighboring 
solution is generated by performing a perturbation on the current solution. If 
the cost of the neighboring solution is lower than that of the current solution, 
the neighboring solution is accepted. If the cost of the neighboring solution is 
higher than that of the current solution, it is either rejected or accepted with 
some probability. The probability of accepting an inferior solution is a 
function of a parameter called temperature. The probability function is 
defined as follows: 

4 C  - 
p = e  (7-1 

where A C  is the change in cost between the neighboring solution and the 
current solution, and T is the temperature parameter which decreases as the 
search time increases. At the beginning of the algorithm, the temperature 
parameter is large; therefore, there is a high probability that inferior solutions 
would be accepted. This feature of accepting inferior solutions makes 
simulated annealing possible to escape from a local optimum and to reach 
another region of the solution space that may contain the global optimum. 
The temperature of each iteration decreases so the probability of accepting an 
inferior solution is getting lower, and finally an optimal solution can be 
obtained. 

The solution space of the test scheduling problem consists of all 
test-schedule floorplans that satisfy the following two constraints: ( I )  the 
height of the floorplan cannot he larger than the TAM width, K, (2) no two 
rectangles in the floorplan may overlap. 

For SoC test scheduling, the minimization of the test time is our primary 
concem. Thus, the cost function of the simulated annealing algorithm is set to 
the width of the test-schedule floorplan (i.e., the overall test time) obtained 
from the B*-tree representation discussed in the previous section. 

We perturb a B*-tree to another by the following operations: 
Opl: swapping two nodes. 
Op2: move a node IO another place. 
Op3: change the size of a module. 

Opl deletes two nodes and inserts them into the corresponding positions in 
the B'-tree. Op2 deletes a node from a B*-tree and inserts it to another 
position. Op3 changes the size of a module. The probabilities of the three 
perturbation moves are all set to 1/3. 

In order to reduce the running time and to get an optimal solution more 
efficiently, we propose a two-stage simulated annealing algorithm. In the first 
stage, we choose from all core tests that are larger in average test area 
(average test time multiplied by the TAM width). We deal with the larger 
tests that comprise 85% to 95% of the total rectangular area of the test cores 
in the first run. The remaining smaller tests are set aside temporarily at the 
first run. Afier the first run, we add all other smaller tests set aside to the 
left-most branch of the B*-tree. This floorplan is taken as the initial solution 
of the second-stage simulated annealing. In the second stage, we u5e 
low-temperamre simulated annealing to further improve the floorplanning 
result to obtain better solutions. This heuristic is illustrated in Figure 3. 
Figure 3(a) shows a solution found after the first stage while Figure 3(b) 
shows a final solution slightly adjusted from the previous solution. Table 1 
gives the experimental results on the ITC'02 benchmark P22810 using 
one-stage and two-stage simulated annealing. As shown in the table, the 
two-stage simulated annealing is more effective and efficient. Figure 4 shows 
the pseudo-code of our algorithm. 

VII. POWER CONSTRAINT 
For the SoC test scheduling problem with power constraints, the peak 

power dissipation at any time during the test cannot exceed a certain limit, Q, 
also known as the SoC power budget. In order to compare with [6], we made 
the same assumptions and ran our experiments for two cases: (1) the 



maximum peak power is constant for a given core; (2) the maximum peak 
power is a linear function of the width of the test data. 

To deal with the test-scheduling problem with power constraints, we 
calculate the maximum peak powcr consumption by building a power 
histogram after a test-schedule floorplan solution is generated. In the cost 
function of  the simulated annealing algorithm, we added a penalty value that 
is in proportion to the difference of thc power budget and the peak power 
consumption of the test schedule. We made the same assumptions as in [6] 
and used the ITC’OZ benchmark for the experiments; that is, for case [ I )  we 
assume that the power numbers given in the benchmark represent the 
maximum peak power dissipated during core testing; for case (2) we assume 
that the given power numbers represent the maximum peak power when test 
is performed using only one TAM wire; that is, for example, if three TAM 
wires are used for a test, the given number of power dissipation for that core 
will be multiplied by three. 

Limit 

5,753,~00,192 

Fig. 3. (a) A stage-1 solution, (b) A resulting final solution obtained at 
stage 2. 

16-64 (P = f(TAM)) 
B*-SA [ 61 
479285 489945 
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Algorithm: SoC Test Scheduling 
Input: C ~ set of SoC cores; 

K - total width of the TAMS; 
. Q - power budget; 

Output: Test schedule for thc SoC tests 
begin 
I For each SoC corc 
2 

3 Find the Part:to-optimal designs 
4 

5 

Generate a set of wrapper design with TAM width from 
1 toK 

Sort the cores bq- average test area (test time * TAM width) 
in decreasing order 

Make a set of cores CL consisting of the 85%-90% of total 
test area so that for all cores in (C - CL) are smaller than 
those in Cr 

6 
7 Simulated_Annealing(); 
8 
9 . Simulated-Annealing(); //low initial tcmperature 
10 . Output-Result(); 
end 

Randomly build a binary tree with these cores in Cr 

Insert set (C - Cr,) to the left edge of thetree 

I. Pseudo-code o:our algorithm 

TABLE 1 
COMPAFUSON OF THE ONE-STAGE AND TWO-STAGE SIMULATED 
ANNEALING BASED ON THE P22810 BENCHMARK. 

VIII. EXPERIMENTAL RESULTS 
In this section, we present the experimental results for OUT method based 

on the ITC’02 SOC benchmarks [IO]. The proposed method was 
implemented in C++ and executed on a PC with a Pentium 4 processor and 
640 ME memoly. 

Table 2 shows the comparison of our results and those of the prcvious 
works. The numbers in bold face represent the best results ever reported. 
B*-SA denotes our proposed algorithm. EA(C) and EA(nC) denote the 
results reported from [ 6 ]  for assignments of consecutive and non-consecutive 
pins of test cores to TAM wires, respectively. It can be seen that our results 
are generally better than the best previous works. Figure 5 shows the 
normalized average test time of the previous works listed in Table 2. Our 

improvements over the previous works range from 4.7% to 20.1%. In 
addition, our method is very efficient: the CPU times were less than 30 
seconds for all benchmarks One thing to note is that for some benchmarks 
we listed our results in two rows and named our methods B*-SA(1) and 
B*-SA(2) separately. In B*-SA(2) we considered the special core wrapper 
design mentioned in Section 3. With this special wrapper design, it is passible 
to compfete a test using less time. B*-SA(I) denotcs thc method without 
using this special core wrapper configuration. For the benchmarks with only 
one row of data for B*-SA, we obtained the same results for B*-SA(1) and 

Table 3 shows the comparison of our results and those from [6]  for H953 
with the power constraint. This is the onIy ITC’O2 benchmark that includes 
the power data for each core. In this benchmark, each core i s  assigned a 
non-negative integer (with no unit specified) reprcsenting the peak power 
consumption. We worked on two assumptions, which are the samc as those in 
[6], in order to make fair comparisons with [6]: (1) the maximum peak power 
for a given core is constant throughout testing time, and (2) the peak power 
dissipation for a given core is a lincar function of the number of TAM wires 
used. For the cases with the first assumption, our results are exactly the same 
as those in [6]. This may be attributed to the fact that the power budges are 
not so tight that the optimal solution can be obtained easily. However, for the 
cases with the sccond assumption, we consistently obtain a better rcsult under 
each powcr limit. Table 3 gives the comparison. In Figure 6 ,  we show one of 
our results under the power constraint of 5,753,800,192. This result is based 
on the assumption that the peak power consumption is a linear function of the 
number of TAM wires used, which was the same as in [6] .  It should be noted 
that we can obtain better results even using only thrce TAM wires; this 
phenomenon reveals the fact that the TAM width does not affect the resulting 
test times for the H953 benchmark, which conforms to the observation made 
in [6]. Figure 7 shows the resulting test schedule of P22810 of 24 TAM 
width. 

B*-SA(2). 

IX. CONCLUSIONS 
We have presented the B*-tree based floorplanning technique for the 

co-optimization of core wrapper design and test scheduling. The B*-tree 
representation is used to represent the test schedule. Simulated annealing is 
used to search for desired solutions. We also have proposed a two-stage 
simulated annealing scheme, with each stage given a different set of tests, 
Experimental results have shown that our method is very effective and 
efficient. Our test scheduling results for power and test time optimization are 
better than the most recent works. 

Time 
I )  

Fig. 6. Test schedule of H953 and its corresponding power histogram. 

Fig. 7. Test  schedule of P22810 of 24 TAM width. There are 28 cores, and 
the test time is 287,999 clock cycles. 

TABLE 3 
TEST SCHEDULING TIME UKDERTHE POWER CONSTRAINTS GIVEN IN 161 
(RESULTS FOR H953) 

Power I Number of TAM wires 

6*109 419285 489945 1 . 21*109 1 119357 , I ’ 120861 1 
3O*1Op 11 9357 11 9357 

7*109 362733 368191 
9*109 257141 257151 

1190 



TABLE 2 
COMPARISOW OFTHE TEST SCHEDULING TIMES FOR THE ITC’02 BENCHMARKS. NOTE THAT THE PLATFORMS FOR €%*-SA, EA161, AND 131 ARE Pc, SUN 
ULTRASPARC 5, SUN ULTRA 80, RESPECTIVELY, AND [SI, 111, AND 141 DO NOT REPORT THEIR CPU TIMES. (THE NUMBERS IN BOLD FACE DENOTE THE 
BEST RESULTS EVE 
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Method Test Time 
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