
Lower Bounds for Dynamic BDD Reordering

Rüdiger Ebendt Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{ebendt,drechsle}@informatik.uni-bremen.de

Abstract— In this paper we present new lower bounds on BDD
size. These lower bounds are derived from more general lower
bounds that recently were given in the context of exact BDD mini-
mization. The results presented in this paper are twofold: first, we
gain deeper insight by looking at the theory behind the new lower
bounds. Examples lead to a better understanding, showing that
the new lower bounds are effective in situations where this is not
the case for previous lower bounds and vice versa. Following the
constraints in practice, we then compromise between runtime and
quality of the lower bounds. Finally, a clever combination of old
and new lower bounds results in a final lower bound, yielding a sig-
nificant improvement. Experimental results show the efficiency of
our approach.

I. INTRODUCTION

Reduced ordered Binary Decision Diagrams (BDDs) are a
widely used data structure for the representation and manipu-
lation of Boolean functions. Besides clausal representations as
SAT-problems, they are frequently used in VLSI CAD, e.g. for
formal verification of hardware or logic synthesis.

As is well known, the size of BDDs is often very sensitive to
a chosen variable ordering. In [1] an example has been given
where the BDD size of a function varies from linear to expo-
nential dependent on the ordering of the variables. In general,
determining an optimal variable ordering is a difficult problem
[2]. Therefore, many heuristic approaches have been proposed
that are based on structural information (e.g., [3]) or on dynamic
variable reordering [4], e.g. Rudell’s sifting [5].

It soon became apparent that the approaches based on the ex-
change of adjacent variables like sifting turned out to be most
efficient and successful. Today, Rudell’s sifting is used in many
BDD-based applications: a good ordering is determined dynam-
ically by the system in situations where the application gets low
on memory. Still runtime is an important issue and there is de-
mand for faster solutions.

In the struggle for better solutions, the most promising results
have been obtained by a method to prune the search space with
the use of lower bounds on BDD sizes during sifting, called lb-
sifting [6]. These lower bounds state minimum sizes for certain
orderings that will be considered in the following steps of the
sifting algorithm. In this they are used to limit the range of pos-
sible moves for each variable, and large reductions in runtime
are achieved by focusing only on those parts of the search space
where improvements are possible.

To the best of our knowledge, no tighter theoretical lower
bounds than those in [6] have been suggested so far.

In this paper, a new lower bound is presented which is tighter
than those suggested before. To achieve this, new lower bounds
are derived by adapting more general lower bounds which have
been developed for the use in exact BDD minimization [7].
First, we gain deeper insight by looking at the theory of the new

lower bounds. Examples are given which show that the new
lower bounds behave “orthogonally” to the old lower bounds,
i.e. they are effective in situations where the old ones are not
and vice versa. This leads to a better understanding of the dif-
ferent impact of lower bounds on the efficiency of the sifting
algorithm.

Since computation of the bounds is expensive, we restrict
them to more efficient forms, following the constraints in prac-
tice. In this we compromise between computational complexity
and pruning power, i.e. between runtime and quality of the lower
bounds.

Finally, a combination of old and new lower bounds is intro-
duced, which fuses their capabilities to prune the search space in
different situations. This yields a final, tight lower bound, which
then is incorporated into the sifting algorithm. Experimental re-
sults are given which show the efficiency of our approach.

II. PRELIMINARIES

We use the standard terminology of reduced ordered Binary
Decision Diagrams (BDDs) which are directed acyclic graphs
where a Shannon decomposition is carried out with each node.
Variables are encountered at most once and in the same order
(the “variable ordering”, usually denoted π) on every path from
the root to a terminal node. Note that reduced diagrams are con-
sidered, derived by removing redundant nodes and merging iso-
morphic subgraphs. For more details see [1].

The notation X i
j = {xi, xi+1, . . . , xj} will be used to refer

to several subsets of Xn = {x1, . . . , xn}. Sets of nodes labeled
with the same variable (i.e., situated in the same level) are ref-
ered to by

nodes(F, xi) = {v | v ∈ V, var(v) = xi, where F is a
graph (V, E)}.

Let I ⊆ Xn. We also use an extended definition nodes(F, I) =
⋃

xi∈I nodes(F, xi). Further, for a BDD F and xi ∈ Xn, let
label(F, xi) = |nodes(F, xi)| and label(F, I) = |nodes(F, I)|.

In the following we assume shared BDDs with Complement
Edges (CEs) [8] without mentioning it further. They represent
multi-output functions f : B

n → B
m, using a graph for each of

the m single-output functions (f
(n)
i)1≤i≤m (see BDDs F1, F2 in

Fig. 1). BDD nodes representing the functions fi are called out-
put nodes (note that every root node is an output node). Given a
set O of output nodes of a BDD, we use the notation Oi

j to refer
to the set of output nodes situated in levels i, . . . , j. Note that
all results reported here directly transfer to BDDs without CEs.

Later, we need a formalism to refer to a special set of BDD
nodes: let F be a BDD. For k > 0, let ref(F, k) denote
the set of nodes in levels k + 1, . . . , n of F referenced directly
from the nodes in levels 1, . . . , k of F . If a node has no direct,

i.e. only external references, it is not contained in ref(F, k). Let
ref(F, 0) denote the set of externally referenced nodes, i.e. the
set of nodes which represent user functions. The set ref(F, 0) is
equal to the set of output nodes in F . An example will be given
later in Section IV.

For two adjacent variables in the ordering, a sufficient
condition for a swap of these two variables being trivial is
the so-called non-interactivity. For a Boolean function f ,
support(f) denotes the set of variables, f essentially depends
on, i.e. for xi ∈ support(f) we have fxi=1 6= fxi=0.
Two variables xj , xk ∈ Xn are said to be non-interacting iff
¬∃1≤i≤m: xj , xk ∈ support(fi). Otherwise, the variables are
said to interact. We denote the set of variables in Xn interacting
with a given variable xi ∈ Xn with Ii,n. Interactivity of two
variables is a necessary, but not a sufficient condition for non-
triviality of the swap step [9, 10]. Also note that every variable
interacts with itself, i.e. xi ∈ Ii,n for every variable xi ∈ Xn.

III. PREVIOUS WORK

In this section the method of lower bound sifting [6] is briefly
reviewed.

Using Lower Bounds during Sifting. A very effective
method to reduce the number of variable swaps needed in sift-
ing is the use of lower bounds on future BDD sizes. The size
obtained by further movement of the considered variable cannot
fall below the size stated by these lower bounds.

The idea is to stop moving the variable in the current direction
(downward or upward) as early as possible. We can stop mov-
ing if the BDD size stated by the lower bound already exceeds
the smallest BDD size recorded so far. No further improvement
is possible, i.e. no better position for the considered variable
can be found. Hence we can continue with the next one with-
out changing the results yielded by the method. In [6] this idea
of lower bound sifting (lb-sifting) has been introduced, together
with effective lower bounds. The lower bounds have been de-
rived from upper bounds on BDD sizes resulting from variable
movements, as can be found in [11]. Next, only one lower bound
is given: this is the one used for moving a variable upwards. The
one for moving downwards is not given here since this case is
not addressed in the paper.

Theorem 1 Let F be a BDD over Xn, for which we assume
the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n).
Let

∣

∣Fj
′
∣

∣ denote the size of the BDD after moving variable xi

to position j. When moving up a variable xi ∈ Xn, as a lower
bound on the size of the resulting BDD F ′ we have

lb↑(F, xi)
= min

j=1,...,i−1

∣

∣Fj
′
∣

∣

≥
min

j=1,...,i−1 { label(F, X1
j−1)

+label(F, X
j
i−1 \ Ii,n) +

∣

∣

∣
X

j
i−1 ∩ Ii,n

∣

∣

∣

+
label(F, xi)

2|X
j

i−1
∩Ii,n|

+ label(F, X i+1
n) }

= label(F, X1
i−1 \ Ii,n)+

∣

∣X1
i−1 ∩ Ii,n

∣

∣+
label(F, xi)

2|X
1

i−1
∩Ii,n|

+ label(F, X i+1
n).

When moving into a specific direction during sifting, the ac-
cording lower bound is used. If the lower bound is larger than

the best BDD size found before, a movement cannot lead to a
better position for the variable.

For I ⊆ Xn, the terms label(F, I) can be computed very
efficiently during sifting, since the level sizes are kept in ded-
icated variables by modern BDD packages, e.g. see [10]. The
question, if a variable interacts with xi also can be decided effi-
ciently (i.e., in constant time) with a pre-computed “interaction
matrix” giving the required information for every pair of vari-
ables in question [9].

In [6] it has been reported that using the lower bounds during
sifting reduces runtime by up to 70%.

IV. NEW LOWER BOUNDS FOR DYNAMIC VARIABLE
REORDERING

In this section new lower bounds for use in dynamic variable
reordering are presented. Due to space limitation, proofs cannot
be given here. The first result states a new lower bound that is
based on a property always holding for the output nodes of a
BDD: output nodes cannot vanish during BDD reordering since
otherwise the function represented by the BDD would not be
preserved.

Theorem 2 Let F be a BDD over Xn with the set of output
nodes O, for which we assume the natural variable ordering π

with π(i) = xi (1 ≤ i ≤ n). Let
∣

∣Fj
′
∣

∣ denote the size of the
BDD after moving variable xi to position j. When moving up a
variable xi ∈ Xn, as a lower bound on the size of the resulting
BDD F ′ we have

lb↑(F, xi)
= min

j=1,...,i−1

∣

∣Fj
′
∣

∣

≥
min

j=1,...,i−1 { label(F, X1
j−1) + label(F, X

j
i−1 \ Ii,n)

+
∣

∣

∣
O ∩ nodes(F, X

j
i ∩ Ii,n)

∣

∣

∣

+ label(F, X i+1
n) } (1)

= label(F, X1
i−1 \ Ii,n) +

∣

∣O ∩ nodes(F, X1
i ∩ Ii,n)

∣

∣

+ label(F, X i+1
n). (2)

Inequality (1) states a lower bound counting output nodes.
Equation (2) states that it is sufficient to consider only the case of
moving the variable as far as possible to the top. Next, a result
from exact BDD minimization is transferred to the context of
dynamic variable reordering: the next theorem is a consequence
of the bottom up lower bound of the algorithm JANUS1 [7].

Theorem 3 Let F be a BDD over Xn with the set of output
nodes O, for which we assume the natural variable ordering π
with π(i) = xi (1 ≤ i ≤ n). When moving up a variable
xi ∈ Xn, as a lower bound on the size of the resulting BDD F ′

we have

lb↑(F, xi) = |ref(F, i)| −
∣

∣O1
i

∣

∣ + label(F, X i+1
n).

Example 1 In Fig. 1, let both diagrams be BDDs over Xn. An
upward movement of variable x2 in the left BDD F1 results in
the right BDD F2. Let the subgraphs A, B, C and D be non-
isomorphic. Then the roots of these graphs represent four dis-
tinct nodes in ref(F1, 2). Further let R := |A| + |B| + |C| +

|D|. Hence, Theorem 3 predicts a lower bound lb↑(F1, x2) =
|ref(F1, 2)| −

∣

∣O1
2

∣

∣ + label(F1, X
3
n) = 4 − 1 + R = 3 + R.

1This is the tightest lower bound for the bottom up B&B framework for exact
BDD minimization known so far, tightening the lower bound from [13].

DA C B

1

2

12

1

2

BA C D

F F1 2

x

x

xx

x

x

Fig. 1. BDDs for Example 1.

This lower bound predicts the correct BDD size, as the right
BDD F2 in fact has 3+R nodes. The minimum number of nodes
as given by Theorem 1 however is only label(F1, X

1
1 \ I2,n) +

∣

∣X1
1 ∩ I2,n

∣

∣+ 1

2|X
1

1
∩I2,n|

· label(F1, x2)+label(F1, X
3
n) = 0+

1 + 1
2 · 2 + R = 2 + R, staying below the true number.

V. EFFICIENT FORMS FOR THE NEW LOWER BOUNDS

In [6], the authors point out the following: it is crucial to
avoid that the computation of the lower bounds is too time-
consuming. Unfortunately, this is the case for the lower bounds
presented in Theorem 2 and Theorem 3: this is due to the terms
∣

∣O ∩ nodes(F, X1
i ∩ Ii,n)

∣

∣, |ref(F, i)| and
∣

∣O1
i

∣

∣ occurring in
the definition of the bounds.

For example, the most efficient method known to compute
|ref(F, i)| involves a traversal of the whole graph [14], hence
actually using this term in a lower bound results in a loss of
performance. Similar complexities occur for the computation of
the other terms listed above.

Therefore, the lower bounds given in the previous section
should be weakened such that

• the soundness of the lower bounds is preserved, and

• the resulting lower bounds only use terms, for which an
efficient method of computation is available.

The next results give weakened forms of the lower bounds stated
before, which can be computed efficiently and thus are appropri-
ate for use in dynamic variable reordering.

Lemma 4 Let F be a BDD over Xn with the set of output
nodes O, for which we assume the natural variable ordering π
with π(i) = xi (1 ≤ i ≤ n). When moving up a variable
xi ∈ Xn, as a lower bound on the size of the resulting BDD F ′

we have

lb↑(F, xi)

= label(F, X1
i−1 \ Ii,n) +

∣

∣O ∩ nodes(F, X1
i ∩ Ii,n)

∣

∣

+ label(F, X i+1
n)

≥ label(F, X1
i−1 \ Ii,n) + |nodes(F, {x1} ∩ Ii,n)|

+ label(F, X i+1
n)

= label(F, X1
i−1 \ Ii,n) + label(F, {x1} ∩ Ii,n)

+ label(F, X i+1
n).

All terms occurring in the last line of the equation giving the
weakened lower bound lb↑(F, xi) can be computed efficiently,
as modern BDD packages maintain level sizes in dedicated
variables and interaction tests can be performed using a pre-
computed interaction matrix.

Basically, the lower bound stated in Lemma 4 restricts the
consideration of output nodes to those being roots. Thus, a de-
crease in tightness must only be expected if there are many inner
output nodes. However, in practice the majority of output nodes
will often be situated as roots in the first level of the BDD.

Lemma 5 Let F be a BDD over Xn with the set of output
nodes O, for which we assume the natural variable ordering π
with π(i) = xi (1 ≤ i ≤ n). When moving up a variable
xi ∈ Xn, as a lower bound on the size of the resulting BDD F ′

we have

lb↑(F, xi)

= |ref(F, i)| −
∣

∣O1
i

∣

∣ + label(F, X i+1
n) (3)

≥
(

label(F, xi+1) −
∣

∣Oi+1
n

∣

∣

)

−
∣

∣O1
i

∣

∣ + label(F, X i+1
n)(4)

= label(F, xi+1) − |O| + label(F, X i+1
n).

Again, all terms occurring in the last line of the equation giv-
ing the weakened lower bound lb↑(F, xi) can be computed effi-
ciently. This also holds for the term |O| = |ref(F, 0)|, since the
set ref(F, 0) can be precomputed using one single graph traver-
sal, see [14]. This method always applies, regardless of the type
of BDD application, e.g. VLSI CAD or symbolic state space
search. When focusing on VLSI CAD, a good idea would be
to use the (often slightly larger) number of output functions pre-
declared in the logic level description of a circuit (e.g., in a BLIF
file).

Let us again consider the situation illustrated with the BDDs
F1 and F2 in Fig. 1. The lower bound stated in Lemma 5 can still
exactly predict the correct BDD sizes, but now this is only the
case if we assume that the root nodes of the subgraphs A, B, C
and D are all labeled with x3: only then the term label(F1, 3)
equals four and thus remains as large as the term ref(F1, 2) in
Example 1. Note that in this case this weakened bound still is
tighter than the one stated in Theorem 1.

VI. COMBINATION OF LOWER BOUNDS

In this section, the tightest lower bounds for dynamic variable
reordering known so far, given in Theorem 1, are combined with
the efficient forms of the new lower bounds presented in the pre-
vious sections. By this a new, tighter lower bound is obtained.

Theorem 6 Let F be a BDD over Xn with the set of output
nodes O for which we assume the natural variable ordering π
with π(i) = xi (1 ≤ i ≤ n). When moving up a variable
xi ∈ Xn, as a lower bound on the size of the resulting BDD F ′

we have

lb↑(F, xi)
= max{ label(F, X1

i−1 \ Ii,n)
+ max{

∣

∣X2
i−1 ∩ Ii,n

∣

∣ + label(F, {x1} ∩ Ii,n),
∣

∣X1
i−1 ∩ Ii,n

∣

∣ +
label(F, xi)

2|X
1

i−1
∩Ii,n|

},

label(F, xi+1) − |O| } + label(F, X i+1
n).

VII. EXPERIMENTAL RESULTS

In this section experimental results are given. The experi-
ments have been carried out on a system with an Athlon proces-
sor running at 1.4 GHz and a main memory of 1.5 GByte. The
classical sifting algorithm without use of lower bounds is simply
called sifting. The lower bound sifting approach of [6] is called
lb-sifting. The new enhanced method with the tightened lower
bound for moving upwards as presented in Theorem 6, is called

TABLE I
COMPARISON OF SIFTING, LB-SIFTING, ELB-SIFTING AND THE EXPENSIVE LOWER BOUND

sifting lb-sifting elb-sifting expensive gain exp. gain elb
name in initial final swaps time swaps time swaps time swaps time swaps time swaps time
c1355 41 43869 30326 3118 4.93 1620 3.81 1550 3.65 1538 18.37 -0.8 % 386.0 % -4.3 % -4.2 %
c1908 33 23158 7582 2011 1.41 1101 1.10 1047 1.04 1031 5.87 -1.5 % 414.9 % -4.9 % -5.5 %
c2670 233 254562 14214 69480 322.62 22983 35.59 22634 34.93 21776 530.43 -3.8 % 1364.1 % -1.5 % -1.9 %
c499 41 39377 30459 3123 3.75 1597 2.76 1525 2.64 1523 13.81 -0.1 % 395.0 % -4.5 % -4.3 %
c7552 207 48887 12684 79264 9.27 45249 5.65 44947 5.54 43929 296.13 -2.3 % 5284.2 % -0.7 % -1.9 %
c880 60 15544 4548 6454 1.16 3207 0.19 3047 0.18 2773 4.22 -9.0 % 2244.4 % -5.0 % -5.3 %
i10 257 287658 98722 121245 239.79 62875 97.81 62701 90.12 59359 2540.63 -5.3 % 2723.2 % -0.3 % -7.9 %
i4 192 420 300 64959 0.11 20985 0.06 20936 0.05 20936 27.46 0.0 % 54820.0 % -0.2 % -16.7 %
s1423 91 3928 1773 15469 0.16 10412 0.12 10398 0.11 9822 8.63 -5.5 % 7091.7 % -0.1 % -8.3 %
s38584.1 1464 100502 17371 3741639 14.88 2897064 12.58 2741100 11.92 2540187 32525.56 -7.3 % 275540.3 % -5.4 % -5.2 %
∑

– – – 4106762 598.08 3067093 159.67 2909885 150.18 2702874 35971.11 -7.1 % 23852 % -5.1 % -5.9 %

elb-sifting (the lower bound used for moving downwards was
that of lb-sifting). The implementation of elb-sifting is based on
that of sifting and lb-sifting. All algorithms have been integrated
into the CUDD package [10], thus running in the same system
environment during the experiments.

In a series of experiments all algorithms have been applied to
a larger set of benchmark circuits from LGSynth93 [15]. There-
fore, for every benchmark function, first a BDD has been built
from the logic level description as given in a BLIF file. Due to
space limitation, only a selection of the results can be given here.
Although this selection does not cover all test-cases we consid-
ered, the results shown here (i.e., average/maximal gain given in
percents) are almost the same as for the whole test-suite.

Table I gives the name of the function in the first column.
in denotes the number of inputs of a function. Column initial
shows the size of the initial BDD for the function. In Column fi-
nal, the size of the BDD resulting from applying the sifting algo-
rithm is given. Obviously, the resulting BDD sizes are the same
for all sifting approaches: the used lower bounds are sound,
i.e. only those parts of the search space are pruned, in which
no further improvements are possible. The next three double-
columns, sifting, lb-sifting and elb-sifting, state the number of
variable swaps (in columns swaps) and the runtime (in columns
time) needed for the respective approach. The fourth double col-
umn expensive states the results for the expensive lower bounds
as given in Theorem 2 and Theorem 3. In column swaps the
number of variable swaps is given and again column time states
the runtime needed. The next two columns show the gain in per-
cent by using the expensive lower bounds instead of the weak-
ened lower bounds of elb-sifting, i.e. in column swaps the ob-
tained reductions in the number of performed variable swaps are
given and in column time the reductions in runtime are given. In
the last two columns, the gain obtained by using elb-sifting in-
stead of lb-sifting is shown: again, in columns swaps and time
the obtained reductions in the number of performed variable
swaps and in runtime are given. In the last row, the values given
in each single column are summed up. For the two columns
swaps and time in the double columns a) gain exp. and b) gain
elb, the total gain in percents for our selection of the test-suite,
i.e. the average gain, is given when a) comparing the expensive
lower bounds to elb-sifting and b) elb-sifting to lb-sifting, re-
spectively.

As the results show, only the efficient forms of the lower
bounds yield good runtimes, whereas the runtimes for the ex-
pensive forms are far away from being acceptable in practice.
Interestingly, the tighter expensive forms of the lower bounds
yield a reduction in the number of the swaps, which is only 7.1%
on average. In this it seems that we do not lose much pruning
power by weakening our bounds to more efficient forms.

Finally, the results indicate that the tighter lower bound used

in elb-sifting is effective, i.e. both the number of variable swaps
and the runtime are reduced. Using elb-sifting instead of lb-
sifting saves up to 5.4% of the variable swaps needed during
algorithm run (e.g., see s38584.1). On average, the improvement
is 5.1%. The obtained reductions in runtime are up to more
than 10% (e.g., see i4). On average, a reduction in runtime of
5.9% has been obtained. Compared to classical, i.e. unbounded
sifting, we have a reduction in runtime of up to 89.2% (c2670).
On average, the improvement is 74.9%, i.e. more than a factor
of three.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., Vol. 35, pp. 677-691, 1986.

[2] B. Bollig, I. Wegener, “Improving the variable ordering of OBDDs in NP-
complete,” IEEE Trans. on Comp., Vol. 45, pp. 993-1002, 1996.

[3] H. Fujii, G. Ootomo, C. Hori, “Interleaving based variable ordering meth-
ods for ordered binary decision diagrams,” In: Int’l Conf. on CAD, pp.
38-41, 1993.

[4] M. Fujita, Y. Matsunaga, T. Kakuda, “On variable ordering of binary de-
cision diagrams for the application of multilevel synthesis,” In: European
Conf. on Design Automation, pp. 50-1.64, 1991.

[5] R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” In: Int’l Conf. on CAD, pp. 42-47, 1993.

[6] R. Drechsler, W. Günther, F. Somenzi, “Using lower bounds during dy-
namic BDD minimization,” IEEE Trans. on CAD, Vol. 20, pp. 51-1.67,
2001.

[7] R. Ebendt, W. Günther, R. Drechsler, “Combination of lower bounds in
exact BDD minimization,” In: Design, Automation and Test in Europe, pp.
758-763, 2003.

[8] K. Brace, R. Rudell, R. Bryant, “Efficient implementation of a BDD pack-
age,” In: Design Automation Conf., pp. 40-45, 1990.

[9] S. Panda, F. Somenzi, “Who are the variables in your neighbourhood,” In:
Int’l Conf. on CAD, pp. 74-77, 1995.

[10] F. Somenzi, CU Decision Diagram Package Release 2.3.1, University of
Colorado at Boulder, 2002.

[11] B. Bollig, M. Löbbing, I. Wegener, “On the effect of local changes in the
variable ordering of ordered decision diagrams,” Information Processing
Letters, Vol. 59, pp. 233-1.639, 1996.

[12] R. E. Bryant, “On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multipli-
cation,” IEEE Trans. on Comp., Vol. 40, pp. 205-1.613, 1991.

[13] N. Ishiura, H. Sawada, S. Yajima, “Minimization of binary decision dia-
grams based on exchange of variables,” In: Int’l Conf. on CAD, pp. 472-
475, 1991.

[14] R. Drechsler, N. Drechsler, W. Günther, “Fast exact minimization of
BDDs,” IEEE Trans. on CAD, Vol. 19, pp. 384-1.689, 2000.

[15] Collaborative Benchmarking Laboratory: 1993 LGSynth Benchmarks,
North Carolina State University, Department of Computer Science, 1993.

