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ABSTRACT
Autonomous robots use sensors to perceive and track objects
in the world. Tracking algorithms use object motion models
to estimate the position of a moving object. Tracking ef-
ficiency completely depends on the accuracy of the motion
model and of the sensory information. Interestingly, when
the robots can actuate the object being tracked, the motion
can become highly discontinuous and nonlinear. We have
previously developed a successful tracking approach that ef-
fectively switches among object motion models as a function
of the robot’s actions. If the object to be tracked is actuated
by a team, the set of motion models is quite more complex.
In this paper, we report on a tracking approach that can
use a dynamic multiple motion model based on a team co-
ordination plan. We present the multi-model probabilistic
tracking algorithms in detail and present empirical results
both in simulation and real robot test. Our physical team
is composed of a robot and a human in a real Segway soccer
game scenario. We show how the coordinated plan allows
the robot to better track a mobile object through the effec-
tive interaction with its human teammate.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Modeling and recovery of physical attributes, Mo-
tion

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Team-Driven, Multi-Model, Motion Modelling, Tracking

1. INTRODUCTION
There have been considerable investigations into the prob-

lem of tracking moving targets e.g. [8]. Within the robotics
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community, there has been a similar interest in tracking tar-
gets from robot platforms e.g. [11]. When tracking is per-
formed by a robot executing specific tasks acting over the
target being tracked, such as a Segway RMP soccer robot
grabbing and kicking a ball, the motion model of the target
becomes dependent on the robot’s actions [10]. The robot’s
tactic provides valuable information in terms of the target
behavior. We have introduced the tactic-based motion mod-
elling and tracking in such scenarios [9].

However, for the environments in which the Segway RMP
soccer robot operates in, there are multiple targets, besides
the ball, e.g. the teammate and the opponents, which need
to be tracked properly. All the players on the field can also
actuate over the ball, namely grab and kick the ball accord-
ing to the rules which makes the motion model of the ball
even more complex.

When the robot is playing a game as a member of a
human-robot team, the team coordination knowledge pro-
vides further information that can be incorporated into the
motion modelling and tracking process. In this paper, we
present an extension to the tactic-based tracking scheme in-
troduced in [9] to solve a plan-dependent multi-target track-
ing problem.

The paper is organized as follows. We first give a brief
description of the Segway RMP soccer robot. Next we show
the team-driven play-based motion modelling for multiple
targets and we incorporate the team coordination knowl-
edge into the motion modelling. We then describe the multi-
sensor multi-model tracking algorithm for multiple targets,
leading to our experimental results, related work, conclu-
sions and future work.

2. SEGWAY RMP SOCCER ROBOT
The Segway platform is unique due to its combination

of wheel actuators and dynamic balancing. Segway RMP,
or Robot Mobility Platform, provides an extensible control
platform for robotics research [12]. It imbues the robot with
the novel characteristics of a fast platform and travel long
ranges, able to carry significant payloads, able to navigate
in relatively tight spaces for its size, and provides the oppor-
tunity to mount sensors at a height comparable to human
eye level.

In our previous work, we have developed a Segway RMP
robot base capable of playing Segway soccer (Figure 1). We
briefly describe the two major components of the control
architecture, the sensor and the robot cognition, which are
highly related to our motion modelling for efficient multi-
target tracking.



Figure 1: The Segway RMP soccer robot equipped
with a kicker, a catcher, infrared sensors, and a cam-
era mounted on a custom pan-tilt unit.

2.1 Vision Sensor and Infrared Sensor
Over the years, a lot of different sensors such as vision sen-

sors, infrared and ultrasound sensors have been used in the
robotics community. For environments the Segway RMP
operates in, there are few sensors that can compete with
color vision for low cost, compact size, high information vol-
ume and throughput, relatively low latency, and promising
usage for object recognition [7]. Thus, we choose vision as
the primary sensor.

In our work with the Segway RMP platform, we have been
exploring techniques to enable a vision-centric robot to be
able to play soccer in outdoor environments where illumi-
nate is variable [5, 6]. Furthermore, as the task is adversarial
and highly dynamic, the combination of robot speed and ball
speed means that it is essential that the vision algorithms be
both robust, and extremely efficient. Indeed, only a fraction
of the CPU resources can be devoted to vision processing as
the remainder of the CPU resources must be used for cog-
nition in order to get low-latency robot behaviors. We have
developed a new technique for fast color-object recognition
that is suitable for use in robot platforms like the Segway.
For more details of this approach, see our paper [6].

The goal of vision is to provide as many valid estimates
of targets as possible. Tracking then fuses this information
to track the most interesting targets (the ball and the team-
mate, in this paper) of relevance to the robot. We do not
discuss the localization of the robot in the sense that a lot
of soccer tasks (known as tactics and plays in later sections)
can be done by the Segway RMP robot independently of
knowing where it is in the world. Also we use global ref-
erence in this paper (global position and velocity) which
means it is relative to the reference point where the robot
starts to do dead reckoning.

Recently, we have equipped each robot with infrared sen-
sors to reliably detect the object which is in the catchable
area of the robot. Its measurement is a binary value indi-
cating whether or not an object is in that area. In most
cases, this is the blind area of the vision sensor. Therefore,
the infrared sensor is particularly useful when the robot is
grabbing the ball.
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Figure 2: Skill state machines (SSMs) for an ex-
ample tactic: CatchKickToTeammate. Each node is
a skill and the edges show the transition between
skills.

2.2 Robot Cognition
A control architecture, called Skills-Tactics-Plays, was pro-

posed in [3] to achieve the goals of responsive, adversarial
team control. The key component of STP is the division
between single robot behavior and team behavior.

A play, P , is a fixed team plan which consists of a set
of applicability conditions, termination conditions, and N
roles, one for each team member. Each role defines a se-
quence of tactics T1, T2, · · · and associated parameters to be
performed by that role in the ordered sequence. Assignment
of roles to team members is performed dynamically at run
time. Upon role assignment, each robot i is assigned its tac-
tic Ti to execute from the current step of the sequence for
that role.

A tactic, T , encapsulates a single robot behavior. Each
robot i executes its own tactic as created by the current play
P . A tactic Ti determines the skill state machine SSMi to
be executed by the robot i.

A skill, S, is a focused control policy for performing some
complex action. Each skill is a member of one, or more, skill
state machines SSM1, SSM2, · · · . Each skill S determines
what skill it transitions to S′ based upon the world state,
the time skill S has been executing for, and the executing
tactic for that robot.

We construct the robot cognition using a similar architec-
ture. Plays, tactics, and skills, form a hierarchy for team
control. Plays control the team behavior through tactics,
while tactics encapsulate individual robot behavior and in-
stantiate actions through sequences of skills. Skills imple-
ment the focused control policy for actually generating use-
ful actions.

Figure 2 shows the SSMs and transitions for an exam-
ple tactic: CatchKickToTeammate, which contains six skills.
The tactic starts from SearchBall, and when the ball is vis-
ible then transits to the skill AimAtBall. If the ball is lost,
the state machine transits back to SearchBall. Else if the
skill GrabBall is successfully executed, the state trasits to
SearchTeammate, AimAtTeammate and the final Kick skill.

Segway soccer is a team sport, and therefore the building
of our game strategy required not only execution of single
robot behavior , but also coordination with the teammate,
the human player. The current coordination is simple and
basically based upon two fixed plays for offensive and de-
fensive situation respectively. Our offensive play is shown
as follows, in which the termination condition is either play
aborted or the situation changed (a turn-over of ball posses-



sion announced by the referee). There are two roles in this
play, one passes the ball to the other who positions down
field and waits for receiving a pass.

PLAY Naive Offense

APPLICABLE offense

DONE aborted !offense

ROLE 1

pass 2

none

ROLE 2

position_down_field

receive_pass

none

Our current coordination is purely observation based. Each
player assigns role from his own eyeshot without communi-
cation. For example, should the robot think the teammate
is closer to the ball, the robot would choose to position and
receive the ball (ROLE 2) from its teammate (ROLE 1).
Furthermore, the robot knows which side gains possession
of the ball from the referee announcement (whistle), there-
fore it tells offensive from defensive situation clearly and
thus it has deterministic idea of which play the team is us-
ing. The robot makes an assumption that its teammate is
performing the same game play as itself. The robot can infer
what tactic the teammate is executing from the team play.
For instance, after receiving the ball from the teammate, as
a passer, the robot would assume the teammate go forward
to a tactically advantageous position to receive a pass. The
predefined play for team coordination provides useful infor-
mation for motion modelling, which will be further discussed
in section 3.

3. PLAY-BASED MOTION MODELLING
In this section, we take a multi-target tracking problem as

a detailed example to show the extension of the tactic-based
motion modelling method in general when the team coordi-
nation knowledge (play) is incorporated. First we give an in-
troduction of the environment and targets under the Segway
soccer setup. Second, we describe detailed motion models
for both the ball and the teammate. Third, we extend the
tactic-based motion modelling to the play level when both
the ball and the teammate are included into the tracking.
We show how we model the play-dependent interactions be-
tween the teammate, the robot and the ball and set up a
base for giving the team-driven multi-model tracking algo-
rithm in the next section.

3.1 Tracking Scenario
In a Segway soccer game, there are multiple moving tar-

gets on the field. e.g, the ball, the human teammate and
the two opponents. Each team is identified by their distinct
color. The ball is in orange [4]. We construct two single
target trackers in the system, for the ball and the teammate
respectively. We use two separate trackers instead of one
multi-target tracker for both of them because we can differ-
entiate the ball with the teammate thanks to the color-based
vision system.

The general parameterized state-space system for the kth
target xk,t at time t is given by:

xk,t = fm
k (xk,t−1,u

m
k,t−1,v

m
k,t−1) (1)

zk,t = hm
k (xk,t,n

m
k,t) (2)

where fm
k and hm

k are the parameterized state transition
and measurement functions for the mth model of the kth
target; x,u, z are the state, input and measurement vectors;
v,n are the process and measurement noise vectors of known
statistics; m is the model index that can take any one of Nk

values, where Nk is the number of models of the kth target
being tracked (ball/teammate);

3.2 Ball Motion Modelling
In our Segway RMP soccer robot environment, we define

five models to model the ball motion (for the rest of this
paper, for simplicity, we use xt to represent the ball state,
and use x′

t to represent the teammate state).

• Free-Ball. The ball is not moving at all or moving
straight with a constant speed decay d which depends
on the environment surface.

xt = Ftxt−1 + v1
t−1 (3)

zt = Htxt + n1
t (4)

where xt = (xt, yt, ẋt, ẏt)T , zt = (xt, yt)T ; xt, yt are the
ball’s x, y position in the global coordinate at time t;
and ẋt, ẏt are the ball’s velocity in x and y direction in
the global coordinate. The superscript “1” indicates
the model index. Ft and Ht are known matrices as
follows:

Fk =




1 0 ∆t 0
0 1 0 ∆t
0 0 d 0
0 0 0 d


 ,Hk =

[
1 0 0 0
0 1 0 0

]

where ∆t is the time interval between vision frames.

• Robot-Grab-Ball. The ball is grabbed by the robot’s
catcher. In the case of robot grabbing ball, no vision
is needed to track the ball, because we assume the
ball moves with the robot. Therefore the ball has the
same velocity as the robot (but plus the noise) and
its global position at time t is just the robot’s global
position plus their relative position, which is assumed
to be a constant, plus the noise.

• Human-Grab-Ball. The ball is held by the teammate.
we can infer the ball position similarly if we know the
teammate position well.

• Robot-Kick-Ball. The ball is kicked by the robot there-
fore its velocity is equal to a predefined initial speed
plus the noise. The ball is supposed to move toward
either the human teammate or the goal.

• Human-Kick-Ball. The ball is kicked by the teammate
and it is supposed to be either a pass to the robot or
a shoot at the goal .

3.3 Teammate Motion Modelling
We define four models to model the human teammate’s

motion.

• Random Walk. The teammate is wondering in the
field. So the state at the new time is the state at the
current time with some additive zero-mean (assumed
Gaussian) noise.
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Figure 3: Play-Based motion modelling, where
m1, m2, · · · , mn are n models, Pa is the team play, vb

is the additional information. hi,j is the transition
probability from model mi to model mj given mi,
and 〈Pa, vb〉. Each layer in the graph is conditioned
on a particular combination of the play executed and
the additional information obtained.

• Holding Ball. The teammate is holding the ball with-
out moving and waiting for the robot to receive the
ball. Should the robot know the ball position well, it
can infer the teammate position by the ball position
in a similar way as Robot-Grab-Ball for ball motion
modelling.

• Accelerating. The teammate dashes and obtains a ve-
locity in a short time.

• Positioning. The teammate is going to a predefined
tactical position with a constant speed. This case hap-
pens mostly after the teammate passing the ball to the
robot and moving down the field toward opponent’s
goal.

3.4 Play Based Model Transitions
Given the knowledge of the team coordination plan (the

play Pt−1 at time t − 1), the robot can infer what tactic
the teammate is executing (T ′

t−1), which provides valuable
information about the motion model of the teammate (m′

t).
Both the robot and the teammate act over the ball in a
Segway soccer game. The motion model of the ball (mt) is
therefore affected by what tactic the robot (Tt−1) and the
teammate (T ′

t−1) are executing.
From the previous subsection, we know that the model

index m determines the present model being used. For our
teammate tracking example, m′

t = i, i = 1, · · · , 4. In our
approach, it is assumed that the teammate motion model
index, m′

t, conditioned on the previous tactic executed T ′
t−1

by the teammate, and other useful information v′
t (such as

ball state), is governed by an underlying Markov process,
such that, the conditioning parameter can branch at the
next time-step with probability.

p(m′
t = i|m′

t−1 = j, T ′
t−1, v′t) = h′

i,j (5)

where i, j = 1, · · · , Nm′ . Since T ′
t−1 can be determined by

Pt−1, we get

h′
i,j = p(m′

t = i|m′
t−1 = j, Pt−1, v′t) (6)
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Figure 4: Object motion modelling based on the
play: Naive Offense. Each node is a model. Models
transit to one another according to the predefined
probabilities (not shown in the figure). (a) Ball mo-
tion model. (b) Human teammate motion model.

Since we can draw p(m′
t = i|m′

t−1 = j) in an Nm′ × Nm′
table, we can create a table for Equation 6 with a third axis
which is defined by the tuple 〈Pa, vb〉 as shown in Figure
3. Here the play Pa, is the primary factor that determines
whether mi transits to mj and what the transition probabil-
ity is, while the information vb determines the prior condi-
tion of the transition. Each layer in the graph is conditioned
on a particular combination of the tactic executed and the
additional information obtained.

For our ball tracking example, mt = i, i = 1, · · · , 5. Simi-
larly,

hi,j = p(mt = i|mt−1 = j, Tt−1, T ′
t−1, vt) (7)

where i, j = 1, · · · , Nm. Since Tt−1, T
′
t−1 can be determined

by Pt−1, we get

hi,j = p(mt = i|mt−1 = j, Pt−1, vt) (8)

Suppose the current team play is the Naive Offense in Sec-
tion 2.2, we can obtain the corresponding motion model
transitions for both the ball and the teammate using the
play-based method (Figure 4).

4. MULTI-SENSOR MULTI-MODEL
TRACKING

Following the play-based motion model given in the previ-
ous section, we can use dynamic Bayesian networks (DBNs)
to represent the whole system for teammate and ball track-
ing in a natural and compact way as shown in Figure 5
and Figure 6 respectively. In this graph, the system state
is represented by variables (play P , tactic T , infrared sen-
sor measurement s, ball state x, ball motion model index
m, vision sensor measurement of ball z, teammate state x′,
teammate motion model index m′, vision sensor measure-
ment of teammate z′), where each variable takes on values
in some space. The variables change over time in discrete
intervals, so that e.g. xt is the ball state at time t.

Furthermore, the edges indicate dependencies between the
variables. For instance, in Figure 6 the ball motion model
index mt depends on mt−1, Tt−1, T

′
t−1, st and xt−1, hence

there are edges coming from the latter five variables to mt.
Note that we use an approximation here. We assume the
measurement of the infrared sensor is always the true value,
so it does not depend on the ball state. Under this assump-
tion, there is no edge from xt−1 to st, which greatly sim-
plifies the ball-tracking DBN and the sampling algorithm as
well.
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Figure 5: A dynamic Bayesian network for team-
mate tracking with a Segway RMP robot. Filled
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that the robot is executing.

For the rest of this section, we give the ball-tracking algo-
rithm following Figure 6. The teammate-tracking algorithm
can be obtained similarly following Figure 5.

We use the sequential Monte Carlo method to track the
motion model m and the object state x. Particle filtering
is a general purpose Monte Carlo scheme for tracking in a
dynamic system. It maintains the belief state at time t as a

set of particles p
(1)
t , p

(2)
t , · · · , p

(Ns)
t , where each p

(i)
t is a full

instantiation of the tracked variables {p(i)
t , w

(i)
t }, w

(i)
t is the

weight of particle p
(i)
t and Ns is the number of particles. In

our case, p
(i)
t = 〈x(i)

t , m
(i)
t 〉.

The equations below follow from the ball-tracking DBN.

m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, T

′
t−1) (9)

x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1) (10)

Note that Tt−1 and T ′
t−1 are inferred deterministically from

Pt−1 instead of sampling. Also note that in Equation 10,

the ball state is conditioned on the ball motion model m
(i)
t

sampled from Equation 9.
Then we use the Sample Importance Resampling (SIR)

algorithm to update the state estimates. The sampling al-
gorithm is as follows:

[{x(i)
t , m

(i)
t , w

(i)
t }Ns

i=1] = SIR[{x(i)
t−1, m

(i)
t−1, w

(i)
t−1}Ns

i=1, zt, st, Tt−1, T ′
t−1]

01 for i = 1 : Ns

02 draw m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, T ′

t−1).

03 draw x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1).

04 set w
(i)
t = p(zt|x(i)

t )
05 end for
06 Calculate total weight: w =

∑
[{wi

t}Ns
i=1]

07 for i = 1 : Ns

08 Normalize: wi
t = wi

t/w
09 end for
10 Resample.

The inputs of the algorithm are samples drawn from the

previous posterior 〈x(i)
t−1, m

(i)
t−1, w

(i)
t−1〉, the present vision and

infrared sensory measurement zt, st, the robot’s tactic Tt−1,

a
v0

h

L

Figure 7: Test setup for estimating the ball speed
decay d. The ball rolls off the ramp (with height h)
with speed v0 and it stops after it travels a distance
of L.

and the teammate’s tactic T ′
t−1. The outputs are the up-

dated weighted samples 〈x(i)
t , m

(i)
t , w

(i)
t 〉. In the sampling

algorithm, first, a new ball motion model index, m
(i)
t , is

sampled according to Equation 9 at line 02. Then given the
model index, and previous ball state, a new ball state is sam-
pled according to Equation 10 at line 03. The importance
weight of each sample is given by the likelihood of the vision
measurement given the predicted new ball state at line 04.
Finally, each weight is normalized and the samples are re-
sampled. Then we can estimate the ball state based on the

mean of all the x
(i)
t . Similarly the state of the teammate x′

t

can be obtained from the teammate tracker.

5. EXPERIMENT
In this section, we design experiments to estimate the ball

speed decay in ∆t (time interval between vision frames) on
different surfaces. We profile the system and measurement
noise. Finally we evaluate the effectiveness of our tracking
system in both simulated and real-world tests.

5.1 Ball Motion Profiling
From previous work we know the initial speed and accu-

racy of the ball velocity after a kick motion.
And we use the setup shown in Figure 7 to estimate the

ball speed decay d. In detail, we put the ball on the top of
a ramp and let it roll off the ramp with initial speed

v0 =
√

2gh

without taking the friction on the surface of the ramp into
account, where g is the gravity and h is the height of the
ramp. We record the distance the ball travelled (L) from the
position the ball rolls off the ramp to the position it stops.
Obviously, the ball speed decay can be approximated as

d = 1 − v0∆t

L

where ∆t ≈ 0.033 sec. Following the test result, we use d =
0.99 for the cement surface. From the test, we note that the
faster the ball’s speed, the smaller the system noise, hence
the more the ball’s trajectory forms a straight line. Based on
the data we collected from experiments, we therefore model
the system noise when the motion model is Free-Ball to be
inverse proportional to the ball speed.

5.2 Measurement Noise Profiling
In order to profile the measurement noise, we put the

ball on a series of known positions, read the measurement
from vision sensor, and then determine the error in that
measurement. From the results, we know that the nearer the
ball, the smaller the observation noise. Therefore we choose
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Table 1: The average RMS error of position estima-
tion and velocity estimation from human-trackers.

Motion Model Single Model Multi-Model

Position Est RMS (m) 0.0030 0.0014

Velocity Est RMS (m/s) 0.42 0.025

Table 2: The average RMS error of position estima-
tion and velocity estimation from ball-trackers.

Motion Model Single Model Multi-Model

Position Est RMS (m) 0.0028 0.0017

Velocity Est RMS (m/s) 0.4218 0.0597

to approximate the error distribution as different Gaussians
based on the distance from the robot to the ball.

5.3 Simulation Experiments
Because it is difficult to know the ground truth of the ob-

ject’s position and velocity in the real robot test, we do the
simulation experiments to evaluate the precision of tracking.

Experiments are done following the Naive Offense play, in
which the robot acts as the receiver and the human team-
mate acts as the passer. Noises are simulated according to
the model profiled in the previous section. In the begin-
ning, the teammate holds the ball. After a fixed amount of
time, the ball is kicked towards the robot, and the teammate
moves forward to a predefined location.

We implement both a single model tracker and a play-
based multi-model tracker for the ball and the teammate.
We simulate the experiment for 50 runs, and then compare
the performance of the two trackers with different implemen-
tations. The average RMS error of position estimation and

velocity estimation are shown in Table 1 and 2 respectively.
The results show that the play-based multi-model scheme
performs much better than the single model especially in
terms of velocity estimation. Because with the play-based
motion model, when the ball is being kicked, most parti-
cles evolving using the transition model determined by the

play will change its motion model m
(i)
t from Free-Ball to

Human-Kick-Ball, and a velocity will be added to the ball
accordingly.

Figure 8 and Figure 9 show the ball velocity estimation
and the teammate velocity estimation during a short term
for a given simulation test. In both figures, The left graph
shows the x-component of the velocity (vx) estimation through
single model tracking and play-based multi-model tracking.
The right graph shows the y-component of the velocity (vy)
estimation. The dotted line with x-mark represents the true
value, the solid line with circle represents the the velocity es-
timation through play-based multi-model tracking, the solid
line with cross represents the the velocity estimation through
single model tracking. We note that the velocity estimation
with multi-model trackers the true velocity in terms vx and
vy much more consistent than with single model trackers.

5.4 Team Cooperation Test
In the real-world test, we do experiments on the Segway

RMP soccer robot executing the offensive play and coordi-
nating with the human teammate. The test setup is demon-
strated in Figure 10, in which the digits along the lines show
the sequence of the whole strategy, the filled circle at posi-
tion B represents the robot, the unfilled circle at position E
represent an opponent player, and the shaded circle repre-
sent the human teammate.

When each run begins, the human teammate is at posi-
tion A. With this team cooperation plan (play), the robot
chooses the tactic CatchKickToTeammate to execute, in which
the robot starts with the skill Search-Ball. When the robot
finds the ball, the teammate passes the ball directly to the
robot and chooses a positioning point to go to either at C or
D. The robot grabs the ball after the ball is in the catchable
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Figure 8: Ball velocity estimation. The left figure
shows the x-component of the velocity (vx) estima-
tion through single model tracking and play-based
multi-model tracking. The right figure shows the y-
component of the velocity (vy) estimation. The dot-
ted line with x-mark represents the true value, the
solid line with circle represents the the velocity es-
timation through play-based multi-model tracking,
the solid line with cross represents the the velocity
estimation through single model tracking.
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Figure 9: Human teammate velocity estimation.
The left figure shows the x-component of the ve-
locity (vx) estimation through single model tracking
and play-based multi-model tracking. The right fig-
ure shows the y-component of the velocity (vy) esti-
mation. The dotted line with x-mark represents the
true value, the solid line with circle represents the
the velocity estimation through play-based multi-
model tracking, the solid line with cross represents
the the velocity estimation through single model
tracking.

Table 3: The average time taken over all the suc-
cessful runs.

Motion Model Single Model Multi-Model

Mean Time (sec) 33.4 22.6

��A
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��
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1
2'2

3 3'
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Figure 10: A demonstration of a naive team co-
operation plan in offensive scenario. The digits
along the lines show the sequence of the whole plan.
The filled circle at position B represents the robot.
The unfilled circle at position E represent an oppo-
nent player. The shaded circle represent the human
teammate.

area and is detected by the infrared sensor (skill Grab-Ball).
Next the robot searches for the teammate holding the ball
with its catcher (skill Search-Teammate). After the robot
finds the teammate, the robot kicks the ball to its teammate
and the teammate shoots at the goal(skill KickToTeammate,
completing the whole offensive play. Each run ends in one
of the following conditions.

• succeed if the human receives the ball from the robot
or the human does not receiver the ball but the pass
can be considered as a “good” one.

• fail if the robot is in searching for the ball or the team-
mate for more than 30 seconds.

• fail if the ball is out of the field before the robot catches
it.

In the experiment over 15 runs, we keep track of the suc-
cessful rate and the mean time taken in each successful run
(listed in Table 3). The robot with single model trackers
fails 5 of the total and has an average running time of 33.4
seconds in the 10 successful runs. While the robot with
play-based multi-model trackers only fails 2 of the total and
has an average running time of 22.6 seconds in the 13 suc-
cessful runs. Using play-based multi-model tracking saves
32.3% time in terms of completing the whole play over sin-
gle model tracking. During the experiment, we note that
when using the single model tracking, most time were spent
on searching the teammate. Incorporating the team coop-
eration knowledge known as play into the teammate motion
modelling greatly improves the accuracy of the teammate
motion model and therefore avoids taking time in searching
a lost target from scratch.



6. RELATED WORK
Tracking moving objects using a Kalman filter is the op-

tional solution if the system follows a single model, f and
h in Equation 1 and 2 are known linear functions and the
noise v and n are Gaussians [1]. Multiple model Kalman
filters such as Interacting Multiple Model (IMM) are known
to be superior to the single Kalman filter when the tracked
object is maneuvering [2]. For nonlinear systems or systems
with non-Gaussian noises, a further approximation is intro-
duced, but the posterior densities are therefore only locally
accurate and do not reflect the actual system densities.

Since the particle filter is not restricted to Gaussian den-
sities, a multi-model particle filter is introduced. However,
this approach assumes that the model index, m, is gov-
erned by a Markov process such that the conditioning pa-
rameter can branch at the next time-step with probability
p(mt = i|mt−1 = j) = hi,j where i, j = 1, · · · , Nm. But the
uncertainties in our object tracking problem do not have
such a property due to the interactions between the robot
and the tracked object. In this motivation, a tactic-based
motion modelling method is proposed in [9]. Based on that
approach, we further introduce the play-based motion mod-
elling method when team coordination knowledge is avail-
able.

In [10], an approach were proposed for tracking a moving
target using Rao-Blackwellised particle filter. In their ex-
periments, the discrete states are the non-linear motion of
the observing platform and the different motion models for
the target. But they use a fixed transition table between
different models. Our transition model is dependent on the
play that the robot is executing and the additional informa-
tion that matters. This play-based motion modelling can
be flexibly integrated into our existing skills-tactics-plays
architecture.

7. CONCLUSIONS AND FUTURE WORK
Motivated by the interactions between a team and the

tracked object, we contribute a method to achieve efficient
tracking through using a play-based motion model and com-
bined vision and infrared sensory information. The team-
driven motion modelling method gives the robot a more
exact task-specific motion model when executing different
tactics over the tracked object (e.g. the ball) or collabo-
rating with the tracked object (e.g. the teammate). It im-
proves the accuracy of the object tracking by switching the
object’s motion model according to the current team strat-
egy without communication among the teammates, which is
applicable to human-robot cooperation task. Then we rep-
resent the system in a compact dynamic Bayesian network
and use particle filter to keep track of the motion model and
object state through sampling. The empirical results from
the simulated and the real experiments show the efficiency
of the team-driven multi-model tracking over single model
tracking.

If the teammate is a human, not a robot, the certainty
that the teammate is executing the expected play or tactic
could be reduced. That is, the human teammate could fail
to execute the desired play or tactic. Future work will take
such uncertainty into account. Another interesting work is
to model the multi-target motion when each target has mul-
tiple hypothesis, which is caused by incorrect measurements
originating from the clutter. We would like to see how the

information from the tactic and the play can help to elimi-
nate false alarms and achieve efficient resampling under the
framework of the particle filter.
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