Scalable Interprocedural Register Allocation for High Level Synthesis

Rami Beidas, Jianwen Zhu

Electrical and Computer Engineering
University of Toronto, ON M5S 3G4, Canada

{rbeidas, jzhy@eecg.toronto.edu

Abstract— The success of classical high level synthesis has been lim-
ited by the complexity of the applications it can handle, typically not large

int top(int a, intb)

{
intl, r, p,q;

enough to necessitate the departure from the industrial standard, register e tlany © O

transfer level design methodology. Recent advances in micro-architecture else i :—‘ Q

model enabled the use of a stacked based controller, allowing complex al- pr==;gh?:;(me @ %)

gorithms with multiple procedures to be implemented directly in hard- . e (o) @

ware. Nevertheless, design optimizations across procedure boundaries a, ‘t/ \f

have not been fully explored. In this paper, we address the problem of int left(int m, int n)

interprocedural register allocation in the context of high level synthesis. i c @_@

In contrast to a recently proposed interprocedural register allocation al- e ol 0.0
gorithm, which processes an expensive, global, graph representation of e'csi Y © @

the conflict relation of all values to achieve near optimality, we introduce return c; (10)

a new method, calledcolor palette propagation(CPP). The key idea be-
hind our method, is to propagate the use of colors, whose number is sig-
nificantly smaller than the size of the conflict relation, across different
procedures. With a complexity comparable to intraprocedural register
allocation, we show that our method can scale to very large C programs.
For those benchmarks that can be handled by conventional global meth-
ods, our method produced nearly the same number of registers, while

}
int right(int x, inty)

X += bottom(X, y); (11)
return x; (12)

}

int bottom(int i, int k)

{
intf=i+k; (13)
return (f% 7); (14)

“e

providing an average speedup factor of 90.
(@) (b)

|. INTRODUCTION Fig. 1. Example of Interprocedural Register Allocation (a) Source
Code (b) Call and Conflict Graphs

High level synthesis (HLS) is the process of transforming a behav-
ioral description of an algorithm to an optimized register transfer level

(RTL) representation that implements the specified behavior [7, 13].

The HLS task is typically decomposed into subtasks of schedulinfon@l micro-architectures that synthesize separate hardware modules
register allocation, functional unit binding, and interconnect bindingfOr different procedures [2, 3, 16, 20], intraprocedural register alloca-
The scheduling subtask determines the exact start control step for e4€if can be directly employed. However, the implication here is that
operation, subject to original data and control dependencies, and p¥atiables in different procedures, even though not alive at the same
sibly by resource constraints. For a scheduled design, register allo&€; cannot be shared.

tion determines a minimum grouping of variables of disjoint lifetimes £y AupLE 1. Consider the C program in Figure 1. Here proce-

to minimize r_egister usage, and as a result, reduce target Qesign 8fresleft andright can safely share registers for their internal
Research in HLS, however, has not been transformed into the i) variables. For example, when procedtog callsright , only

dustrial success envisioned by its pioneers. This is partly due 10 thg japie 5 is live at the call site (indicated by the label of the corre-

fact that the complexity of the applications the classic HLS techniqu onding call graph edge). As a result, local variablesindy of
can handle typically does not necessitate the departure from the%%ht can share registers with, p andq,. O

dustrial standard design methodology starting at the register transfer
level. Advances in HLS micro-architecture [2, 3, 16, 20] have evolved With a modern micro-architecture [9], where the datapath is shared
to the point [9] where, with a stacked-based controller and a sharéeétween different procedures, intraprocedural register allocation can
datapath, a complex behavior with multiple procedures can be direcsill be used directly, provided thatcalling conventioris used, such
synthesized into hardware. This new capability also offers new ophat when control is transfered across different procedures, the neces-
portunities in design optimizations across the procedure boundariesyry register contents are savedspitledinto memory. Such spilling
or interprocedural optimizations cost can be eliminated if an interprocedural register allocator is used.
In this paper, we focus on the problem of interprocedural registén the context of HLS, Vemuri et al [21] proposed a solution that sig-
allocation. While numerous efforts have attempted for the registaificantly outperforms the naive solution based on procedure inlining.
allocation problem in the context of HLS, including [10, 15, 18, 22] However, their method canngtaleto large programs, since it re-
they only focus on register allocation within the basic block or proceguires the construction of conflict relation among all variables in the
dure boundary, ointraprocedural register allocationWith the tradi- program, which could be prohibitively large.

In this paper, we propose a set of scalable, single-pass, interpeglobal compatibility graph, whose partitioning would return an op-
cedural register allocation algorithms, based on a technique callédhized feasible allocation solution.
color palette propagatio(CPP). Our proposed algorithm achieves A main shortcoming of most interprocedural solutions in most com-
a significant, theoretic complexity reduction. The complexity of theiler is accuracy [19]. At any call site within a procedure, all local
algorithm in [21] isO(]V|?), whereV is the set of all values to be al- variables are assumed to be live, disallowing the possibility of sharing
located. Due to the large value [df |, this complexity is significantly between a caller and a callee, which could easily result in far-from-
larger than intraprocedural register allocation algorithm. In contrasbptimal solution. Although [21] overcomes this weakness, the fact
the complexity of our algorithm is comparable to intraprocedural reghat a global, probably dense, compatibility graph needs to be built
ister allocation, with only a modest overhead®@|CG|x), where and partitioned poses a limiting factor for the scalability of the pro-
|CG| is the number of call graph edges, apds the chromatic num- posed solution (an average speedup of only 7.0 was reported when
ber, or the total number of register used. In practice, our algorithmompared to a method based on inline expansion).
can achieve hundred time speedup for the benchmarks for which [21]
can complete.

The rest of the paper is organized as follows. Section Il discusses I1l. PROBLEM DEFINITION
related works in the compiler and CAD communities. Section Il pro-
vides a formal definition and representation of the interprocedural op; procedures, each represented in the scheduled, static single assign-
timization problem. Section IV provides a detailed description of the X !

proposed allocation solution. Section V presents experimental resuIFs].ent form (SSA) [6] In_SSA, all reglstgr aIIocat_lon targets, including
followed by a conclusion in Section V. otal and temporal variables, are assigneddeiinedexactly once.

Therefore, operations (or instructions) in the program have a one-to-
one mapping to the set of values they define. In the text following, we
use the term value exclusively.
Starting with a scheduled SSA, liveness analysis can be performed
The traditional register allocation problem in the compiler comto identify live ranges for each SSAvalue. Liveness analysis is a tradi-
munity is usually viewed as a graph coloring problem [14]. Equivational lattice-based data-flow analysis that identifies for each variable
lently, register allocation problem can be viewed as graph partitiothe set of program points at which the current value of a variable may
ing problem ofcompatibility graphs where edges, instead, connectbe used before redefinition [14]. The application of liveness analysis
nodes whose objects’ lifetimes do not overlap. Compatibility graphsn SSA intermediate representation associates a separate live range
are partitioned into cliques, each of which represent a single physiaaith each value, as opposed to traditional intermediate representation
register. In HLS, a similar approach is used for register allocationyhere different values of a variable may be associated with the same
typically following the scheduling phase as part of the overall prolive range. Note the use scheduled control steps as the basic compo-
cess of resource sharing and binding [13]. The main difference is tments of live ranges, while traditional compilers use program points
availability, in theory, of unlimited allocation resources, rather thatnstead.
K registers, with the primary optimization goal of reducing the area Definition 1 gives a formal model of the problem input.
of the target design. An excellent review of past efforts can be found) . .
in [21]. _ DEFINITIO!\I 1. The input to an interprocedural register alloca-
Most techniques reported limit their optimization scope to a sinion Problem is a tuplg P, V, CG, LR, O), where:
gle proced_ure, or ar'mtraprqcedural Tp adapt to muItiprocgduraI e Pisthe set of procedures;
programs in software compilers, the simplest approach relies on the
spilling of registers that might be used by both a caller and a callee. e V is the set of values in P;
An alternative approach, referred toiaterproceduralregister alloca-
tion, would consider the requirements of each procedure and relations
among procedures of a target application, to minimize spilling and, as
a result, execution cost. Static interprocedural optimizations, such
as the allocators developed by Chow [5] and by Steenkiste and Hen- o 1 p . v/, 9N defines the live range of each value as the set of
nessy [19], usually rely on a bottom-up traversal of the call graph, control steps during which that value is alive:
utilizing unused registers in callees when processing callers, shar-
ing registers between procedures that cannot be active at the samee O : V — P maps each value to the owner procedure where it
time. Chow’s allocator spills variables based on a priority model, is defined.d
while Steenkiste’s uses spilling when running out of registers in the) .
bottom up traversal, where spilling would hopefully occur for less fre- Within our framework, we can derive two types of conflidtal
quent calls at higher levels in the call graph. Apart from the need 3 intraprocedural conflicts, anglobal or interprocedural conflicts.
satisfy different requirements for software compiler, these bottom-u-Eﬁe traditional intraprocedural conflicts are defined in Definition 2.

approaches can be considered as special cases of our solution. Withy e -,viTion 2. The set of local conflictéC : V x V identifies

the generalized application of our proposed CPP technique, the pt9sa|ation such thatu, v) € LC < (O(u) = O(v)) A (LR(u) N
cedures can be colored in an arbitrary order determined by prograﬂh(v) £0).0

profiling, thereby achieving the spilling cost reduction not possible by

the bottom-up method [1]. In other words, two variables of a single procedure conflict if their
In HLS synthesis, interprocedural register allocation could be evdive ranges, defined by the schedule, overlap. As mentioned before,

more crucial. As no complex applications would avoid the use of prasuch conflicts are usually captured by conflict graphs, which become

cedure calls, the inability to efficiently share registers among specithe focus of intraprocedural register allocation, where allocation is

cation procedures would result in excessive waste of circuit resourcesmply the solution of a graph coloring problem [4, 8,10, 12, 18, 21].

A carrier-based interprocedural solution was recently proposed by VBifferent coloring algorithms define differeetimination orders the

muri et al [21]. The proposed solution traverses the call graph in@der in which nodes are colored. The complexity of an algorithm

bottom-up fashion, using intraprocedural compatibility graph to builéind the quality of a returned elimination order depends heavily on

The input of our problem is a sequential program consisting of a set

II. BACKGROUND

e CG : P x V x P is the call graph, or the set of call sites
{{(p, v, q)}, wherep is the callerv is the return value, and is
the callee;

interconnection properties of the conflict graph as well as the accuracy For convenience, we also define the concepiadiflive set§ CLS),

of the coloring solution. which identifies the set of live values at each call site.
Interprocedural conflicts are defined in two stépsnediate global

conflicts (IGC), andglobal conflicts(GC), formally defined as fol- DEFINITION 6. Acall live setCLS : CG — V is a set of values

lows. such thatvu € CLS(p,v,q),w : O(w) = g, then(u,w) € GC. O
DEFINITION 3. The set ofimmediate global conflidt&/C : V' x For convenience, sometimes we omit thén the CLS(p, u, q)

V identifies a relation such thdu, v) € IGC < 3(p,w,q) € CG : in our illustrations. When the context is clear, and G8BS(p, q)

p=0(u)Ap=0(@W)A(u,w) € LC.O instead.

DEFINITION 4. The set of global conflict&C : V' x V identifies ExAMPLE 3. Inthe simple program of Figure Z/L.S(f1, z, f2) =
a relation such tha{u, v) € GC < ((u,v) € IGC)V (Jw € V : {a}, CLS(f1,y, f2) = {b}, andCLS(f2, 2, f3) = {v, w}.
(u,w) € IGC A (w,v) € GC). O
In the rest of the paper, we illustrate the local and global conflicts
IGCs exist between a caller value and callee values if the calleising an interprocedural conflict graph represented as follows. In this
value is live at a call site to the callee. On the other hand, GCs covgraph, each value € V is associated with a node, each local con-
the transitive property of interprocedural conflicts such that a calldlict (u,v) € LC' is represented with an edge, and interprocedural
value live at a call site conflicts with all transitive callee values. Noteonflicts are associated with special edges conneclihg (p, w, q)
that this transitive property is not applicable to local conflicts. This inwith the set of all values of the callegidentifying an immediate
terprocedural conflict information is partially built during the procesglobal conflict between each values CLS(p, w, ¢) and each value
of liveness analysis of each procedure. As liveness analysis proceeds; V : O(v) = ¢. In Figure 2 (b), each node represents a value, and
a record is kept of the set of values live at the current control stefcal conflicts are represented by solid edges, and immediate global
If the current control step contains a procedure call instruction, theonflicts are represented by dotted edges connecting value sets. Non-
current set of live values are saved for further processing. immediate global conflict edges, such as the leftmost dotted edge, are
Now, we can formally define a legal interprocedural register alloemitted for simplify the figure.
cation as follows:

DEeFINITION 5. Interprocedural register allocation is a function |V. CoLOR PALETTE PROPAGATION-BASED INTERPROCEDURAL
RA : V — N such thatvu,v € V : (u,v) € LC V {u,v) € REGISTERALLOCATION
GC = RA(u) # RA(v). O
A key idea behind our interprocedural register allocation algorithm
is to avoid the construction of the massive global conflict graph, while
@ ®) leveraging the mature intraprocedural register allocation algorithm
as much as possible. We achieve this goal by using a technique
called Color Palette Propagatio{CPP). Instead of directly propa-
Dl cus(inx 2) gating across procedures the coloring constraints in terms of conflict
sy 2) relation , CPP propagates constraints in terms of the available colors,
calledpalette which is much more compact. This strategy is respon-
sible for the scalability of our algorithm.
In the sequel, we start by modifying the traditional intraprocedural
= [asizzn) register allocation algorithm so that it can accommodate the palette
constraints. We will then present three interprocedural register allo-
cation algorithms, each following a different traversal order of the call
, graph, to derive the palette constraints and drive the intraprocedural
@' 180 register allocation.

f1() f2() f3()

1
o
:n|s <
A
<|@: ¢
1

:H
=

A. Constrained Intraprocedural Register Allocation

The intraprocedural register allocation algorithm is no different
Fig. 2. An Example of Interprocedural Conflict Graphs (a) a simple ffom the traditional coloring algorithm, except that it ugeslette,
program (b) program’s conflict graph the set of available colors for each value in the program, as an addi-
tional constraint. As shown in Algorithm 1, in takes as inputs the pro-
cedurep to color, its local conflict relatio.C’, and a coloring order
Definitions listed above are best illustrated through an example. ¢ |t updates relevant register assignmentdfor, and also records
the set of used colors iased. According to the order given by, it
EXAMPLE 2. Consider the representation of the simple prograncolors one value at a time. To color a valut first removes from its
shown in Figure 2 (a). Live ranges of valuesindwwithinf2 clearly palette all the colors that have been used by its colored neighbors. It
overlap, thereforev, w) € LC. On the other hand, value of f1 , then picks an available color from the palette, and updatks: and
which is live at a call site of2 , conflicts with every value if2 in- used accordingly.
cludingv andw, therefore(a, v), (a,w) € IGC C GC. Similarly,
(v,1), (v,m), (v,n) € IGC. Using the transitive property of inter-
procedural conflicts, we also conclude th@t, l), (a, m), {(a,n) €
GC. Remaining conflicts can be derived in the same manner. In- One strategy is to color the procedures in the program in a top-
terprocedural register allocation is a value-to-register mapping thatdown fashion by traversing the call graph is a topological order. We
would respect all the conflicts definedi and GC. assume that this order is given Byas the input to Algorithm 2. The

B. Top-Down Interprocedural Register Allocation

ALGORITHM 1. Intraprocedural register allocator.

Figure 3. Given thatfl is the root procedure, it has a full color

_ = palette,top(f1) = T, and the conflict graph nodes are colored with
var Z‘;g‘f% ‘;;’VQ ' ; no restrictions. When the palette is propagatedf2o, color 1 is
var color : V s N; 3 marked unavailable, as CL${ , f2) = {a} is colored using color
' 4 1. Similarly, color 3 is marked unavailable on the palette propagated
IntfraCoI%r =func(p e P, LC:V x V,o: []V){ 2 to f3 . In case of4 , its palette would be that d2 , its only parent,
°’$0?§ac(h”(§v"gé o w) € LCAw <o v) 2| with colors 2 and 4 marked unavailable as CLfg(, f4) = {c, d}
palette(v) = palette(v) \ {color(w)}; 8 is colored using those colors. Finally, the palettef®f would be the
color(v) = palette(v)[0]; 9 intersection of its parents palettes, as colors unavailable to parents
used(p) = used(p) U {color(v)}; 191 are unavailable to children, with color 2 and 3 marked unavailable,
} 12 as CLS(f2 ,f5) = {d, €} is colored using colors 2 and 3. Color 1
is unavailable for two reasons; CL& , f5) = {g} is colored using

color 1, also color 1 is unavailable to a parerig, in this case.

ALGORITHM 2. Top-down interprocedural register allocation.

[1]2]3]4]s]6]
var top : P — 2N; 13 f1()
14 <
interColorTopDown = func (2 : []¥) { 15 S
var LC:V x V; 16 s i)
varo: [1Y; 17
var CLS : CG — 2V 18
19 [<[5]¢]
foreach (p € P) 20 20) ()
top(p) = T; 21 @
22 {2
(LC, CLS) = livenessAnalysis(); 23)
foreach (p €) { // £ is in topological order of CG 24 y
o = buildElimOrder(p, LC); 25 \
26 [5]5) / \ /
foreach (v € V : O(v) = p) 27
palette(v) = top(p); 28 0 0 '®
intraColor(LC, o, palette); 29 ‘,r
2 Noy.
foreach ((p, v, callee) € CG) 31 R
propagateTopDown(p, callee, CLS(p, v, callee)); 32
33
} 34 Ei :
ig. 3. Top-Down Color Pal Pr ion
propagateTopDown = func (p : V, callee : V, live : 2V) { 35 9 3 op-Do Color Palette opagatio
top(callee) = top(callee) N top(p); 36
foreach (v € live) 37
top(callee) = top(callee) \ {color(v)}; 38
39
C. Bottom-Up Interprocedural Register Allocation

Another strategy is to color the procedures in the program in a
bottom-up fashion by traversing the call graph in a reversed topologi-

algorithm starts by first performing standard liveness analysis to obal order. This order is available in Algorithm 3 &s
tain the local conflictLC, and the call live se€' LS. For each pro- As in the case of top-down algorithm, the bottom-up algorithm
cedurep, a coloring ordets is derived using an algorithm such asStarts by liveness analysis, during which the set of local confliats,
Chaitin’s [4]. We associate each procedpraith a palettetop(p), IS generated and the set of call live sefg,.S, is identified. Thanks
representing the palette constraint propagated from its ancestors. Tiighe traversal order, when a procedyrés processedpalette al-
palette is initially full. This palette constraint for the procedure igeady contains all the necessary palette constraints imposed by all
translated to the constraint for each value contained in procegureits callees. The intraprocedural coloring algorithm is invoked after
before the intraprocedural coloring algorithm is invoked. Once tha coloring order is found. Once the values of the current procedure
values of the current procedure are colored, the palette constraints arare colored, the interprocedural conflict relations are propagated
propagated to ittmmediatecallees. At each call sit, v, callee), 10 its callers, again through CPP: for each call sitelier,v,p),
the algorithm callsropagateT opDown, which first intersects the propagateBottomUpis invoked such that thesed(p), or the colors
palette ofcallee from that of the caller, as every color unavail- used byp and its descendents, is removed frased(caller), and in
able to a caller is also unavailable to a callee due to the transiti@gldition, is removed from the palettes of all values in the call live set
nature of GCs. The colors used by the corresponding call live sétLS(caller, v, p).
CLS(p, v, callee) is then removed from the palette ofillee, to Note again that here we only need to process a local conflict graph.
cover IGCs. The topological order of procedure precessing, ensurdso note in particular that under the bottom-up algorithm, the palette
that all callers of a procedunpeare processed befoge andp would ~ defined byused(p) of any procedure is guaranteed to be a contin-
have an appropriate palette that takes into account all the global cd#Pus sequenci®, M]. Since the set can be characterized by a single
flicts defined in Definition 4. number)M, the implementation can tsmplifiedto avoid the set op-
Note that at any point in time, only the local conflict graph of aération shown in Algorithm 3.
single procedure is processed, a crucial property that would have a”A major difference between the top-down and the bottom-up prop-

major effect on the scalability and efficiency of our proposed solutiorgation is in the way they handle multiple incoming (caller) and out-
going (callee) palettes, respectively. In case of top-down propagation,

ExAMPLE 4. A detailed example of top-down CPP is shown inthe palette constraints come from the colors used in the call live sets

ALGORITHM 3. Bottom-up interprocedural register allocation. Algorithm Complexity

In this section, we derive the complexity of the overhead, with re-

interColorBottomUp =func (% : [17) { 40
var LC .V x V; 41 spect to the intraprocedural register allocation algorithm, that our in-
varo @[]V . 42 terprocedural algorithms introduce. Note thatthenessAnalysis,
var CLS: CG — 27, ﬁ build ElimOrder in our algorithms are exactly the same as the in-
(LC, CLS) = livenessAnalysis(); 45 traprocedural register algorithm. OuntraColor is slight differ-
foreach (p €) { // S is in inverse topological order ofC'G 46 ent due to the use of palette constraints, but this difference does not

o = buildElimOrder(p, LC'); j; change the complexity. Our overhead therefore comes only from
colorintra(p, LC, 0); 49 palette propagation. . .
foreach ((caller,v,p) € CG) 50 propagateTopDown has a time complexity o®(x), where x
propagateBottomUp(p, caller, CLS(caller, v, p)); 51 is the chromatic number. This is first due to the fact that the set in-
} gg tersection in line 36 is linear to the set size, whichyis Since the
propagateBottomUp = func (p, caller : V, live : 2V) { 54 cardinality of any call live set is bounded ky and the member in-
used(caller) = used(caller) U used(p); 55 clusion operation in line 39, is @P(1), the loop in 38-39 is also of
f°'ea§h (v € live)” . 23 O(x). Therefore, the overhead for our top-down interprocedural reg-
palette(v) = pallette(v) \ used(p); o8 ister allocation algorithm is a®(|C'G|x).
59 Based on the same argument, the simplified implementation of

propagate BottomUp, is of O(x). Therefore, the overhead of our
interprocedural register allocation algorithm, where the simplified im-
plementation is valid, is guaranteed to be@f{CG|x).
It is important to note that the chromatic numbeis not a large
of all ancestors, and are applied to all values in the procedure. On thember in practice. It is reasonable to assume thiata constant, in
other hand, in case of bottom-up propagation, the palette constrainthich case the complexities of our algorithms beco®ég”G|) for
come from the colors used in all descendants, and are applied to vialp-down and bottom-up. In other words, the interprocedural over-
ues in the corresponding call live sets. head is onlylinear to the number of call sites in the program. In
practice, this overhead is only a small faction of the time spent on
EXAMPLE 5. A detailed example of bottom-up CPP is shown irintraprocedural register allocation. This is in sharp contrast with the
Figure 4. Given thaf4 andf5 are leaf procedures, they have full previous approach based on global compatibility graph, which effec-
color palettes, and their conflict graph nodes are colored with no retively is of O(|V|?), due to the dense nature of the global conflict
strictions. At this stageused(f4) = {1,2,3} and used(f4) = graph. This performance gap will be affirmed by the empirical results
{1,2}. When processinfg , CLS(f3 ,f5)= {g} has a color palette of Section V.
with colors 1 and 2 marked unavailable, which are the colors used in
f5 . Note that in bottom-up propagation values of different, possibly
overlapping, CLS’s could have different color palettes. For example, V. EXPERIMENTAL RESULTS
CLS(f2 , f4) = {c, d} has a color palette with colors 1, 2, and 3
marked unavailable due to their use féh , while CLS(f2 , f5) =
{d, € has a color palette with colors 1 and 2 marked unavailable
The same scenario appliesftb , where CLS1 ,f2)= {a} has a
color palette with colors 1 to 5 marked unavailable, while CEB(, solution.

f3) - .{b} has a color palette of with colors 1 to 3 absent. Finally, e haye implemented the proposed solution in C using appropriate
remaining nodes of any procedure tha@ do not belong to any CLS CAta structures as part of a complete HLS suite. The experiments were
be colored freely as long as local conflicts are respected. performed on a Sun Blade 150 workstation with 550 MHz CPU and
128MB RAM, running on Solaris 8 Operating System.

Throughout our experiments, we assume a sequential execution of
target benchmarks for allocation results to serve as a reference for
alternative allocation solutions.

In this section we present experimental results comparing runtime
and quality of results of our approach compared to the global solution
using benchmarks from the integer suite in SPEC2000 [17] and Medi-
aBench [11] to illustrate the scalability and efficiency of the proposed

Bottom-Up

and MediaBench benchmarks. For each benchmark we list program
statistics, namely number of lines of C code and number of proce-
dures as measures of the complexity of the analyzed programs. We
report results of our CPP-based top-down and bottom-up implemen-
tations in comparison with a global interprocedural optimization, to
show the speedup in execution times and quality of results in terms

2()

/ \ / of the number of obtained regi§ters. We al_so report the overhead t'ime

0 I over mere intraprocedural register allocation. All reported execution

@ times in Table | are in seconds, and NA indicates the inability to report
results due to scalability limitation of the global solution.

@@ From the reported results we can draw the following observations:

e CPP-based solutions are scalable, capable of processing bench-
marks as large as vortex of 52,637 lines of code.

Fig. 4. Bottom-Up Color Palette Propagation ¢ The advantage of global optimization on tested benchmarks did
not exceed an average of 7.9% of the total number obtained
registers.

[1[2]3]4]5]6] [1[2[3]]s]6]

Table I, Figure 5, and Figure 6 show experimental results on SPEC2000

| Benchmark | Global] Top-Down | Bottom-Up |

Package Appl LOC | #Procs | Total Overhead | Total | Speedup| Overhead | Total | Speedup
Time Time Time Time Time
bzip2 4665 63 108.01 0.18 16.62 6.50 0.02 16.46 6.50
crafty 19478 104 NA 11.45| 573.89 NA 0.23 | 562.67 NA
parser 11391 297 NA 1.97 54.73 NA 0.07 52.83 NA
SPEC2000 twolf 19756 167 NA 4.88 | 939.19 NA 0.16 | 934.47 NA
vortex 52637 600 NA 51.29 | 472.41 NA 0.33 | 421.45 NA
vpr 16984 281 NA 2.68 45.83 NA 0.07 43.22 NA
epic 3339 26 4.24 0.02 1.16 3.66 0.01 1.15 3.69
mpeg2d| 8680 113 | 1275.30 0.15 6.49 196.50 0.04 6.38 199.89
MediaBench [mpeg2e| 6801 95 | 3308.32 0.08 | 21.77 151.97 0.05[21.74 152.18
pap 28065 256 NA 1.34 33.14 NA 0.05 31.85 NA
rasta 6951 65 108.94 0.38 32.65 3.34 0.02 32.29 3.37
TABLE |

INTERPROCEDURALREGISTERALLOCATION RUNTIME FOR SPEC200(2ND MEDIABENCH BENCHMARKS

900 + 200
185185
800 791784 180
700 160
140
» 600) 123123
5] 5]
2 B 120 109
g 50 m Top-Down g WTopDown
x B z u 100 o9 |OBotton-Up
o O Botton-Up S
S 400 e 81 81 2 Global
3 £ 80 s =
5 5
300
z ER
45 45 45
200
149147 132132 40
] t N
0 T T T T T [T
bzip2 crafty parser twolf vortex vpr epic mpeg2d mpeg2e pgp rasta
Benchmark Benchmark

Fig. 5. Interprocedural Register Allocation Results for SPEC2000 Fig. 6. Interprocedural Register Allocation Results for MediaBench
Benchmarks Benchmarks

e In addition to the near optimal results, with respect to globait produces near-optimal results, and is scalable, as it can complete in
optimization, our bottom-up CPP-based solutions provided argeconds even for benchmarks that are much larger than those usually

average speedup of 90 on MediaBench benchmarks when comensidered as candidates for HLS.

pared to the global implementation, not to mention the bench-

marks that could not be handled by the global solution. Note

that the speedup is in fact higher if we ignore the contribution

of liveness analysis to both results.

) _ _ VIl. REFERENCES
¢ Top-down and bottom-up implementations are almost equivayy) Rr. eidas and J. Zhu. Scalable register allocation for high level

lent in runtime and quality of results, with a slight edge of the * ~ synthesis. Technical Report TR-01-11-04, Electrical and Computer

bottom-up implementation mainly due to the absent of frag- Engineering, University of Toronto, November 2004.

mented color palettes. [2] R. Camposano, L. Saunders, and R. Tabet. VHDL as input for high level
synthesis|EEE Design and Test of Computepages 43-49, March

e The overhead of interprocedural register allocation when com- 1991.
pared to intraprocedural is in fact negligible: (1% for the [3] R. Camposano and J. van Eijndhoven. Partitioning a design in structural

bottom-up solution). synthesis. 1987.
[4] G.J. Chaitin. Register allocation & spilling via graph coloring. In

Proceedings SIGPLAN Symposium on Compiler Construcliomne
1982.
F. C. Chow. Minimizing register usage penalty at procedure calls. In

In this paper we argued the need for interprocedural register allo- Froceedings of the SIGPLAN Conference on Programming Language
cation in the context of HLS, pointed out the shortcomings of tradi- Design and Implementation (PLDLune 1988.
] . ’ - g 6{6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
tional solutions, and proposed a new interprocedural register alloca-" gfciently computing static single assignment form and the control
tion algorithm based on a new conflict propagation method. Based dependence grapACM Transactions on Programming Languages and

on our study, we conclude that the proposed solution is effective, as Systems13(4), October 1991.

VI. CONCLUSION [5]

(7]

(8]
19

(20]

(11]

[12]

(23]
[14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

D. D. Gajski, N. D. Dutt, A. Wu, and S. LirHigh-Level Synthesis:
Introduction to Chip and System Desidfluwer Academic Publishers,
January 1992.

K. Gopinath. Register allocatiof:he Compiler Design Handbopk
September 2002.

K. Jasrotia and J. Zhu. Stacked FSMD: A power efficient
micro-architecture for high level synthesis.lhternational Symposium
on Quality Electronics DesigrMarch 2004.

F. Kurdahi and A. Parker. REAL: A program for register allocation. In
Proceeding of the 24th Design Automation Conferedoee 1987.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communications
systems. IrProceedings of the Annual ACM/IEEE International
Symposium on MicroarchitectyrBlovember 1997.

G.-Y. Lueh. Issues in register allocation by graph coloring. Technical
Report CMU-CS-96-171, School of Computer Science, Carnegie
Mellon University, November 1996.

G. D. Micheli. Synthesis and Optimization of Digital Circuits
McGraw-Hill, January 1994.

S. S. MuchnickAdvanced Compiler Design and Implementation
Morgan Kaufmann Publishers, July 1997.

P. G. Paulin and J. P. K. E. F. Girczyc. HAL: A multi-paradigm
approach to automatic data path synthesi®rbiceeding of the 23rd
Design Automation Conferencduly 1986.

L. Ramachandran, S. Narayan, F. Vahid, and D. Gajski. Synthesis of
functions and procedures in behavioral VHDL Rroceedings of the
European Design Automation Conferent893.

SPEC2000Standard Performance Evaluation Corporation
http://www.specbench.org/cpu2000/

D. L. Springer and D. E. Thomas. Exploiting the special structure of
conflict and compatibility graphs in high-level synthesisPhoceedings
of the International Conference on Computer-Aided Dedipvember
1990.

P. A. Steenkiste and J. L. Hennessy. A simple interprocedural register
allocation algorithm and its effectiveness for liggCM Transactions of
Programming Languages and Systefi(1), January 1989.

F. Vahid. Procedure exlining: A new system-level specification
transformation. IrEuropean Design Automation Conferenpages
508-513, September 1995.

R. Vemuri, S. Katkoori, M. Kaul, and J. Roy. An efficient register
optimization algorithm for high-level synthesis from hierarchical
behavioral specification&CM Transactions on Design Automation of
Electronic Systemg'(1), January 2002.

N.-S. Woo. A global, dynamic register allocation and binding for a data
path synthesis system. Rroceeding of the 27th Design Automation
ConferenceJune 1990.

