
Zero Cost Indexing for Improved Processor
Cache Performance

TONY GIVARGIS

University of California, Irvine

The increasing use of microprocessor cores in embedded systems as well as mobile and portable

devices creates an opportunity for customizing the cache subsystem for improved performance.

In traditional cache design, the index portion of the memory address bus consists of the K least

significant bits, where K = log2 D and D is the depth of the cache. However, in devices where

the application set is known and characterized (e.g., systems that execute a fixed application set)

there is an opportunity to improve cache performance by choosing a near-optimal set of bits used

as index into the cache. This technique does not add any overhead in terms of area or delay. In

this article, we present an efficient heuristic algorithm for selecting K index bits for improved

cache performance. We show the feasibility of our algorithm by applying it to a large number of

embedded system applications as well as the integer SPEC CPU 2000 benchmarks. Specifically,

for data traces, we show up to 45% reduction in cache misses. Likewise, for instruction traces, we

show up to 31% reduction in cache misses. When a unified data/instruction cache architecture is

considered, our results show an average improvement of 14.5% for the Powerstone benchmarks

and an average improvement of 15.2% for the SPEC’00 benchmarks.

Categories and Subject Descriptors: B.3.0 [Memory Structures]: General

General Terms: Design, Performance

Additional Key Words and Phrases: Cache optimization, design exploration, index hashing

1. INTRODUCTION

The growing demand for embedded computing platforms, mobile systems, hand-
held devices, and dedicated servers, coupled with shrinking time-to-market
windows, are leading to new core based system-on-a-chip (SOC) architectures
[ITRS 2005; Kozyrakis and Patterson 1998; Vahid and Givargis 1999]. Specifi-
cally, microprocessor cores (a.k.a., embedded processors) are playing an increas-
ing role in such systems’ design [Wong et al. 2004]. This is primarily due to the
fact that microprocessors are easy to program using well evolved programming
languages and compiler tool chains, provide high degree of functional flexibility,

This work was supported by the National Science Foundation (NSF) award number CCR-0205712.

Author’s address: Department of Computer Science, Center for Embedded Computer Systems,

University of California, Irvine, Irvine, CA 92697; email: givargis@uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/0100-0003 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006, Pages 3–25.

4 • Tony Givargis

allow for short product design cycles, and ultimately result in low engineering
and unit costs. However, due to continued increase in functional complexity
of these systems and devices, the performance of such embedded processors is
becoming a vital design concern.

The use of data and instruction caches has been a major factor in improv-
ing processing speed of today’s microprocessors. Generally, a well-tuned cache
hierarchy and organization can reduce the time overhead of fetching instruc-
tion and data from main memory, which in most cases resides off-chip, requiring
power-costly communication over the off-chip system bus. Specifically, if a cache
is designed to reduce the total number of cache misses during the execution of
an application, the bit-traffic to and from the off-chip memory will be reduced.
Since the capacitive load of a communication bus crossing the chip boundary is
relatively large, a reduction in bit-traffic over such a bus will yield a reduction
in power consumption and overall energy use of the application.

Consequently, in embedded, mobile, and handheld devices, optimizing of the
processor cache hierarchy has received a lot of attention from the research com-
munity [Balasubramonian et al. 2000; C.L and Despain 1995; Malik et al. 2000;
Petrov and Orailoglu 2001; Suzuki et al. 1998]. This is due in part to the large
performance gained by tuning caches to the application set of these systems.
The kinds of cache parameters explored by researchers include deciding the
size of a cache line (a.k.a., cache block), selecting the degree of associativity, ad-
justing the total cache size, and selecting appropriate control policies such as
write-back and replacement procedures. These techniques, typically, improve
cache performance, in terms of miss reduction, at the expense of area, clock
latency, or energy.

In this work, we propose a zero-cost technique for improving cache perfor-
mance (i.e., reduce misses). Our technique involves selecting a near-optimal set
of bits used as index into the cache. In traditional cache design, the index por-
tion of the memory address bus consists of the K least significant bits, where
K = log2 D and D is the depth1 of the cache [Patterson and Hennessy 1997].
In general, any of the address bits can be used for indexing. In our technique,
we assume that the processor and cache cores are black-box entities to be inte-
grated on a single SOC. However, we do assume that the integration of cores,
more specifically, routing of the address bus wires is flexible, as is commonly
the case in core-based SOC design, as well as board-based design.

We pictorially depict the idea of near-optimal cache indexing by showing the
traditional approach, Figure 1(a), versus our approach, Figure 1(b). Here, we
have a 16-bit processor core connected to a 1K cache core, which in turn is
connected to 64K of memory. In Figure 1(a), the least significant address bit is
used for the byte-offset calculation (assuming the cache is organized with each
line being two bytes wide). The next nine least significant bits are used for cache
indexing and the remaining bits are used for tag comparison. In Figure 1(b),
we have swapped bits seven and ten in order to achieve, say, a near-optimal

1The depth of a cache, in terms of the number of index bits K , is defined to be 2K (i.e., the number

of lines in a cache). Note that a line may contain one or more data sets, depending on the degree of

associativity of the cache.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 5

Fig. 1. Index mapping example.

cache indexing. Note that the reverse of the indexing scheme is performed on
the cache-to-memory side in order to preserve functional correctness.

The intuition behind our work is simple. We exploit the fact that, for em-
bedded applications (where the execution pattern is mostly constant), there is
an opportunity to use alternate index bits to achieve better cache performance
without increasing cache size or degree of associativity.

The problem of cache indexing is one of hashing. In traditional cache design,
reference A maps to cache location L, using the hash function shown in Eq. (1):

L = A (mod D). (1)

In Eq. (1), D is the depth of the cache. In general, data can be mapped onto
a cache using the generic hash function shown in Eq. (2)

L = H(A). (2)

In Eq. (2), H is the arbitrary hash function. While it may be possible to
compute a perfect hash function, given the cache organization and a trace file,
in this work, we focus on a special class of hash functions, namely those that
have a zero cost overhead (e.g., zero delay, area, power, etc.). In other words, we
focus on the class of hash function that only swap the address bits.

The remainder of this article is organized as follows: In Section 2, we summa-
rize related work. In Section 3, we formulate the problem and give our heuristic
solution. In Section 4, we state our experiments. In Section 5, we state our con-
cluding remarks and define some possible future directions along the lines of
the proposed work.

2. PREVIOUS WORK

While the problem of hashing is a well-studied topic in the general area of
computer science [Corman et al. 2001], we are unaware of any direct research
related to a hardware approach to processor cache indexing, as stated in this
work. However, there are a number of compiler (software) techniques that aim
at achieving similar goals as ours. In this section we briefly elaborate on some
of these techniques.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

6 • Tony Givargis

Rivera and Tseng [1997] present two data only compiler transformations to
eliminate conflict misses. One of these transformations is to modify variable
base addresses. The other transformation is to pad inner array dimensions.
Unlike compiler transformations that restructure the application code, these
two techniques modify the application data layout in order to improve cache
performance.

Panda et al. [1997] present a data alignment technique that pads arrays,
to improve program performance through minimizing cache conflict misses.
They also describe algorithms for selecting tile sizes for maximizing data cache
utilization, and computing pad sizes for eliminating self-interference conflicts
in the chosen tiles.

Abella et al. [2002] exploit the effectiveness of the memory hierarchy by
means of program transformations (code segment), such as padding, to reduce
conflict misses. They present an approach to perform near-optimal code segment
padding for a system with multilevel caches by analyzing programs, detecting
conflict misses (by means of cache miss equations), and using a genetic algo-
rithm to compute the transformations.

Huang et al. [2003] propose loop (code) and data tiling for improving data lo-
cality in partial-differential equation (PDE) solvers running on single processor
systems with a memory hierarchy. They combine loop (code) tiling with array
layout transformation in such a way that a significant amount of cache misses
that would otherwise be present are eliminated. They compare their results
to nine existing loop tiling algorithms and show that their techniques delivers
impressive performance speedups (faster by factors of 1.55–2.62) and smooth
performance curves across a range of problem sizes on representative machine
architectures.

Ding and Kennedy [1999] explore ways to achieve better data reuse of
dynamic applications by improving both code and data locality in irregular
programs. They demonstrate that runtime program transformations can sub-
stantially improve code and data locality despite the added complexity and cost.
They utilize a compiler to automate such transformations, eliminating much of
the associated runtime overhead.

Grun et al. [2000, 2001] describe a memory-aware compiler approach that
exploits efficient memory access modes by extracting accurate timing infor-
mation, allowing the compiler’s scheduler to perform global code reordering to
better hide the latency of memory operations. In this context, memory access
modes include page mode, burst mode, and pipelined access. In their work, they
also assume a more application specific, tuned, memory subsystem that may
include one or more caches and memories organized to meet low power or high
performance demands in addition to the traditional memory/cache hierarchy.
Further, they present a compiler technique that in the presence of caches ac-
tively manages cache misses, and performs global miss traffic optimizations, to
better hide the latency of the memory operations.

Software-based cache-sensitive compiler techniques, such as those outlined
above, use code motion, data realignment, and data padding as a mechanism to
improve cache performance. With respect to our approach, these techniques: (1)
have a limited degree of freedom in moving code or data (e.g., code segment can

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 7

only be moved at the basic block boundary or data objects may only be moved in
a non-overlapping way), (2) may incur added cost (e.g., consecutive basic block
segments, if split would require an added jump instruction or padded arrays
may require added index computation overhead), (3) have a limited degree of
freedom in padding arrays and structures (e.g., a structure object can only be
padded at the element boundary to comply with the source programing lan-
guage semantics or multidimensional arrays usually are padded at the row or
column boundary but not both), (4) are targeted for compute-intensive loops or
nested loops operating on large arrays, and (5) have a limited view of the overall
software (e.g., do not consider multiple concurrent tasks or interleaved operat-
ing system activity.) We note that our approach can be applied over and beyond
these software-based compiler techniques for added benefit.

3. OPTIMAL CACHE INDEXING

In this section, we first formulate the problem of optimal cache indexing. Then,
we show that the problem of optimal cache indexing belongs to the class NP-
complete. Last, we provide a heuristic that is efficient in running time and
produces good results when applied in practice.

3.1 Problem Formulation

Optimal cache indexing is the problem of selecting K bits among all address
bits of a processor for indexing into the cache. Specifically, let us assume that
a processor has an M -bit bus and is connected to a cache of size S bytes that is
A-way set associative and has line size equal to L bytes. K can be computed as
shown in Eq. (3)

K = log2

(
S

L × A

)
. (3)

Here, the term S/(L × A) gives the depth D of the cache (i.e., the number
of rows). Note that K is the number of bits used by the row decoder of the
cache. Since there are a total of M address bits, we can potentially use any
combination of size K for cache indexing. The number of combinations, thus, is
computed as shown in Eq. (4).(

M
K

)
= M !

K ! × (M − K)!
. (4)

The problem is to find the one combination that reduces cache misses for a
fixed application set. Specifically, we assume that a trace of memory references,
corresponding to the application set, is available and is the input to our problem.
We note that a trace of memory references will be different during different
runs of a program, if the input to the program changes. For embedded systems,
we assume a representative trace to be one that is obtained by concatenating
traces obtained from different runs of the program using typical input data.
Our technique can be applied to the representative trace in order to arrive at
an indexing scheme that is ideal for the kinds of input the device may receive.

In an exhaustive approach, one can find an optimal set of index bits by
enumerating all possible combinations, integrating the processor and cache

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

8 • Tony Givargis

accordingly, and simulating the application trace while keeping track of the
one combination resulting in minimum misses. Such an approach is clearly not
tractable as the number of combinations is very large for all interesting cases.
For example, assume a 32-bit processor connected to an 8192 bytes two-way set
associative cache with line size equal to four bytes. Using Eq. (3), we compute
K = 10. Further, using Eq. (4), we compute the number of possible cache index
sets to be over 64 million.

3.2 NP-Completeness

We show that the problem of optimal cache indexing belongs to the NP-complete
class of problems. Our proof is by reduction from the set cover NP-complete
problem [Gurari 1989]. In the set cover problem, we are given a set of sets S
over some universe U and a number k. We compute yes if some k-sized subfamily
C of S has the same union as U and no otherwise. Recall that in the optimal
cache indexing problem, we have a sequence of memory addresses T , a number
k, and a number m. We compute yes if it is possible to choose k of the memory
address bits so that a direct mapped cache with size 2k causes m cache misses
on the sequence T and no otherwise. These two problems are defined as follows:

Set Cover Instance:
Input: S = {S1, S2...Sn} over the universe U = {1, 2...l }, that is, Si ⊆ U
Input: An integer k
Question: Does C = {C1, C2...Ck} (Ci ∈ S) exist such that

⋃
i=1..k Ci = U?

Optimal Cache Indexing Instance:
Input: A sequence of memory addresses T
Input: Integers k and m
Question: Does there exist k index bits in a direct mapped 2k cache causing

m misses on T?

THEOREM 1. Optimal cache indexing ∈ class NP-complete.

PROOF. In our proof strategy, we first show that the problem of optimal cache
indexing belongs to the NP class of problems, that is, optimal cache indexing ∈
NP. Then, we show that the problem of set cover is reducible to the problem
of optimal cache indexing in linear time, that is, set cover ≤P optimal cache
indexing.

To show that optimal cache indexing ∈ NP, we nondeterministically select
k bits as the cache index set, configure a 2k direct mapped cache simulator
accordingly, and simulate the sequence of memory addresses T . If the number
of cache misses is m we halt and output yes; otherwise, we halt and output no.

To show that optimal cache indexing ∈ NP-hard, we show that set cover ≤P

optimal cache indexing. The reduction is as follows. Let S = {S1, S2, . . . , Sn}
be the set of sets (over a universe U) from the set cover instance. From this
set cover instance, we construct an instance of the optimal cache indexing in
which the memory addresses are n-bit wide. Furthermore, each bit of a memory
address corresponds to one of the members of S (i.e, the least significant bit of
a memory address corresponds to S , the next least significant bit of a memory

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

1

Zero Cost Indexing for Improved Processor Cache Performance • 9

Table I. Constructing a

Sequence of Memory

Addresses (i.e., T)

x ∈ U Address

a1 “0000”

b1 “0001”

a1 “0000”

a2 “0001”

b2 “1011”

a2 “0001”

a3 “0010”

b3 “0111”

a3 “0010”

a4 “0011”

b4 “1111”

a4 “0011”

address corresponds to S and so on). For each set member x in the set cover
instance (i.e., x ∈ U), we create a sequence of three addresses ax → bx →
ax , where ax and bx differ in exactly those bit positions corresponding to sets
containing x. We choose these addresses so that all addresses ax , ay , bx , and by

are distinct for distinct x ∈ U and y ∈ U . The overall sequence of addresses
(i.e., T) is formed by concatenating together all these triples. Finally, we choose
k to be the same as that from the set cover instance (i.e., the number of subsets)
and m = 2/3 × |T | (i.e., m = 2 × the-number-of-triples). This completes the
reduction.

By simulating the optimal cache indexing instance, and within each triple,
we will either get two cache misses (the first ax and bx), or three (also the
second ax). We get two misses if and only if the k chosen address bits include
one corresponding to a set that covers x, so that ax and bx land in different
cache entries. Therefore, there exists a set of k index bits causing m misses if
and only if there exists a size-k set cover.

Let us give a simple example to highlight the reduction outlined in our proof.
Consider the following instance of the set cover problem.

Set Cover Instance:
Input: U = {1, 2, 3, 4}
Input: S = {S1, S2, S3, S4} where S1 = {1, 3}, S2 = {2}, S3 = {3, 4}, and

S4 = {2, 4}
Input: k = 2
Question: Does C = {C1, C2} (C1, C2 ∈ S) exist such that C1 ∪ C2 = U?

In accordance with the reduction outlined in the proof, we create an instance
of the optimal cache indexing problem as follows. For the reduction, we choose
the address width to be 4 bits (i.e., same as |S|). For each member x ∈ U , we
construct a sequence of three addresses ax → bx → ax , as shown in Table I.
Here, we begin by assigning unique binary values to each of a1, a2, a3, and
a4. Then, we obtain the memory addresses bx from the associated ax values

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

2

10 • Tony Givargis

by flipping the bit positions corresponding to sets where x is a member. For
example, since x = 3 is a member of S1 and S3, we need to make b3 different
from a3 in exactly bit positions zero and two. We repeat this for all members of
U and obtain a trace T of size 12. We set m = 2/3 × |T | = 8. When done, we
arrive at the following instance of the optimal cache indexing problem.

Optimal Cache Indexing Instance:
Input: T as shown in Table I
Input: k = 2 and m = 8
Question: Does there exist k = 2 index bits in a direct mapped 22 cache

causing m = 8 misses on T?

Let us now select bits zero and one as the index into our cache. Here, we
note that for the triples corresponding to x = 1, 2, 3 we get exactly two misses
each. In other words, a1/a2/a3 will be a miss, b1/b2/b3 will be a miss, but the
second occurrence of a1/a2/a3 will be a hit (this is because at least one of the
selected index bits will differentiate between the a and b values). However,
for the triples corresponding to x = 4 we get exactly three misses (this is be-
cause the selected index bits will not differentiate between a4 and b4). Thus,
in this case, the total misses will be m = 9. In fact, the only way to arrive
at m = 8 would be to select a pair of index bits that differentiate between
all pairs of a and b. In other words, cover the universe U in the set cover
problem.

3.3 Heuristic Algorithm

Since the problem of optimal cache indexing is NP-complete, we give a heuristic
algorithm that is efficient and performs well when executed on a large number of
typical embedded applications. The first step of the algorithm is simply reading
a trace into memory. We denote the size of the trace as N . The next step is to
reduce the trace to the unique references, denoted as N ′, where N ′ ≤ N . We
next describe the remaining parts of the algorithm.

For each bit in our address space, we compute a corresponding quality mea-
sure. This quality measure is a real number in the range of zero to one. Having
a quality measure of zero would indicate that the bit, if used as an index into a
cache of depth two (i.e., a cache with two addressable data locations), would be
a poor choice, as it would place all the references into a single location in the
cache, thus causing the most number of conflicts. On the other hand, having a
quality measure of one would indicate that the bit, if used as an index into a
cache of depth two, would be a good choice, as it would equally split the refer-
ences among the two cache locations, causing the least number of conflicts. We
compute the quality measure Qi for address bit Ai by taking the ratio of zeros
and ones along the Ath

i column, as shown in Eq. (5):

Qi = min (Zi, Oi)

max (Zi, Oi)
. (5)

In Eq. (5), Zi denotes the number of references having the value zero at
address bit Ai and Oi denotes the number of references having the value one

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 11

Table II. Running Example: A

Striped Trace File

A5 A4 A3 A2 A1 A0

0 1 1 0 1 1

0 0 1 1 0 0

0 0 0 1 1 0

0 1 0 0 1 1

1 0 1 0 1 1

0 0 0 1 0 0

0 1 1 1 0 0

0 0 0 0 1 1

0 0 1 0 1 1

1 0 0 1 0 0

Table III. Running Example:

Quality Measures

Q5 Q4 Q3 Q2 Q1 Q0

1/4 3/7 1 1 2/3 1

at address bit Ai. We further illustrated the concept of quality measure with a
running example. Consider the striped trace shown in Table II.

Applying Eq. (5) to our running example, we compute the quality measures
shown in Table III.

In a particular example, Eq. (6) illustrates the computation of the quality
measure Q4, corresponding to the address bit A4. Note that Z4 = 7 is obtained
by counting the zeros along the A4th column of Table II and O4 = 3 is obtained
by counting the ones along the A4th column of Table II.

Z4 = 7

O4 = 3

Q4 = min (7, 3)

max (7, 3)
= 3

7
. (6)

Next, for each pair of bits in our address space, we compute a corresponding
correlation measure. This correlation measure is a real number in the range of
zero to one. A correlation measure of zero indicates that a pair of address bits
split the unique references in exactly the same way. A correlation measure of one
indicates that a pair of address bits split the unique references in completely
different ways. To illustrate further, Figure 2(a) and Figure 2(b) pictorially
depict how A0 and A2 split the trace shown in Table II. Note that according to
our quality measure, both A0 and A2 are ideal indices to use in a cache of depth
two (i.e., a cache with two addressable data locations). Now consider the case
where we have a cache of depth four (i.e., a cache with four addressable data
locations), thus needing a pair of indices. If we use A0 and A2, the trace would
be split into the four cache locations as shown in Figure 2(c). Note that even
though the cache has four addressable data locations, only two slots receive
the references, and the other two slots remain unused. The reason for this is
that A0 and A2 are correlated. From looking at the trace, we can see that A2

is simply the complement of A0. In such a case, we would have a correlation

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

12 • Tony Givargis

Fig. 2. Correlation Measures: (a) A0 Used as Index, (b) A2 Used as Index, and (c) A0 and A2 Used

as Indices.

Table IV. Running Example:

Correlation Measures

A5 A4 A3 A2 A1 A0

A5 0 1 1 1 2/3 1

A4 1 0 2/3 2/3 1 2/3

A3 1 2/3 0 2/3 1 2/3

A2 1 2/3 2/3 0 1/9 0

A1 2/3 1 1 1/9 0 1/9

A0 1 2/3 2/3 0 1/9 0

measure Ci, j equal to zero. In general, we can compute the correlation Ci, j , for
address bits Ai and Aj as shown in Eq. (7).

Ci, j = min (Ei, j , Di, j)

max (Ei, j , Di, j)
. (7)

In Eq. (7), Ei, j denotes the number of references having identical values at
address bits Ai and Aj . Likewise, Di, j denotes the number of references having
different values at address bits Ai and Aj . Applying Eq. (7) to our running
example, we compute the correlation measures shown in Table IV.

In a particular example, Eq. (8) illustrates the computation of the correlation
measure C2,3, corresponding to the address bits A2 and A3. Note that E2,3 = 4
is obtained by counting the number of bits that have the same values along the
A2nd and A3rd columns of Table II. Likewise, D2,3 = 6 is obtained by counting
the number of bits that have different values along the A2nd and A3rd columns
of Table II

E2,3 = 4

D2,3 = 6

C2,3 = min (4, 6)

max (4, 6)
= 2

3
. (8)

In the last step of the algorithm, we use the quality measures along with the
correlation measures to compute the near-optimal index ordering as shown in
Algorithm 1.

Algorithm 1 repeatedly selects an address bit with the highest corresponding
quality measure and then updates the quality measures using the correlation
measures. For the running example shown in Table II and quality/correlation

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 13

Algorithm 1. Computes Near-optimal Index Ordering

1: Input: M {the size of the address space}
2: Input: Q M−1...Q0 and CM−1,M−1...C0,0 {quality and correlation measures}
3: S ← ∅

4: for i ← 0 to M − 1 do
5: Abest ← max (Q M−1...Q0)|Abest /∈ S
6: S ← S ∪ Abest
7: for j ← 0 to M − 1 do
8: Q j ← Q j ∗ Cbest, j
9: end for

10: print Abest
11: end for

Table V. Running Example: Quality Measures Recomputed After the First Iteration

of Algorithm 1

Q5 Q4 Q3 Q2 Q1 Q0

1/4∗1 = 1/4 3/7∗2/3 = 6/21 1∗2/3 = 2/3 1∗0 = 0 2/3∗1/9 = 2/27 1∗0 = 0

measures computed in Table III and Table IV, Algorithm 1 first selects A0 as the
best index bit (ties are broken in an arbitrary manner) and updates the quality
measures Q M−1 · · · Q0 by multiplying with C0,M−1, C0,M−2 · · · C0,0 to obtain a
new set of quality measures, as illustrated in Table V. Next, having the largest
quality measure, the algorithm selects A3, and updates the quality measures
again, etc. On termination, Algorithm 1 prints A0, A3, A5, A4, A1, and A2,
in that order. This ordering defines a near-optimal solution to the problem of
cache indexing. Subsequently, to build a cache of depth two (i.e., a cache with
two addressable data locations) we choose A0. To build a cache of depth four
(i.e., one with four addressable data locations) we choose A0 and A3, and so on.

3.4 Time Complexity and Further Remarks

In terms of running time complexity, our heuristic takes O(N × log2 N) to exe-
cute, where N is the size of the original memory trace. This time complexity is
computed as follows. Reading the trace takes O(N), as the length of the origi-
nal trace is N . Reducing the trace down to only the unique references involves
what amounts to sorting the trace and thus takes O(N × log2 N). Computing
the quality and correlation measures takes O(N ′), where N ′ ≤ N is the number
of unique references, as a single pass over the unique references is needed to
compute these values. The final phase (i.e., Algorithm 1) takes O(M 2) where
M is the size of the processor address space (i.e, the width of the address bus).
Since, in most instances M is a small integer like 16, 32, or 64, we assume it
to be constant. Therefore, Algorithm 1 executes in O(1) time. Thus, the overall
heuristic algorithm executes in time O(N × log2 N).

In an implementation of the above-mentioned heuristic, the entire memory
trace does not need to be loaded into memory prior to striping it down to the
unique references. Instead, a set data structure can be used to track unique ref-
erences during a single pass over the original trace. Thus, the space complexity
of our heuristic is bounded by O(N ′), where N ′ ≤ N is the number of unique
references. It is reasonable to assume that in most cases N ′ � N . As a result,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

14 • Tony Givargis

Table VI. Results for Powerstone Data Caches

Benchmark Refs Unique Refs Improved Cache Index Mappings

adpcm 18431 381 4,6,8,9,5,7,12,10,11,13

bcnt 456 162 6,4,5,9,7,8,14,15,10,3

blit 4088 2027 4,5,14,6,7,8,9,10,11,12

compress 58250 8906 6,9,8,5,4,7,12,10,14,11

crc 2826 603 4,7,6,3,5,9,11,8,10,2

des 20162 2241 5,4,7,8,6,9,10,14,11,15

engine 211106 225 4,10,17,7,9,5,8,6,3,2

fir 5608 146 7,4,5,8,6,2,9,10,11,22

g3fax 229512 3781 7,2,4,3,6,22,12,8,5,9

jpeg 1311693 39302 8,4,6,5,7,10,11,9,12,14

pocsag 13467 515 4,7,5,6,2,10,8,3,9,11

qurt 503 84 4,10,5,6,7,8,9,11,15,2

ucbqsort 61939 1144 6,5,8,9,10,4,7,11,16,19

v42 649168 23942 6,9,4,7,5,8,10,11,12,13

the effective execution time of our heuristic is linear with respect to the size of
the trace.

We note that our heuristic only looks at the address patterns and not the se-
quence or frequency of memory reference occurrences. Furthermore, our heuris-
tic is by no means optimal, but it performs well and runs very efficiently as
supported by our experimental results. In fact, our experiments with alternate
heuristics that take into account the frequency of occurrence of memory refer-
ences or sequence of memory references have resulted in marginal (and some-
times negative) performance improvements when compared to the presented
indexing scheme.

It is important to note that our heuristic will converge to a random selection
of index bits in the unlikely scenario where each memory location is accessed at
least once. In such cases, one can limit the trace to the segment corresponding
to the time critical regions of the code.

4. EXPERIMENTS

For experiments, we have used the Powerstone-embedded benchmarks [Malik
et al. 2000; PowerStone 1999] as well as the integer SPEC CPU 2000 general
benchmarks [SPEC’00 2000]. The PowerStone benchmarks include a JPEG
decoder called jpeg, a modem protocol processor called v42, a Unix compression
utility called compress, a CRC checksum algorithm called crc, an encryption
algorithm called des, an engine controller called engine, an FIR filter called fir,
a group three fax decoder called g3fax, a sorting algorithm called ucbqsort, a
rendering algorithm called blit, a POCSAG communication protocol for paging
called pocsag, and a few other typical embedded applications.

4.1 Benchmark Results

We have compiled and executed each benchmark application on a MIPS R3000
simulator, instrumented to output memory reference traces for both instruction
and data accesses. We have run the traces through our heuristic algorithm to
obtain improved cache index mappings. Results for data caches are show in
Table VI and Table VII for Powerstone and SPEC’00 benchmarks, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 15

Table VII. Results for SPEC’00 Data Caches

Benchmark Refs Unique Refs Improved Cache Index Mappings

bzip2 40.1G 91.4M 17,8,14,19,18,28,16,22,23,7

crafty 70.2G 1.94M 8,9,10,15,16,20,11,19,21,14

eon 38.8G 0.559M 22,10,14,11,2,6,7,9,5,19

gap 80.9G 67.3M 20,19,21,12,11,17,6,8,25,15

gcc 25G 161M 18,24,6,13,25,8,20,3,7,15

gzip 24.8G 89.8M 16,20,8,18,23,26,14,13,2,3

mcf 23.1G 198M 16,27,7,28,12,17,14,4,21,5

parser 191G 38.2M 18,10,17,16,6,7,4,8,25,13

perlbmk 18.6G 77.2M 19,18,6,28,7,11,3,22,20,13

twolf 112G 5.73M 17,24,25,6,16,23,5,9,11,3

vortex 48.2G 76.2M 7,25,23,11,16,3,26,12,28,22

vpr 37.1G 51.7M 18,14,7,12,11,26,25,10,22,4

Table VIII. Results for Powerstone Instruction Caches

Benchmark Refs Unique Refs Improved Cache Index Mappings

adpcm 63255 611 2,3,8,5,7,4,6,9,12,10

bcnt 1337 115 2,3,4,5,6,7,8,11,9,0

blit 22244 149 2,3,4,5,10,7,8,9,11,12

compress 137832 731 3,2,7,4,11,5,8,6,10,9

crc 37084 176 2,3,4,6,11,7,9,10,12,8

des 121648 570 2,3,7,4,5,8,12,9,10,11

engine 409936 244 2,3,4,5,7,10,8,6,11,12

fir 15645 327 7,2,3,8,4,5,6,9,11,12

g3fax 1127387 220 2,4,3,6,5,8,7,9,12,13

jpeg 4594120 623 2,3,5,4,8,6,7,13,14,10

pocsag 47840 560 2,6,3,5,4,10,9,8,7,11

qurt 1044 179 2,3,5,4,8,6,10,9,7,11

ucbqsort 219710 321 2,3,5,4,6,12,13,8,7,10

v42 2441985 656 2,3,8,12,13,5,6,4,7,9

Table IX. Results for SPEC’00 Instruction Caches

Benchmark Refs Unique Refs Improved Cache Index Mappings

bzip2 109G 0.00487M 7,8,9,10,13,14,15,16,12,6

crafty 192G 0.16M 12,13,14,15,18,19,20,21,5,6

eon 80.6G 0.206M 18,19,20,21,2,3,4,5,6,12

gap 214G 0.123M 3,4,5,6,13,14,15,16,11,12

gcc 46.1G 0.986M 18,19,20,21,14,15,16,17,12,13

gzip 844G 0.00486M 5,6,7,8,2,3,4,11,12,13

mcf 61.9G 0.0475M 9,10,11,12,8,13,14,15,16,7

parser 547G 0.105M 9,10,11,12,16,17,18,19,5,6

perlbmk 41.1G 0.328M 2,3,4,5,17,18,19,20,6,7

twolf 346G 0.177M 16,17,18,19,2,3,4,5,6,9

vortex 119G 0.358M 17,18,19,20,4,5,6,7,8,9

vpr 84.3G 0.156M 18,19,20,21,2,3,4,5,15,16

Results for instruction caches are shown in Table VIII and Table IX for Power-
stone and SPEC’00 benchmarks, respectively. The last column of these tables
shows the computed, near-optimal, index mapping. The values are ordered from
left to right (i.e., the leftmost number denotes the best address bit, the second
leftmost number denotes the second best address bit, etc.).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

16 • Tony Givargis

Table X. Cache Miss Results for Powerstone Data Caches

Conf. A Conf. A Conf. B Conf. B Conf. C Conf. C

Benchmark (T) (P) (T) (P) (T) (P)

adpcm 5193 4175 2181 1813 621 542

bcnt 164 164 156 154 147 140

blit 4034 3022 4025 3078 4038 3106

compress 12659 7772 9603 6414 7861 5671

crc 694 416 485 303 228 154

des 15155 13360 12849 12239 10523 10179

engine 7131 4479 3482 2277 132 94

fir 658 637 139 139 136 134

g3fax 127828 92503 65143 48855 35158 26940

jpeg 267567 191542 169490 129399 79258 61757

pocsag 1238 757 530 355 268 192

qurt 115 98 77 68 73 65

ucbqsort 10862 7955 3309 2463 804 643

v42 157469 150021 111108 107441 87592 87592

Table XI. Cache Miss Results for SPEC’00 Data Caches

Conf. A Conf. A Conf. B Conf. B Conf. C Conf. C

Benchmark (T) (P) (T) (P) (T) (P)

bzip2 3.15M 1.74M 1.39M 1.25M 1.07M 0.989M

crafty 15.8M 10.9M 8.46M 6.68M 3.20M 3.04M

eon 2.97M 2.8M 1.27M 0.874M 0.288M 0.282M

gap 5.45M 4.53M 1.43M 0.985M 0.886M 0.744M

gcc 1.69M 1.51M 1.15M 1.07M 1.04M 0.898M

gzip 3.64M 3.46M 2.81M 2.45M 2.30M 2.14M

mcf 7.81M 6.64M 7.31M 5.78M 7.18M 6.32M

parser 22.9M 14.4M 11.2M 10.7M 6.65M 5.65M

perlbmk 1.71M 1.03M 0.571M 0.462M 0.340M 0.309M

twolf 8.95M 6.71M 2.96M 2.07M 1.48M 1.29M

vortex 7.25M 6.53M 4.52M 4.25M 3.47M 3.02M

vpr 6.62M 4.77M 3.41M 2.63M 2.02M 1.67M

We have simulated the traces under three typical cache organization
schemes. Configuration A with 4-Kb, direct mapped, and 4-byte line; config-
uration B with 8-Kb, 2-way, and 8-byte line; and configuration C with 16-Kb,
4-way, and 16-byte line. For each of the three cache configurations, we have
measured the number of misses when traditional (T) cache indexing as well
as when the proposed (i.e., improved) (P) cache indexing is used. Results for
data caches are shown in Table X and Table XI for Powerstone and SPEC’00
benchmarks, respectively. Results for instruction caches are shown in Table XII
and Table XIII for Powerstone and SPEC’00 benchmarks, respectively.

On the average, for the data traces, the improved cache indexing achieved
23%, 19%, and 14% reduction in cache misses, for cache configurations A, B,
and C, respectively, as shown in Figure 3 and Figure 4. In some cases, the
reduction in misses was up to 45% for data traces. On the average, for the
instruction traces, the improved cache indexing achieved 14%, 10%, and 7.7%
reduction in cache misses, for cache configurations A, B, and C, respectively, as
shown in Figure 5 and Figure 6. In some cases the reduction in misses was up

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 17

Table XII. Cache Miss Results for Powerstone Instruction Caches

Conf. A Conf. A Conf. B Conf. B Conf. C Conf. C

Benchmark (T) (P) (T) (P) (T) (P)

adpcm 23392 22204 2824 2691 159 148

bcnt 115 115 58 58 31 30

blit 149 122 75 66 40 37

compress 4435 4054 383 357 199 153

crc 176 147 90 75 49 34

des 23113 21938 5993 5889 146 144

engine 244 226 125 114 65 61

fir 1566 1548 167 167 87 87

g3fax 220 197 112 105 58 52

jpeg 26097 23072 314 286 159 140

pocsag 3730 3221 311 232 148 131

qurt 179 170 91 86 50 47

ucbqsort 30629 28352 166 148 87 78

v42 555022 536798 51230 50613 171 166

Table XIII. Cache Miss Results for SPEC’00 Instruction Caches

Conf. A Conf. A Conf. B Conf. B Conf. C Conf. C

Benchmark (T) (P) (T) (P) (T) (P)

bzip2 8.58M 6.09M 3.78M 3.17M 2.92M 2.83M

crafty 43.2M 37.5M 23.1M 18.5M 8.77M 8.59M

eon 6.18M 5.75M 2.63M 2.11M 0.597M 0.550M

gap 14.4M 10.7M 3.78M 3.59M 2.34M 2.13M

gcc 3.12M 2.53M 2.13M 2.09M 1.92M 1.77M

gzip 124M 102M 95.8M 88.1M 78.2M 72.0M

mcf 20.9M 15.5M 19.6M 18.8M 19.2M 19.0M

parser 65.6M 46.6M 32.2M 28.3M 19.0M 18.1M

perlbmk 3.78M 2.99M 1.26M 1.05M 0.751M 0.676M

twolf 27.7M 23.0M 9.16M 7.51M 4.56M 4.29M

vortex 17.9M 14.5M 11.2M 10.8M 8.56M 7.96M

vpr 15.1M 10.8M 7.75M 6.35M 4.58M 4.49M

to 31% for instruction traces. For smaller caches, or larger application bench-
marks, a larger reduction was observed. Moreover, the technique benefited
data caches more than instruction caches.

In Table XIV and Table XV, we have summarized all the data reported thus
far. Specifically, we have averaged the number of instruction and data cache
among all three configurations (i.e., configuration A, B, and C). Moreover, we
have used the Wattch simulator [Tiwari and Martonosi 2000] to obtain perfor-
mance and energy figures. As predicted, our results show that both performance
(i.e., execution time) and power are improved when a near-optimal cache index-
ing scheme is used.

4.2 Effects of Input Data on Near-Optimal Cache Indexing

In the next set of experiments, we have measured the effects of input data vari-
ation (i.e., variation on data fed to the benchmark applications) on data access
pattern, control flow, and the resulting impact on the near-optimal cache in-
dexing scheme. For these experiments we have simulated the traces under a

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

18 • Tony Givargis

Fig. 3. Powerstone data cache miss reduction.

Fig. 4. SPEC’00 data cache miss reduction.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 19

Fig. 5. Powerstone instruction cache miss reduction.

Fig. 6. SPEC’00 instruction cache miss reduction.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

20 • Tony Givargis

Table XIV. Averaged Results for the Powerstone Benchmarks

Misses Misses Perf. Perf. Energy Energy

Benchmark (T) (P) (T) (P) (T) (P)

adpcm 11456 10524 1.23ms 1.15ms 0.655nJ 0.608nJ

bcnt 223 220 25.0us 24.0us 13.7pJ 13.1pJ

blit 4120 3143 431us 350us 0.232nJ 0.184nJ

compress 11713 8140 1.63ms 1.33ms 0.782nJ 0.603nJ

crc 574 376 181us 164us 69.1pJ 59.2pJ

des 22593 21249 2.36ms 2.24ms 1.27nJ 1.20nJ

engine 3726 2417 2.38ms 2.27ms 0.807nJ 0.742nJ

fir 917 904 147us 146us 67.0pJ 66.0pJ

g3fax 76173 56217 10.9ms 9.21ms 5.17nJ 4.17nJ

jpeg 180961 135398 34.8ms 31.ms 15.0nJ 12.7nJ

pocsag 2075 1629 377us 340us 0.165nJ 0.143nJ

qurt 195 178 21.0us 20.0us 11.0pJ 10.0pJ

ucbqsort 15285 13213 2.21ms 2.04ms 1.05nJ 0.942nJ

v42 320864 310877 37.ms 36.2ms 19.1nJ 18.6nJ

Table XV. Averaged Results for the SPEC’00 Benchmarks

Misses Misses Perf. Perf. Energy Energy

Benchmark (T) (P) (T) (P) (T) (P)

bzip2 6963333 5356333 5.55s 5.42s 1.73uJ 1.68uJ

crafty 34176666 28403333 11.6s 11.1s 3.82uJ 3.62uJ

eon 4645000 4122000 4.37s 4.32s 1.36uJ 1.34uJ

gap 9428666 7559666 10.6s 10.5s 3.28uJ 3.21uJ

gcc 3683333 3289333 2.68s 2.64s 0.84uJ 0.83uJ

gzip 102250000 90050000 37.5s 36.5s 12.3uJ 11.8uJ

mcf 27333333 24013333 5.11s 4.83s 1.81uJ 1.69uJ

parser 52516666 41250000 29.0s 28.0s 9.22uJ 8.82uJ

perlbmk 2804000 2172333 2.22s 2.17s 0.70uJ 0.67uJ

twolf 18270000 14956666 16.8s 16.5s 5.22uJ 5.10uJ

vortex 17633333 15686666 7.04s 6.88s 2.29uJ 2.22uJ

vpr 13160000 10236666 5.14s 4.90s 1.67uJ 1.57uJ

cache configuration with 4 Kb, direct mapped, and 4-byte line. For each bench-
mark, we have selected four input data sets I1, I2, I3, and I4. (Input data set
I1 corresponds to the default input data set used in our earlier experiments.)
Results for data cache misses are shown in Table XVI and Table XVII for Pow-
erstone and SPEC’00 benchmarks, respectively. Results for instruction cache
misses are shown in Table XVIII and Table XIX for Powerstone and SPEC’00
benchmarks, respectively.

The results are summarized as follows. For each benchmark, we selected the
near-optimal cache indexing scheme computed using the default input data set
I1. Then, without changing the near-optimal cache indexing scheme, we ran the
benchmarks using the additional input data sets I2, I3, and I4. The presented
results show the percent increase or decrease in cache misses relative to the
default input data set I1.

The results show that for the embedded applications (i.e., most of the Power-
stone benchmarks) the effects of input data variation on the near-optimal cache
indexing is minimal. For the desktop applications (i.e., most of the SPEC’00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 21

Table XVI. Cache Miss Results, using Different Input Data,

for Powerstone Data Caches

Benchmark I1 I2 I3 I4

adpcm 5193 1.67% −0.72% 3.75%

bcnt 164 0.44% 3.42% 4.50%

blit 4034 0.00% 0.00% 0.00%

compress 12659 4.92% 1.89% 0.77%

crc 694 0.00% 0.00% 0.00%

des 15155 −0.10% 3.85% −0.06%

engine 7131 1.00% 0.13% 0.31%

fir 658 2.01% 0.69% 1.34%

g3fax 127828 4.11% 1.27% 4.55%

jpeg 267567 0.55% 0.01% 0.35%

pocsag 1238 4.07% 2.27% 0.70%

qurt 115 1.29% 2.23% 5.38%

ucbqsort 10862 3.48% 7.06% 4.62%

v42 157469 −0.10% 1.06% 2.91%

Table XVII. Cache Miss Results, using Different Input

Data, for SPEC’00 Data Caches

Benchmark I1 I2 I3 I4

bzip2 3.15M 6.37% −2.83% 13.56%

crafty 15.8M 1.61% 15.23% 16.35%

eon 2.97M 10.07% 1.76% 3.34%

gap 5.45M 18.20% 8.53% 3.81%

gcc 1.69M 1.24% 20.26% 16.24%

gzip 3.64M −0.24% 17.15% 0.23%

mcf 7.81M −1.32% 11.17% 2.38%

parser 22.9M 7.44% 3.09% 5.85%

perlbmk 1.71M 15.30% 5.93% 16.70%

twolf 8.95M 2.24% 8.96% 19.63%

vortex 7.25M 15.15% 10.40% 3.35%

vpr 6.62M 4.83% 10.11% 19.97%

Table XVIII. Cache Miss Results, using Different Input

Data, for Powerstone Instruction Caches

Benchmark I1 I2 I3 I4

adpcm 23392 2.70% −0.51% 5.01%

bcnt 115 0.61% 6.42% 6.04%

blit 149 0.00% 0.00% 0.00%

compress 4435 6.88% 3.87% 1.39%

crc 176 0.00% 0.00% 0.00%

des 23113 0.11% 7.26% 0.08%

engine 244 −0.20% 0.03% 0.01%

fir 1566 2.82% 1.35% 2.14%

g3fax 220 5.95% 3.04% 6.16%

jpeg 26097 1.20% 3.84% 7.24%

pocsag 3730 5.86% 4.95% 1.22%

qurt 179 1.91% 4.65% 7.36%

ucbqsort 30629 1.00% 0.41% 6.27%

v42 555022 −0.06% 1.99% 3.98%

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

22 • Tony Givargis

Table XIX. Cache Miss Results, using Different Input

Data, for SPEC’00 Instruction Caches

Benchmark I1 I2 I3 I4

bzip2 8.58M 5.15% −0.71% 11.90%

crafty 43.2M 1.28% 14.24% 14.47%

eon 6.18M 7.98% 1.67% 3.24%

gap 14.4M 14.43% 8.75% 4.81%

gcc 3.12M 1.03% 17.78% 14.09%

gzip 124M −0.13% 16.11% 0.81%

mcf 20.9M −0.95% 11.25% 2.94%

parser 65.6M 5.90% 3.02% 6.58%

perlbmk 3.78M 12.19% 7.10% 14.99%

twolf 27.7M 1.89% 8.55% 17.64%

vortex 17.9M 12.06% 11.34% 4.07%

vpr 15.1M 3.86% 10.56% 18.25%

Table XX. Cache Miss Results for Powerstone Unified Cache

Benchmark Traditional (T) Improved (P) Difference (%)

adpcm 24678 24678 0.0%

bcnt 278 258 7.2%

blit 4095 2967 27.5%

compress 16066 10949 31.8%

crc 762 540 29.1%

des 36168 34325 5.1%

engine 6035 4608 23.6%

fir 2125 2020 4.9%

g3fax 115029 91613 20.4%

jpeg 263525 202692 23.1%

pocsag 4276 3780 11.6%

qurt 291 267 8.2%

ucbqsort 40361 36291 10.1%

v42 612380 612380 0.0%

benchmarks), the effects of input data variation on the near-optimal cache in-
dexing is more pronounced. In a particular example, gcc behaved very differ-
ently in both control and data cache performance with different input data set,
which consisted of compiling different C/C++ programs. On the other hand, jpeg
behaved with little variation in both control and data cache performance regard-
less of the input data set, which consisted of decoding different jpeg images.

4.3 Near-Optimal Cache Indexing Applied to Unified Caches

In the next set of experiments, we have applied our near-optimal cache index-
ing scheme to unified caches. For these experiments, we have simulated the
traces under a cache configuration with 8 Kb, direct mapped, and 4-byte line.
This particular cache configuration corresponds to a cache that is as large as
the combined instruction and data caches of our earlier experiments (configu-
ration A) on split cache architectures. Results are summarized in Table XX and
Table XXI for Powerstone and SPEC’00 benchmarks respectively. The tables
provide the number of cache misses under a traditional (T) indexing scheme,
the number of cache misses under an improved (P) indexing scheme, and the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 23

Table XXI. Cache Miss Results for SPEC’00 Unified Cache

Benchmark Traditional (T) Improved (P) Difference (%)

bzip2 9.41M 7.38M 21.6%

crafty 58.4M 44.3M 24.1%

eon 7.61M 7.61M 0.0%

gap 17.9M 13.9M 22.7%

gcc 4.55M 3.97M 12.6%

gzip 111M 98.0M 11.6%

mcf 26.6M 21.0M 21.2%

parser 84.8M 58.5M 31.1%

perlbmk 4.73M 3.96M 16.1%

twolf 33.6M 28.7M 14.6%

vortex 22.4M 20.0M 10.5%

vpr 21.1M 15.4M 27.0%

percent difference (using the traditional (T) indexing scheme as the reference
point).

Our results show an average improvement of 14.5% for the Powerstone
benchmarks and an average improvement of 15.2% for the SPEC’00 bench-
marks.

4.4 Final Remarks

We conclude this section by making some final remarks about our experiments
and the obtained results.

—Not in all cases did our heuristic algorithm obtain an indexing scheme that
was better (or significantly better) than the traditional indexing scheme. For
example, Figure 3 to Figure 6, as well as Table XX and Table XXI show a few
instances where the miss reduction was reported to be zero. In such cases,
we were able to apply an alternate search heuristic (based on a simulated
annealing greedy algorithm) that was able to obtain some indexing scheme
better than the traditional. However, the run time of the search heuristic was
impractical in practice (e.g., taking many days to run on smaller benchmarks
and much long on larger benchmarks). Therefore, we conclude that the near-
optimal cache indexing technique is always feasible, however our heuristic
could be improved further.

—Based on our results, the average improvement was better for split
data/instruction cache architecture than for unified cache architecture. How-
ever, in both architectures the improvement was significantly better than the
traditional indexing scheme.

—The particular input data used when running a benchmark application to
obtain a trace file can have an impact on the final indexing scheme that is
selected. However, for most embedded benchmarks (i.e., those from Power-
stone), a cache indexing scheme obtained from a particular input data set
performed well when the application was simulated using alternate input
data sets, as shown in Table XVI and Tale XVIII. However, for desktop ap-
plications (i.e., those from SPEC’00), the results showed a larger deviation
from the near-optimal solution, as shown in Table XVII and Table XIX.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

24 • Tony Givargis

—In terms of absolute performance and energy, as reported in Table XIV and
Table XV, we note that significant improvements are achievable by applying
our technique.

5. CONCLUSION

We have proposed a zero-cost technique for improving cache performance in
embedded systems as well as mobile and portable general-purpose devices that
execute a known application set. Our technique involves selecting an near-
optimal set of bits used for indexing into the cache. While an optimal selection
of index bits is shown to be NP-complete, we have provided an efficient heuris-
tic algorithm for computing a near-optimal indexing scheme. This heuristic
algorithm computes in polynomial time and produces good results, as demon-
strated by experiments on a large number of Powerstone and SPEC’00 bench-
marks. Specifically, for data traces, our technique achieves up to 45% reduction
in cache misses. Likewise, for instruction traces, our technique achieves up to
31% reduction in cache misses. When a unified data/instruction cache architec-
ture is considered, our results show an average improvement of 14.5% for the
Powerstone benchmarks and an average improvement of 15.2% for the SPEC’00
benchmarks.

In the future, we plan to investigate cache indexing schemes that may incur
some constrained cost and analyze the tradeoffs in terms of improved hit rate
versus increased cache access time. For example, we may consider cache in-
dexing schemes that use one, two, or n-level logic. We also plan to investigate a
dynamic approach to cache indexing by using a reprogrammable crossbar along
the processor/cache and cache/memory buses, enabling on-the-fly swapping of
cache address wires by a task or an operating system.

ACKNOWLEDGMENTS

The author would like to thank Gopi Meenakshisundaram and David Eppstein
for their contributions to this work.

REFERENCES

ABELLA, J., GONZALEZ, A., LIOSA, J., AND VERA, X. 2002. Near-optimal loop tiling by means of cache

miss equations and genetic algorithms. In Proceedings of the International Conference on Parallel
Processing Workshops (Washington, DC). IEEE Computer Society Press, Los Alamitos, CA, 568–

580.

BALASUBRAMONIAN, R., ALBONESI, D., BUYUKTOSUNOGLU, A., AND DWARKADAS, S. 2000. Memory hier-

archy reconfiguration for energy and performance in general-purpose processor architectures. In

Proceedings of the International Symposium on Microarchitecture. ACM, New York, 245–257.

CORMAN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. 2001. Introduction to Algorithms, 2 ed. The

MIT Press and McGraw-Hill, Cambridge, MA.

DING, C. AND KENNEDY, K. 1999. Improving cache performance in dynamic applications through

data and computation reorganization at run time. In Proceedings of the Conference on Program-
ming Language Design and Implementation. ACM, New York, 229–241.

GRUN, P., DUTT, N., AND NICOLAU, A. 2000. Memory aware compilation through accurate timing

extraction. In Proceedings of the Design Automation Conference. ACM, New York, 316–321.

GRUN, P., DUTT, N., AND NICOLAU, A. 2001. Aggressive memory-aware compilation. In Intelligent
Memory Systems. Springer-Verlag, London, UK, 147–151.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Zero Cost Indexing for Improved Processor Cache Performance • 25

GURARI, E. 1989. An introduction to the theory of computation. McGraw-Hill, New York.

HUANG, Q., XUE, J., AND VERA, X. 2003. Code tiling for improving the cache performance of pde

solvers. In Proceedings of the International Conference on Parallel Processing. ACM, New York,

615–626.

ITRS. 2005. Technology roadmap for semiconductors. http://www.itrs.com.

KOZYRAKIS, C. AND PATTERSON, D. 1998. A new direction for computer architecture research. IEEE
Comput. 31, 11, 24–32.

MALIK, A., MOYER, B., AND CERMAK, D. 2000. A low power unified cache architecture providing

power and performance flexibility. In Proceedings of the Symposium on Low Power Electronics
and Design. ACM, New York, 241–243.

PANDA, P., NAKAMURA, H., DUTT, N., AND NICOLAU, A. 1997. Improving cache performance through

riling and data alignment. In Proceedings of the Workshop on Parallel Algorithms for Irregularly
Structured Problems. ACM, New York, 167–185.

PATTERSON, D. AND HENNESSY, J. 1997. Computer Organization and Design: The Hardware/
Software Interface, 2 ed. Morgan-Kaufmann, San Francisco, CA.

PETROV, P. AND ORAILOGLU, A. 2001. Towards effective embedded processors in codesigns: Cus-

tomizable partitioned caches. In Proceedings of the International Conference on Hardware/
Software Codesign. ACM, New York, 79–84.

POWERSTONE. 1999. The powerstone benchmarks. www.motorola.com.

RIVERA, G. AND TSENG, C.-W. 1997. Compiler optimizations for eliminating cache conflict misses.

Tech. Rep. CS-TR-3819, University of Maryland.

SPEC’00. SPEC CPU 2000. http://www.spec.org.

SU, C. L. AND DESPAIN, A. 1995. Cache design trade-offs for power and performance optimization: A

case study. In Proceedings of the International Symposium on Low Power Electronics and Design.

ACM, New York, 63–68.

SUZUKI, K., ARAI, T., KOUHEI, N., AND KURODA, I. 1998. V830R/Av: Embedded multimedia super-

scalar RISC processor. IEEE Micro 18, 2, 36–47.

TIWARI, B. AND MARTONOSI, M. 2000. Wattch: A framework for architecture-level power analysis

and optimization. In Proceedings of the Symposium on Computer Architecture. ACM, New York,

83–94.

VAHID, F. AND GIVARGIS, T. 1999. The case for a configure-and-execute paradigm. In Proceedings
of the International Conference on Hardware/Software Codesign. ACM, New York, 59–63.

WONG, S., VASSILIADIS, S., AND COTOFANA, S. 2004. Future directions of (programmable and recon-

figurable) embedded processors. In Domain-Specific Processors: Systems, Architecture, Modeling,
and Simulation. Marcel Dekker, Inc., London, UK, 235–257.

Received February 2004; revised February 2005; accepted May 2005

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

