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Abstract

This paper addresses the synthesis of labyrinthine and maze struc-
tures, which are represented as curves on 2D manifolds. The curves
evolve based on a simulation controlled by spatially varying param-
eters defined by texture maps. We introduce the graphics commu-
nity to the fascinating area of maze art and present a model for the
automatic generation of organic looking labyrinths and mazes. We
also present a framework based on regions and patterns for the inter-
active artistic control of NPR algorithms, such as ours, that evolve
in both space and time. In the context of labyrinths, the framework
provides the designer with control over both the path complexity
and visual aesthetics as the curves evolve. The resulting labyrinths
and mazes range from mathematically simple to intricately complex
visual structures. Applications of the resulting curves include NPR,
difficult to counterfeit imagery, environmental design and architec-
ture, computer games and 1D parameterization of 2D manifolds.

CR Categories: 1.3.3 [Computer Graphics]: Curve Generation

Keywords: Labyrinths, Mazes, NPR, Computer Games

1 Introduction

We shall not cease from exploring, and the end of all our exploring,
will be to arrive where we started, and know the place for the first time. -7.S.Eliot.

Labyrinths are arguably mankind’s first creation borne purely of
human imagination. Today, labyrinths and mazes cradle millennia
of legend and folklore in their twisted articulations. Labyrinth and
maze imagery has at different periods of time in various parts of the
world been associated with all aspects of human life. It has been
used as a symbol of fertility and birth, as well as one of purgatory
and death. It has religious and meditative importance in Hindu,
Christian, Islamic, Buddhist and Shamanic rituals [Conty 2002].

Physical labyrinths and mazes have served as athletic or battle fields
as much as they have been used as sacrificial altars. Hedge and top-
iary mazes like the Hampton Court maze (see Figure 2b) have dec-
orated gardens and palaces for centuries [Kern 1995]. The diameter
of the famous 11 circuit labyrinth in the Chartres cathedral (see Fig-
ure 2a) is 42 feet, a millionth that of the Earth’s diameter [Saward
2002]. The annual journal of mazes Caerdroia, and a recent book,
”The Unending Mystery” [McCullough 2004], are comprehensive
and entertaining references on labyrinths and mazes.

The words maze and labyrinth are synonymous in popular parlance.
Semantically, however, a labyrinth is a unicursal path that simply
winds its way from start to finish, which are often the same place. A
maze on the other hand has forks, dead ends and sometimes cycles
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Figure 1: Amazing Grace: A circle evolves a) into a labyrinth b)
and postprocessed into a grid-maze c).

and multiple paths from start to finish. A maze embedded on a non-
planar manifold is often referred to as a planair maze [Berg 2001].
Mathematically, a maze on a 2D manifold can be formulated as a
planar graph embedding with a vertex at every fork connected by
edges along the maze paths (a labyrinth is just a start and finish
vertex connected by an edge). Such graphs have been extensively
studied in mathematics and robotics [Lovasz 1996]. The answer
to what makes a maze difficult to solve lies in a combination of
its graph topology and perceptual science. We do not explicitly
address solvability in this paper leaving the user to interactively
judge and control the solvability of generated mazes.

Philosophically, labyrinths and mazes are looked upon as yin and
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(a) Chartres cathedral labyrinth

(b) Hampton court maze

Figure 2: Famous labyrinths and mazes. a) (©)2002, Jeff Saward. b)
(©1995, Hermann Kern.



yang [Conty 2002]. The spiritual labyrinth is a meditative path laid
out with careful artistic intent to set you free, while the puzzling
maze is a challenging structure designed to trick and entrap. This
duality is echoed in our design of labyrinths and mazes in this paper
using the same curve formulation.

(a) Prehistoric

(b) Roman art

(c) Tantric diagram

Figure 3: Labyrinthine structures. a) Tomb carving, Sardinia, c.
2500-2000 BC. b) Roman mosaic, Salzburg, c. 300 AD. c) Indian
manuscript, c. 18th century. (©2002 Hermann Kern.
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(a) (©) (d)

Figure 4: Mazes evolving from curve configurations. Curve (a)
grows into the tree maze in (b). The disconnected curves in (c)
result in a maze with a cycle (d).
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(b) Close-up view

(a) Maze in a maze
Figure 5: (©1990, Christopher Morrison.

The path defined along a single closed curve with no self inter-
sections is a labyrinth with the same beginning and end (see Fig-
ure 4a,b). If we consider the same curve to bound a path and place
two openings for a start and a finish, this dual representation de-
fines a tree maze (see Figure 4b), where the strategy of walking
with your left shoulder against a wall gets you from start to end.
With multiple and intersecting curve configurations we are able to
capture general multiply-connected mazes (see Figure 4c,d). Our
model also captures labyrinths of multiple paths that are spatially
intertwined but topologically disjoint, such as those depicted in Ro-
man mosaics (see Figure 3b) [Kern 1995].

Labyrinths and mazes define the path to travel or environment to
navigate in many computer games. Artistically, they have fuelled
the imagination of artists from M.C. Escher, Keith Haring and Sal-
vador Dali (see Figure 18) to MAD magazine cartoonists and con-
temporary maze artists (see Figures 5, 6). Meanders thus play
an important role in the evolving era of interactive art and en-
tertainment, where the audience is an integral part of the experi-
ence. Visually, labyrinths and mazes, could be roughly categorized
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(a) ©1991, David Russo

(b) (©2000, Scott Sullivan
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(c) ©2001, Christopher Berg

(d) ©2005, Mo Morales

Figure 6: Labyrinth and maze art.

as structured or organic. Structured mazes, often seen in puzzle
books, are constructed on geometric grids and have paths precisely
aligned with grid cells. Structured labyrinths, such as the 11-circuit
Chartres labyrinth, are also the result of geometric construction al-
gorithms. Organic labyrinths and mazes, seen mostly in maze art
(see Figures 5, 6), have an amorphous visual appearance resem-
bling shapes seen in nature. In this paper we generate these organic
forms using a dynamic curve simulation.

1.1 Rationale and related work

Organic labyrinths and mazes in art (see Figures 5,6) motivate the
design of our approach. We make the trivial, yet critical, obser-
vation that paths in mazes in such artwork are bounded by largely
parallel walls. This basic structure, however, is not particularly in-
teresting in itself. Rather, an underlying concept shared by all the
inspirational artwork is the exploration of variations over a simple
set of path characteristics which include, but are not limited to: ran-
dom variations, local smoothness, frequency of branching, scale,
self-similarity, anisotropy, regions with distinct patterns, seamless
blending between regions, and rendering styles.

We couple this analysis with the observation that the fundamen-
tal structure of a maze bears resemblance with the point distribu-
tion patterns generated by the stochastic sampling algorithm used
in [Turk 1991]. We thus choose to represent both labyrinths and
mazes as configurations of a set of piecewise linear curves that
evolve using an iterative algorithm similar to point repulsion [Turk
1991] with parameters designed to capture the maze characteris-
tics listed above. We model randomness with Brownian Motion, a
stochastic process that is the scaling limit of a random walk on a
2D grid [Karatzas and Shreve 1997]. Local smoothness is modeled
using a Laplacian fairing term. Branching is controlled by applying
the Lennard-Jones potential used to model inter-molecular forces



[A. Ya Kipnis 1996]. The long range attraction controls branching
frequency and, along with the short range repulsion, ensures that
the maze walls remain nearly parallel. Together, these parameters
lead to the basic maze synthesis algorithm described in Section 2.
Self-similarity and varying scale are accomplished by modulating
the basic parameters interactively while the maze is evolving.

The concept and approach motivated above has similarities to
space-filling curves and fractals, curve modeling and parameter-
ization, and differential equations for image processing. Space-
filling curves, fractals [Gotsman and Lindenbaum 1996] and trav-
eling salesman art [Kaplan and Bosch 2005] share a visual similar-
ity to our labyrinths and mazes in that they cover space and have
the ability to capture similar structures at various scales. Primarily,
space-filling curves have been used in graphics for dithering images
[Velho and Gomes 1995] but also for image compression and 1D
parameterization of images [Dafner et al. 2000]. We contribute a
technique similar in spirit to the art inspired work on artistic screen-
ing [Ostromoukhov and Hersch 1995], engraving [Ostromoukhov
1999] and floral ornaments [Wong et al. 1998]. The generated im-
agery can capture continuous variations in artistic abstraction of de-
tail along the lines of [DeCarlo and Santella 2002]. Our work also
relates to the problem of curve modeling at various resolutions. Re-
search on multiresolution curves [Finkelstein and Salesin 1994] and
curve analogies [Hertzmann et al. 2002] can be used within our al-
gorithm to increase, reduce or stylistically vary the geometric detail
of the output mazes. [Witkin and Kass 1991] and [Turk 1991] used
partial differential equations from developmental biology to synthe-
size reaction-diffusion textures vaguely resembling maze patterns.
Rapidly-exploring Random Trees have also been applied to produce
an interesting range of grid-like mazes [LaValle 2005]. Finally, our
curves are influenced by parameter maps in ways similar to snakes
[Kass et al. 1988] and level sets [Sethian 1999].

Artistically, our maze creation approach, like ink diffusion [Chu
and Tai 2005], is an example of algorithms that visually evolve over
both space and time. Such algorithms transcend being static image
filters by offering the opportunity of aesthetically controlling the
simulation while watching it grow. We harness this creative po-
tential using an interaction framework of dynamic regions and pat-
terns. Region boundaries that temporally vary in shape and strength
specify an artistic partition of algorithmic parameters and render
styles. Patterns like preset brushes, define procedural combinations
of the basic algorithmic parameters. This framework, in addition
to being generally applicable to NPR simulations, allows game de-
signers and physical maze builders to quickly create complex envi-
ronments with overall control of maze topology and appearance.

1.2 Overview

The contributions of this paper are thus a synthesis algorithm for or-
ganic labyrinths and mazes and to a lesser degree a framework built
on time-varying regions and patterns for the interactive control of
NPR simulations. We begin with a description of our labyrinth and
maze generation algorithm in Section 2. Section 3 then builds a
high-level interaction framework of regions and patterns upon the
basic algorithm. Section 4 presents implementation details and dis-
cusses resulting labyrinths, mazes and render styles. Section 5 pro-
vides the conclusion and directions for future work.

2 Labyrinth and maze model

As motivated in Section 1.1, the input to our algorithm is a set of
curves on a 2D manifold. Assume that the curves have N sample
points and that the average distance between these points is D. In

an iterative process, the position of each sample point, p;(1<i<N),
is updated by adding force vectors:  p;’ = p; +Bj +F; +A;,
where B;, Fj and A; are the forces corresponding to Brownian Mo-
tion, fairing, and attraction-repulsion, respectively.

In order to vary the curve structure spatially, the various param-
eters used in the force calculations are represented by functions
f : R%—R. Similarly, a function § : R~ (0,1] is used to control
the scale of the patterns and support self-similiarity (see Figure 10
for a parameter study of §). To provide user feedback in our inter-
active system, all of these functions are conveniently represented as
2D texture maps.

Brownian Motion: To control random structural variations, a
random offset vector (chosen stochastically based on a Normal
Distribution with mean 0 and variance o), z;, is added to each
sample point, pj, using the equation (see Figure 7a):

B;i = fp(pi) -2z~ 6(pi) - D
where f3 : R*—R modulates the amplitude of the offset.

Fairing: To simulate local smoothness, a Laplacian term is added
(see Figure 7b):

Fi = fy(01) - (P R — )

where fr : R*—[0;1] allows the fairing to vary spatially. The
weighted average above prevents samples from migrating in the di-
rection of V§ (i.e. towards more coarsely sampled areas).

Before [ After

1
Y 2
i+2
pi+1 ! pi+1
¢) Resampling

a) Brownian Motion [ b) Fairing
Figure 7: Brownian Motion, fairing, and resampling steps.

Attraction-Repulsion: Sample points along the curves exert
attraction-repulsion forces on each other within a radius of
influence, R; (see Figure 8). Specifically, the attraction-repulsion
force, Aj, is the sum:

Ai = fa(pi) - XY B
where f; : R> — R modulates A; spatially and fij is the force
exerted on pj by curve segment (pjpj+1):

£y = 22w iy — x| < min(8(pi), S(xy)) - Ry

and max(|j —i|,|j+1—i]) > npin; 0 otherwise.

Here, x;; is the closest point to p; on the segment (pjPj+1), Zimin iS
explained below, and w : R — R is the Lennard-Jones potential:

wir) = (%) = (%))

where op; is a Lennard-Jones specific parameter describing the
shape of the function (see e.g. [A. Ya Kipnis 1996] for details).
Since the effect of 077 can be difficult to visualize, we find it easier
to specify its O-crossing, Ry = ko - D (see Figure 8), instead. For
efficiency, w is clamped to O for r > R (we have found this ap-
proximation to work well), where R; = k; - D. ko and k| are global
variables that can be controlled by the user.



Figure 8: Attraction-Repulsion forces exerted on p; by nearby seg-
ments.

) d)

Figure 9: Evolving labyrinths. a) Input. b) Partial evolution (fp
low, f, high). Result: c) (fp low, f; high). d) (f high, f, low).

To prevent strong tangential forces from causing numerical prob-
lems, neighboring samples along a curve do not exert forces on
each other. An added benefit of the fairing term is that it serves to
preserve the structural integrity of the curves locally. Specifically,
the n,,;;, neighbors of each point are ignored.

Resampling: Adaptive (based on §), dynamic sampling is used to
maintain an optimal distribution of points along the labyrinth. Any
segment whose length, |p;pjt1]|, exceeds a threshold, dyqy, is split:

dmax = kimax D - 5(Pi)+25(l)i+1)

where &y, is a global constant. Conversely, if the separation be-
tween any sample and its neighbors is below an equivalent thresh-
old, dy,in, the sample is deleted (see Figure 7c) [Sethian 1999],
[Witkin and Heckbert 1994]. Note that the sampling rate can be
controlled globally by changing D.

The above steps are repeated in each iteration. Figures 9a,b,c) show
snapshots in the evolution of a circle with 50 sample points. In this
case fp was set low and f, high leading to minimal branching and
uniform path width. In contrast, the pattern shown in Figure 9d),
which also evolved from the circle in Figure 9a), used a higher
value for fp and a lower value for f,. Note the increased branching,
high frequency texture, and “bulging”, heterogeneous paths.

Figure 10 shows the effect of varying the scale parameter, J.
Note how the width of the branches change based on § while the
overall structure of the pattern remains the same.

Anisotropy: The orientation of the curves can be controlled by
introducing a gradient field, Vf, : R? — R2, derived from the
anisotropy function, fg : R? — R. While anisotropy could be
integrated in a number of ways, we choose a simple modification
of the attraction-repulsion force, A; (see Figure 11c):

Figure 10: b) Study of the scale parameter, 8. The input curve was
a circle with 50 sample points. The greyscale image in (a) was used
to vary & spatially.

AY = Ai+ g (VE(pi) - A

The force is simply scaled in the direction of the field. The ef-
fect can be seen in Figure 11a,b). Note that the magnitude of the
gradient affects the characteristics of the anisotropic structure. Fig-
ures 1,17 show more advanced applications of anisotropy.

1,
Vi () (Vi) A)
\Vfg(pi)\

Figure 11: a) Curve with anisotropy function, f,. b) Resulting
Labyrinth. c) Calculation of A;’.

3 User interaction

The equations described above automatically generate mazes based
on an initial configuration of curves. The complex relationships be-
tween algorithm parameters, however, requires understanding and
experimentation to interactively control the visual result by solely
adjusting individual parameters. We thus introduce three additional
curve types, presets and editing mechanisms to give a user high-
level interactive control over the maze topology and appearance.

We first classify curves in our system into the following types:
Labyrinth curves, described in Section 1 and 2, define the visual
structure of the labyrinth or maze. The simulation rate of selected
points on labyrinth curves can be retarded of frozen interactively.
Boundary curves define regions on a manifold. Their shape and
strength can be user animated over time. Boundary curves act like
walls for points on labyrinth curves, contributing strength modu-
lated attraction-repulsion forces to the labyrinth curves. Boundary
curves themselves, thus, need only be resampled during simulation
of the discrete equations in Section 2.

Boundary Gap curves are sections of boundary curves with zero
strength, where labyrinth curves can move freely across adjacent re-
gions. More importantly they also denote areas of parameter blend-
ing that need special attention to avoid numerical problems.
Solution curves allow users to define the solution paths in a maze.
They are resampled similar to boundary curves and attract/repel
labyrinth curves, but with a repulsion radius of Ry/2. Labyrinth
curves thus grow on either side of solution curves without crossing
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(a) Initial curves (b) Eyes, ears added

(c) Final curves

(d) Left eye (e) Final maze topology

Figure 12: Evolution of a maze, ”Biker Bunny Tatoo”. See text for details.

them. In the final maze the solution curve is removed to reveal a
path of width Ry bounded only by labyrinth curves.

3.1 Maze topology

Section 1 shows the planar graph induced by labyrinth curves to
define maze topology. Users can interactively create new curves
and delete or reconnect evolving curves to alter maze topology dur-
ing simulation. Colored tracers placed at key points on the curves
allow a user to visually track the evolving maze (see accompany-
ing video) and aid in making topology changes. Figure 12 shows a
simple interactive example created with constant parameter values.
After the initial curves in Figure 12a) evolve to Figure 12b), curves
for the ears are drawn and spirals for eyes connected to the exist-
ing curves. Figures 12c,d) shows subsequent maze evolution. The
start and finish in Figure 12e) are then created by deleting curve
segments to creating openings in the original circular regions.

3.2 Maze appearance

Regions: User defined stencils, regions or masks are commonly
used to spatially localize image filters. Our regions dynamically
specify a high level artistic partition of algorithmic and render
styles. Figure 13a) shows a set of user specified Boundary and
Gap curves. Boundary curves, rendered as solid lines and Bound-
ary Gaps as dashed lines together divide the 2D manifold into re-
gions. Regions also confine the growth of labyrinth curves con-
tained within. Labyrinth curves migrate to adjacent regions through
dynamic gaps where algorithmic parameters of adjacent regions to
blend into each other.

Patterns: Each region is assigned a pattern. A pattern is a combina-
tion of time varying parameter values or textures that result in char-
acteristic maze patterns. Generating new patterns is an experimen-
tal process but a pattern library allows the simple update and reuse
of interesting patterns. The mapping between regions and patterns
is conveniently represented by a texture map, which is also used for
interactive visualization (see Figure 13b). Each pattern defines a
complete configuration of default values for the low-level parame-
ters (along with their variation during the simulation). In addition,
each pattern takes its own set of high level input parameters, such as
radius, angle or noise, that procedurally generate low-level param-
eter maps when assigned to regions. Figure 13c) shows an exam-
ple of an automatically generated parameter map for the anisotropy
function, f,, using two patterns: Horizontal Stripes (marked in pink
in Figure 13b) and an Onion Ring pattern (marked in red) mimick-
ing the iso-contours of the distance to the region boundaries.

Blending: Specifying parameter maps independently for each re-
gion can lead to abrupt changes across region boundaries. This
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Figure 13: a) Boundaries and Boundary Gaps. b) Regions defined
by boundaries. ¢) Anisotropy function, f.

poses no problem for strong boundary curves, as labyrinth curves
do not cross them. Near boundary gap curves, however, sharp gra-
dients can cause the simulation to become numerically unstable.

Figure 14: a) Blend map. b) Map applied to scale function (§).

We address the problem by automatically blending all parameter
maps near boundary gaps using a blend map. The blend map,
shown in Figure 14a) for curves shown in Figure 13, is the sum of
distance based implicit functions around each boundary gap curve
(decaying over a specified blend radius). The blend radius is further
modulated by the scale parameter map (8, shown in Figure 14b) to
avoid the loss of detail in areas with lower values of §. Figure 14b)



shows the application of the blend map in Figure 14a) to the scale
parameter, causing smooth transitions around the boundary gaps.

Figure 15 shows 3 input circles (one for each connected compo-
nent) with 30 sample points each evolved into an ~ 160,000 point
labyrinth. The sides of the letters were assigned a horizontal pattern
while the letter fronts had an “onion-ring” pattern. Small interac-
tive variations in default parameters caused the variations among
regions with the same pattern. The scale parameter was used to in-
crease the sampling (non-linearly) for the smaller letters. Note how
the labyrinth curves only cross adjacent regions through boundary
gaps with a natural transition of curve pattern. We now present
system details and further results.

Figure 15: Final labyrinth close-up on JAMAZ”.

4 Implementation and results

4.1 System details

The system was implemented in openGL using a 2.3 GHz Pentium
IV processor. Import and export of curves from commercial model-
ing software as well as basic curve creation and editing operations
was implemented in Section 3. The labyrinths shown throughout
the paper grow at interactive rates. The maze shown in Figure 12
has 5,900 points and the interactive session for creating it took a
couple of minutes. Larger examples, such as Figure 16, which have
upwards of 100,000 points, took around 20 minutes of computing
time. When editing the parameters of large examples comprising
multiple regions, such as in Figure 15, we found localizing the
simulations to selected regions convenient for optimizing perfor-
mance. The bottleneck of the implementation is the computation
of attraction-repulsion forces. We used a quad-tree to find the k
nearest neighbors to each sample.

Due to the repeated subdivision of the curves, care must be taken to
ensure memory locality. At regular intervals, the sample point vec-
tor is defragmented. Further, balancing the low-level parameters
is also critical for the performance. For example, high values for
fp and f, and low for fr tend to increase the rate of growth of the
labyrinth, but with that also the risk of numerical instability. Pro-
viding a library of predefined patterns with optimal parameter set-
tings thus also helps improve performance. We found the following
parameter ranges in our implementation to be stable and produce in-
teresting results: fr € [0.005;0.3], fp € [0;0.2], ko € [0.1;0.3],k; €
[1.5-k0;2.5 ko], fa € [0;10], i € {1,2}, kpnin = 0.2, and kyqy =
1.2. 0 should start at 1 and be reduced gradually for best results (see
Figure 16). We emphasize that interactive editing of parameters is
not required and a user may rely on a predefiend pattern library for
automatic curve generation.

4.2 Results

Self-similarity. Figure 16 shows the effects of varying the scale
parameter, 8, by up to 2 orders of magnitude based on the intensi-
ties in an input image. In this simulation, an initial labyrinth was
first computed with a constant value for §. & was then gradually
decreased based on the intensity of the input image.

(a) OpenGL rendering (b) Self-similarity
Figure 16: Scale and self-similarity. a) OpenGL rendering, & €
[0.01;1.0]. b) Alternative visualization, 6 € [0.02;1.0].

The labyrinth shown in Figure 16a) has 220,000 points. It evolved
from a circle with 50 points. The curve segments are shown in red
and the sample points in orange. In Figure 16b) (110,000 points),
the interior of the original circle is shown in red.

Anisotropy. Figure 17 shows an application of the anisotropy func-
tion obtained by defining f, as the distance to the region bound-
aries, reproducing the maze art seen in Figure 6b). Smooth cretan
labyrinths like Figure 2a), 3c) can be built similarly with simple
anisotopy maps and a high fairing term. A different example, uti-
lizing a procedurally defined gradient field, is shown in Figure 1.
Here, high image intensities were mapped to vertical gradient vec-
tors and low intensities to horizontal gradients. The magnitude of
the gradient was scaled by the intensities.

Figure 17: Labyrinth aligned with boundary curves.

Dali’s ”Labyrinth”: The labyrinth in Figure 18 was designed to
match the features of a Dali painting. First, boundary curves were
drawn to match the painting’s feature lines. Patterns were then as-
signed to the different regions, using presets and procedural pa-
rameter maps computed from the boundary curves and the original
image. The labyrinth started as a small closed loop with 20 points.
Boundary curves initially prevented the labyrinth from crossing fea-
tures. Near the end of the simulation, boundary curve strength was



gradually reduced to zero, causing the sharp boundaries to disap-
pear and the labyrinth curve to organically fill the painting.

Figure 18: Labyrinth by Salvador Dali, overlaid with a labyrinth.

Theseus and the Minotaur: Figure 19a) shows a Greek drinking
bowl (c. 440-430 BC) depicting a scene from the myth of Theseus
and the Minotaur. Figure 19b) shows the corresponding regions.
We chose to replace the meandering pattern near the perimeter of
the bowl with one from our system’s pattern library.

Figure 19: a) (©2002, Hermann Kern. b) Regions and patterns.

The image shown in Figure 19a) was used to define the scale param-
eter (0) and an anisotropy function (f,) was specified as a blurred
version of the same image.

Figure 20: a) Initial result. b) After local modification.

Figure 20a) shows the resulting labyrinth. The magnitude of the
gradient was adjusted to get extra curve density near high con-
trast areas. As can be seen in Figure 19a), the original parameters
worked well in most areas but failed to produce sufficient definition
of the Minotaur. To address this issue, the problematic region was
manually outlined by a boundary gap curve (see Figure 19b) and
the parameters for this subregion changed. The curves then evolved
from the state in Figure 19a) to the final result in Figure 19b). Fig-
ure 21 shows several close-ups of Figure 20.

Figure 21: Close-ups of Figure 20.

Planair Mazes: The techniques decribed in this paper are general
to 2D manifolds but the quad-tree based optimization and all the ex-
amples seen thus far have been either planar or toroidal (Figure 1).
Figure 22 shows an example of a planair maze embedded on 3D
geometry. All steps in the algorithm generalize directly to 3D. We
would like to investigate the use of properties like curvature, light-
ing, depth, etc. as input parameters for planair mazes, in future.

Figure 22: Planair Maze

Render Styles: The resulting curves are conducive to rendering in
various ways. They may be used to extrude geometry (Figure 23a),
grow particle systems (Figure 23b), or create calligrams and vari-
able micro-lettering (Figure 24). They can also be used as long
continuous brush strokes (Figure 23c) that can vary in thickness
based on parameter maps (Figure 23d).
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Figure 24: Micro-lettering along labyrinth (apologies to Robbie Burns).

5 Conclusion and future work

This paper introduces readers to a historically fascinating symbiosis
of art and science. While a unified theory for maze contruction and
solvability remains an open problem, we have presented an algo-
rithm for the generation of organic looking labyrinths and mazes.
The approach is not ideally suited to structured mazes but the re-
sulting curves can be pushed by forces towards grid-lines and then
postprocessed into a grid-maze by selecting the grid cells traversed
by the curves (see Figure 1c). We also embed the algorithm param-
eters within a general high-level interaction framework, to provide
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(a) Extruded walls (b) Hedge Maze

(c) Smudge along vertical strokes

(d) Variable line-width

Figure 23: Labyrinth and maze rendering styles

NPR simulation users with greater creative control. This frame-
work of time-varying regions, defined by boundary and gap curves,
controls both seperation and mixing of simulation parameters.

Feedback from game and physical maze designers indicates that
interactive programs like ours will allow the creation of richer en-
vironments, without sacrificing overall design control. The output
patterns also show promise for use in watermarking, image com-
pression and multi-variable visualization. [Dafner et al. 2000] pro-
pose a space-filling curve that attempts to follow image gradients.
Our curves have similar properties of good autocorrelation and thus
could watermark or compress images by encoding the 1D image
stream along with the algorithm parameters and initial curves. The
visual effect of multiple texture maps can be quite clear on the curve
generated by our algorithm. As a result our labyrinthine structures
may help in the visualization and understanding of multi-variable
texture maps. In the future, we also hope animate our labyrinths
and mazes using video textures.
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