

Improving Selection of Off-Screen Targets with Hopping
Pourang Irani

Computer Science Department
University of Manitoba

Winnipeg, Manitoba, Canada
irani@cs.umanitoba.ca

Carl Gutwin
Computer Science Department

University of Saskatchewan
Saskatoon, Saskatchewan, Canada

gutwin@cs.usask.ca

Xing Dong Yang
Computer Science Department

University of Alberta
Edmonton, Alberta, Canada

xingdong@cs.ualberta.ca

ABSTRACT
Many systems provide the user with a limited viewport of a
larger graphical workspace. In these systems, the user often
needs to find and select targets that are in the workspace,
but not visible in the current view. Standard methods for
navigating to the off-screen targets include scrolling,
panning, and zooming; however, these are laborious when
users cannot see a target’s direction or distance. Techniques
such as halos can provide awareness of targets, but actually
getting to the target is still slow with standard navigation.
To improve off-screen target selection, we developed a new
technique called hop, which combines halos with a
teleportation mechanism that shows proxies of distant
objects. Hop provides both awareness of off-screen targets
and fast navigation to the target context. A study showed
that users are significantly faster at selecting off-screen
targets with hopping than with two-level zooming or grab-
and-drag panning, and it is clear that hop will be faster than
either halos or proxy-based techniques (like drag-and-pop
or vacuum filtering) by themselves. Hop both improves on
halo-based navigation and extends the value of proxies to
small-screen environments.

Author Keywords
Navigation, graphical workspaces, off-screen targets, halo,
vacuum filtering, drag-and-pop, proxy targets.

ACM Classification Keywords
H5.2 [User Interfaces]: Interaction styles.

INTRODUCTION
Designers of visual applications are commonly challenged
with the task of adequately displaying all the information
required by users in the available viewing space. As a
result, many applications – such as map browsers, graphical
editing programs, or visualization systems – present a
graphical workspace that is considerably larger than the
screen. In these systems, only a small subset of the
information is displayed in the viewport, and a large
quantity of information resides outside the viewing region.

This situation can exist for any size display, but it affects
small-screen devices such as handhelds and PDAs more
strongly (Figure 1). As display space is reduced, even small
visual datasets will be partly located outside the view. For
these devices, techniques are required for retrieving,
inspecting, and manipulating off-screen content.

Figure 1. Large visual workspace with several candidate
targets (R=Restaurants; M=Metro Stations), with PDA

viewport superimposed.

On most platforms, zooming, panning, and scrolling are the
most common navigation tools available for accessing off-
screen content. However, these techniques often require
considerable navigational effort from the user [20].
Interactive focus+context and overview+detail views, such
as fisheye or radar views, have also been considered as
ways to facilitate the presentation of large content on small
displays [22, 24]. While these techniques adjust the
presentation and layout of large information spaces for
limited viewports, they introduce additional interactive and
cognitive costs (e.g., [10]).

For the task of selecting off-screen targets, no current
method is able to satisfy all of the following design goals:
• off-screen object awareness: users should be able to

stay aware of the presence and locations of potential
targets that are off-screen;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22-27, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

299

• minimal navigation: users should be able to move to
off-screen targets without much more effort than what
is required for on-screen objects;

• context visibility: users should be able to determine and
make use of the environment surrounding a target;

• full-scale view: users should be able to see potential
targets in enough detail to determine if they are
important.

To better address the problem of selecting off-screen
targets, we designed and evaluated a new technique, called
hop (from ‘halo+proxy’). Hop uses object halos to provide
awareness of off-screen targets [1], a proxy technique to
bring targets close to the user’s cursor [2, 6], and a
teleportation mechanism to transport the user to the location
and context of the target. To test the effectiveness of hop,
we carried out an experiment that compared the
performance of hopping with zooming and panning in an
off-screen targeting task. The study showed that hopping is
significantly and substantially faster than either two-level
zooming or grab-and-drag panning. Hop demonstrates
again that halos are valuable, and also shows that proxy-
based selection techniques can be successfully used in
small-screen environments.

In the following sections we review related literature in
visual workspaces and selection techniques, describe the
design of hop in more detail, and report on the methods and
results of the study. We then consider ways that hop can be
used to improve current systems, and discuss the underlying
reasons for hop’s success.

RELATED WORK
Several areas of previous work are relevant to the new
technique: 2D navigation methods, visualization methods
for off-screen objects, and proxy and portal methods for
accessing distant objects.

2D Navigation Methods

Scrolling, Panning, Zooming
Most mainstream applications allow users to scroll, pan or
zoom to view off-screen content. To see off-screen content,
scrolling interfaces provide widgets such as scroll bars or
scroll-rings [19, 25]; however, scrolling still requires
considerable effort to get to off-screen locations. Several
improvements to basic scrolling have been studied,
including integration of scrolling into physical devices such
as keyboards and mice [12, 28], rate-based scrolling [28]
that maps the displacement of an input device to the
scrolling velocity [12], and speed-dependent automatic
zooming (SDAZ) [14] to reduce the motion-blur
encountered at high scroll speeds [14, 9]. All scrolling
interfaces, however, require that the workspace can only be
inspected linearly. As a result, users must spend more time
when objects are further away.

Panning allows the user to view off-screen content by
moving the workspace under a fixed viewport [15]. A

panning operation is defined by a click-drag-and-release to
shift a subset of the workspace into view. This form of
interaction limits the amount of displacement that takes
place at each pan operation. Studies [15, 16] have compared
different panning methods for a variety of tasks. One result
[15] shows that for touch-based systems, panning the
document into view was better than dragging the viewport
around the workspace. Similar to scrolling, panning
presents off-screen content linearly; as a result, users must
perform multiple pan operations to locate distant items.

Zooming is an effective navigation method that provides
multiple perspectives of the workspace. Zoom techniques
show that being ‘off-screen’ is only relative to a particular
zoom level, and that any amount of the workspace can be
brought into view, albeit at the cost of detail. Unlike
scrolling or panning, zooming allows users to view off-
screen content in a non-linear fashion (far-away objects can
be inspected before those that are close). Pad++ [5]
facilitates zooming in and out of a workspace using
multiple scaling factors. Overviews that result from
zooming-out provide awareness of off-screen content to
users. These overviews perform better than regular scrolling
systems [16]. However, to find a particular off-screen
object from a set of candidates, the user may have to
perform multiple zoom operations.

Overview+detail and Focus+context
Methods like overview+detail views, fisheye views, and
chunking are also designed to facilitate interaction with
large workspaces on limited displays. Unlike traditional
techniques, these techniques work by modifying the
representation of the workspace.

Overview+detail techniques [4, 18] present a condensed
overview of the workspace. The user can expand subsets of
the information space when required. In many
implementations, multiple windows are used for presenting
overviews separately from the details. In these systems
additional interaction overhead is required to manage the
windows. With overviews, the user has to initiate a series of
inspections by first locating the off-screen content of
interest in the overview and then examining the details to
determine if this is the content of interest. Nevertheless, this
strategy can be effective: for example, one study showed
that users perform equally well with overview+detail
presentation as with zooming and panning for spatial
cognition tasks [3].

Focus+context views such as fisheyes [22] present a
distorted view of the workspace. The most relevant
information is magnified while less important material is
reduced so that the entire workspace can fit into the
viewport. Results of one study [11] show that fisheye views
can be as good as traditional interfaces for steering tasks.
However, fisheye views present usability problems in
targeting and memorability, and performance in reading
large documents with fisheyes is worse than with
overview+details [13]. Furthermore, the distortion caused

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

300

by fisheye views degrades tasks relying on spatial cognition
or short-term recall. The distorted views can also make it
difficult to inspect the details of target items.

Recently, chunking methods have been developed to break
large content space into manageable and viewable portions.
Flipzoom [7] is a technique that segments the entire
workspace into viewable units. At any given time only one
segment of the workspace is visible. This technique has
been used for viewing web pages [8] or for viewing large
documents in limited viewing spaces. Zonezoom [21] is
another technique that segments the workspace into regions.
It uses smooth in/out transitions of the segments to allow
the user to view details of off-screen content. As with the
overview+detail methods, chunking requires that the user
be able to interpret the overview representations and
recreate the relationships between the details and the whole.
Overall, the additional complexity in interacting with
overview+details, fisheye and chunking techniques may in
some cases outweigh the benefits they offer.

The design of hop was influenced by two general classes of
techniques: off-screen visualization and proxies. These are
discussed in detail next.

Off-Screen Object Visualization
Halo [1] is a visualization technique that shows the distance
and location of off-screen objects. Halo was built on a well-
known principle in cinematography referred to as the
partially-out-of-the-frame technique. Based on this
technique, viewers get a feeling for the presence of a prop
outside the scene and can recreate its characteristics based
on the portion in view.

With halo, objects outside the viewport are surrounded by
rings that are large enough that a portion of each ring is
visible on the edge of the viewport. From the visible
portion, users can infer the location of the object and the
distance from the viewing space. Halos have been
compared to the typical arrow visuals used in video games
and maps to point to objects off-screen [1]. Halos improved
performance by 16% to 33% for most tasks in comparison
to simple arrows with numeric distance information [1].

City lights [27] are built on the same principles as halos.
City lights visualize off-screen objects by placing
rectangular blocks on the edges of the viewport.
Additionally, city lights use visual cues such as color, shape
and size to provide information about the physical
properties of the off-screen objects, or other abstract
information such as the degree of interest.

Halos and city lights are successful techniques for pointing
users to the presence of off-screen objects. However, on
their own they do not assist the user in navigating to the
object for inspection or manipulation.

Proxies and Portals
The development of large screens and multi-display
systems has produced a new series of interaction methods

that bring distant objects closer to the user’s interaction
space. These techniques rely on proxies – temporary
duplicates of the object that allow actions on the original –
or on a portal that gives the user a window into a remote
area of the workspace.

Drag-and-pop [2] is a proxy-based technique that creates
local copies of objects that are located far away on a large
display. The user makes a simple gesture and any distant
object located within a +/- 30 degree arc are brought toward
the user’s cursor in the form of a proxy. The user can then
interact with the proxies as they would with the original
object. This significantly reduces the physical movement
required for a user to interact with remote objects. Drag-
and-pop showed significant savings in the time to select
distant objects in comparison to conventional dragging.
However, drag-and-pop is limited in the number of proxies
it can provide to the user, in its ability to allow multiple
operations, and in allowing the user to control which
objects are rendered as proxies.

Vacuum filtering [6] was designed to overcome some of the
limitations of the drag-and-pop approach. As in drag-and-
pop, the underlying principle behind the vacuum is to bring
distant objects closer to the user. In the vacuum, the user
triggers the proxies by initiating a mouse down and drag
operation. This creates an arc of influence (or vacuum) that
‘pulls’ proxies of distant objects towards the cursor. The
vacuum shrinks the size of the proxies to maintain the
relative layout of objects.

Both techniques have several shortcomings with respect to
off-screen targeting:
• size and number of proxies: in drag-and-pop, the

number of proxies are limited so there is no overlap.
Although vacuum does not have a limit on the number
of proxies, it must shrink the proxies in order to
maintain the relative distances between the original
objects. As a result, it can become difficult to view
object details when many objects are ‘vacuumed.’

• off-screen object awareness: both techniques are
designed for large screen displays. As a result, they do
not currently include any means for showing the
presence of off-screen objects.

• arc of influence: the arc of influence created by the
vacuum attracts objects in a larger radius as the
vacuum gets closer to the edge of the workspace. This
approach could ‘vacuum in’ large numbers of off-
screen objects that may not be of interest to the user.

• context visibility: in the proxy approach, the details
surrounding the original object are not available. While
the vacuum maintains the relative distance between
objects, elements around the original objects are not
visible (such as the underlying map in Figure 1). The
user still has to move to the distant location to inspect
the surroundings of the objects.

Portals into remote spaces are an alternative to proxies.
Portals behave like windows that facilitate content viewing

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

301

in the original workspace. Frisbees [17] was designed as a
telescope into the remote viewing space. The technique
provides controls to move objects between various
workspaces and manipulate them locally. Similarly,
WinCuts [26] allows users to remotely interact with defined
regions of existing windows. Unlike proxy-based methods,
portals facilitate the viewing of the context around remote
objects. However, additional operations such as zooming in
and out of the portal are necessary to view the context.
Significant overhead results from inspecting objects that are
off-screen, which makes portal-based tools less suitable for
lightweight tasks that involve inspecting remote objects and
then returning to work on nearby content.

THE HOP (HALO+PROXY) TECHNIQUE
Hop is an interaction technique that enables quick access to
off-screen objects. Hop works by providing awareness of
off-screen targets, by bringing target proxies close to the
user, and by transporting the user to the context of the
target. The design of hop was driven by, and satisfies, the
design principles outlined in the introduction. We describe
the design of hop below in terms of its three components.

Halos: Awareness of off-screen objects
Hop adapts and enhances the halo [1] representation to
satisfy the off-screen object awareness requirement. Halos
are drawn using elliptical and circular lines from each off-
screen object (see Figure 2); the result in the viewport is
that an arc segment is visible on the edge of the screen for
each off-screen item.

Our initial implementation of the halo showed a problem
with the technique: when the number and distance of off-
screen targets increases, halos overlap and become cluttered
at the edge of the screen. This problem led to a slight
improvement to save space along the edges of the screen.
Objects that are directly north, east, south, and west of the
viewport are represented using ellipses, which reduces the
amount of overlapping along the edges when compared to
circular rings. The idea of using ellipses is from Baudisch
and Rozenholtz, who speculate in [1] that ovals could better
convey off-screen distances than circles. Off-screen objects
in the corner regions are indicated by circular halos.

Laser Beam: Invoking proxies
The second component of the hop technique is the laser
beam. Hop uses a moveable ‘beam’ line to trigger the
creation of proxies from the off-screen objects. Our version
of the laser beam is a small improvement over other
mechanisms (such as that used in the vacuum) that have a
wider invocation range. Hop’s laser beam interacts only
with halos on the screen’s edge. Our modification allows
the user to more precisely select objects they would like to
inspect.

The laser beam is invoked by clicking the mouse on the
background and dragging the cursor toward an edge. The
distance traveled by the cursor is indicated by the circle of
movement, the center of which is located at the mouse-

down position. The circle of movement is later used for
laying out the proxies (explained below). The laser beam is
drawn from the center of the circle of movement up to the
edge of the screen (see Figure 2).

The user then moves the cursor in a radial fashion, and the
laser beam travels until it intersects a halo. For each beam-
halo intersection, a proxy is created and placed near the
circle of movement (details on layout are given below).
Proxies remain opaque for one second, and then begin
fading away. In the current hop system, proxies disappear
completely after five seconds. Locations occupied by
previous proxies are made available for any new proxy in
that region.

At any point after creating the proxies, the user can release
the mouse button and select a proxy, which teleports the
user to the off-screen object.

Halo

Laser Beam Beam+Halo
Intersection

Proxy

Off-Screen
Object

Viewport
Edge

(a) (b)

(c)

Circle of Movement

Halo

Laser Beam Beam+Halo
Intersection

Proxy

Off-Screen
Object

Viewport
Edge

(a) (b)

(c)

Circle of Movement

Figure 2. Invoking proxies with the laser beam: a) beam is
created; b) beam intersects halo; c) proxy created.

Teleporting: Moving to the off-screen object
The final operation in hop is to move the viewport to the
off-screen object. Clicking on a proxy invokes a 400ms-
long animated transition from the current location to the
location of the off-screen item. We added the animation
after noticing that users would lose their orientation in a
rapid movement toward the object.

Moving the viewport to the location of the off-screen target
ensures that the local environment of the item can be
inspected (satisfying the context visibility requirement
introduced earlier). The local environment is critical in
applications such as the mapping system shown in Figure 1.
Moving the viewport also ensures that items are displayed
in their original size so that details can be inspected
(satisfying the full-scale view requirement).

The sequence of actions for a complete hop is depicted in
Figure 3.

Layout of Proxies
As with similar interaction tools that invoke proxies (such
as the vacuum, drag-and-pick, and tractor beam), a common
design challenge is the layout of proxies for rapid
interaction. The initial design of hop laid out the proxies in

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

302

a linear order, but this layout caused the user to reach over
further distances if the desired proxy was invoked later in
the movement. To reduce the distance between the cursor
and any proxy, we use a radial layout for the proxies.

(a) Original View

(b) Laser Beam moving counter-clockwise

(c) Proxies are invoked once the laser beam intersects the

halos; user clicks on a proxy

(d) Selecting a proxy teleports the user; final view after

teleporting.
Figure 3. Sequence of actions in a hop.

The algorithm initially segments off-screen objects into
four regions, based on the mouse-down location. Each
region in the viewport will host proxies from the same off-
screen region. Proxies are placed on the circle of movement
created by dragging away from the original mouse-down
location. The layout algorithm avoids overlaps by placing
proxies either to the left or right of any existing objects.
When the circle of movement becomes full, additional
proxies are laid out on the next-larger concentric circle.
This process continues until all proxies are drawn. The
space from faded proxies is reused for new ones. The
algorithm did not preserve the remote layout of the objects
since that would require shrinking the proxies (as in [6]).

STUDY METHODS
We carried out a user study to evaluate whether hopping
assists people in selecting off-screen targets, by comparing
it to zooming and panning techniques.

Participants and apparatus
Thirteen paid volunteers (10 male, 3 female) were recruited
from a local university. All users were frequent users of
mouse-and-windows based systems (at least 12 hours per
week). Participants had a variety of experience with
zooming and panning techniques: five had more than three
years’ experience with both, two were experienced with
zooming but not panning, and six were not experienced
with either technique. Participants stated they had used
zooming and panning in map systems and image editors.
None were familiar with halos, proxy techniques, or
hopping.

Participants performed the experiment on a P4 Windows
XP PC running a custom .NET application. The display was
a 17” monitor set to 1280×1024 resolution.

Tasks
The system presented two-dimensional target selection
tasks in several different distance and density conditions
(see Figure 4). The task involved consecutive selection of
10 targets in the presence of distracters. Participants were
required to click a sequence of off-screen objects which
were designated as targets.

Targets were rendered as 32×32 pixel squares. A target was
differentiated from a distracter by the presence of a red
square in the upper right corner of the object (Figure 5).
The targets appeared sequentially; after clicking on one
target, the next target appeared somewhere in the
workspace, and the participant began to look for it.

To simulate the importance of contextual information that is
an important part of real-world systems, we added a
decision to the task that could only be made correctly by
observing local information. In addition to the presence of a
red square, participants were required to correctly identify
‘true’ and ‘false’ targets. A ‘true target’ was accompanied
by a triangle and circle landmark (Figure 5) which
consisted of the two shapes drawn below the target. ‘False

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

303

targets’ were targets that contained the red square but
showed a different landmark (see Figure 5). Upon locating
a target, the participant was asked to click on the label (‘Y’
or ‘N’) to indicate whether the target was true or false. Half
of the targets in each block were ‘true targets.’

15 objects, 600 pixels 15 objects, 1200 pixels

60 objects, 600 pixels 60 objects, 1200 pixels

Figure 4. Example workspaces from study for two different
distance and density conditions; each dot is either a target
or a distracter. Starting viewport rectangle is shown in grey.

Targets were randomly distributed to eight relative compass
directions (E, NE, N, NW, W, SW, S, SE) outside the
boundaries of the screen. To ensure that participants
performed a minimal amount of navigation, the next target
in the list of targets did not appear in the regions adjacent to
the region containing the previous target. This ensured that
two sequential targets were not on the same screen so that
the participant would have to perform at least one
navigation operation to locate the next target.

Figure 5. Targets, showing red square at top right. True
target (with triangle and circle landmark) is shown at left;
false target is shown at right.

Experimental conditions
The study involved three factors: navigation technique, off-
screen distance, and density.

Navigation Techniques
The main focus of our research was based on evaluating the
performance of hopping against different techniques for
off-screen targeting tasks. We chose a two-level zoom and a
grab-and-drag panning as comparison techniques; these two
were chosen because they represent the most common
techniques seen in current applications (other possibilities
are considered in the discussion). A pilot study also
included scrolling as a comparison technique, but initial

data showed that scrolling was consistently and
significantly outperformed by the other three techniques.

• Zooming. A two-level zoom was used in the study. Two-
level zoom provides users with either an overview of the
entire information space, or a fully-zoomed-in view.
Users can switch between the views by clicking the right
mouse button. In the zoomed-out view, all objects were
visible, but details of the targets could not be seen. To
examine an object and determine whether it is a target,
users had to zoom in by moving their mouse near the
object and clicking the right mouse button.

• Panning. This technique implemented the typical panning
technique with a small improvement. The viewer moves
the viewport by a mouse down-slide-and-release
operation. The improvement takes into account the
momentum of the pan operation to slide the viewport
additional pixels in the direction of movement. The
system shows the objects in actual size at all times.

• Hopping. Hop was implemented as described above:
users click the mouse on the background and drag to
create a circle of movement. They then sweep the laser
beam across one or more halos to create proxies on the
circle, and may at any time select one of the proxies to
teleport to that object’s real location. Participants had to
navigate to the distant location in order to see landmarks
and click the ‘Y’ or ‘N’ buttons on the target.

Off-Screen Distance
To determine whether performance varies with the distance
of objects beyond the edge of the screen, we tested two
distances. The short range positioned the objects at 600
pixels beyond the edge of the screen. The long range
positioned objects randomly between 600 pixels and 1200
pixels beyond the edge of the screen.

Density
In most targeting tasks, the time to locate a target typically
increases with the number of objects or the density of the
information space. To determine whether density affected
performance, three density values were used: few (15
objects), some (30 objects) and many (60 objects). Ten of
the off-screen objects were used as targets; in addition to
the off-screen objects, eight distracter objects were always
displayed within the starting viewport.

Experimental Design
The study used a 3×2×3 within-participants factorial
design. The factors were:
• Navigation technique: zoom, pan, hop
• Off-Screen Distance: 600, 1200 pixels.
• Density: 15, 30, 60 objects.
Interaction technique was fully counterbalanced using a
Latin square; the other two factors were always presented in
increasing order (i.e., from smaller to larger distance, and
from smaller to larger densities). Within each condition,
participants carried out 2 blocks of 10 off-screen targeting

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

304

trials. Each block consisted of trials for all combinations of
Technique × Off-Screen Distance × Density.

With 12 participants, 3 navigation techniques, 2 distances, 3
densities, and 20 trials per condition, the system recorded a
total of 4320 trials. The study system collected completion
times and error information for each target. An error
consisted of clicking ‘N’ on ‘true target’ and ‘Y’ on a ‘false
target’. Participants filled out a brief questionnaire asking
them about their preferences at the end of the experiment.

Procedure
Participants were randomly assigned to one of the six order
groups. Prior to starting the experiment, participants were
given a short warm-up session (10 trials per technique) to
practice off-screen target selection with the different
interaction styles. Upon completing the 10 practice trials,
all participants indicated they were comfortable with all
three systems. Participants then completed the off-screen
targeting tasks and were allowed to take breaks between the
two blocks and between techniques. After all conditions for
a session were complete, participants were asked to indicate
the technique that was easiest and the technique for which
they felt they performed the fastest.

RESULTS

Completion time

Effects of Navigation Technique
A repeated measures ANOVA showed a significant main
effect of navigation technique (F2,36=45.46, p<0.001). As
shown in Figure 6, overall mean times for hop were fastest
(5.83 secs) followed by zoom (12.52 secs) and pan (14.38
secs). Post-hoc pairwise t-tests showed that hop was
significantly faster than zoom and pan (both p<0.05) but did
not show any significant difference between zoom and pan.
The performance of each navigation technique in each of
the distance and density conditions is analyzed below.

Hop vs Zoom vs Pan

0

5

10

15

20

25

Density/Distance Conditions

Ti
m

e
(s

ec
s)

Hop
Zoom
Pan

15 Objects 30 Objects 60 Objects

Short Range – 600 pixels Long Range – 1200 pixels
15 Objects 30 Objects 60 Objects

Figure 6. Mean completion time for all conditions. Error
bars show one standard error from the mean.

Effects of Distance
As expected, off-screen distance of objects also had a
significant main effect on completion time (F1,24=12.42,
p<0.01). A significant Technique × Distance interaction
(F2,24=25.65, p<0.001) was also present. Post-hoc pairwise
comparisons showed that hop was significantly faster than
zoom and pan (p<0.001 for both) for both distances. The
results also show that zoom is significantly faster than pan
(p<0.05) at off-screen distance of 600 pixels. At the off-
screen distance of 1200 pixels, average zoom performance
is slower than pan, but this difference is not significant.

We also analyzed the effect of distance for each technique.
Interestingly, at the off-screen distance of 1200 pixels,
average performance time with hop is 5.48 secs compared
to 6.18 secs at the 600 pixel level. This difference is not
significant. The results show that users were significantly
faster (F1,12=30.091, p<0.001) with zooming at a distance of
600 pixels (10.213 secs) than at a distance of 1200 pixels
(14.836 secs). As expected, users were also significantly
faster (F1,12=39.498, p<0.001) with panning at the 600 pixel
distance (12.11 secs) than at the 1200 distance (16.65 secs).

Effects of Density
Surprisingly, the results do not reveal main significant
effect of density on performance time (F2,24=3.24, p=0.057).
However, a significant Technique × Density interaction was
present (F4,48=10.068, p<0.001). Post-hoc pairwise
comparisons showed that hop was significantly faster than
zoom and pan (p<0.001 for both) for all densities. However,
zoom is only significantly better than pan at the 15-object
density but not the others.

We also analyzed separately the effect of density on each
technique. With the hop technique, participants are
significantly faster at levels of 15 and 30 objects compared
to 60 objects (p<0.001 for both). With the zoom technique
we also observe significant main effects of density. Post-
hoc pairwise comparisons show that participants are
significantly faster with 15 objects than with 60 objects
(p<0.001), but there is no significant difference between 15
and 30 objects or 30 and 60 objects. Interestingly,
participants performed equally well on all three densities at
the 600 pixel off-screen distance but were significantly
slower between densities at the 1200 pixel level.

With the pan technique, the results show significant main
effect of density (F2,24=7.564, p=0.003). Pairwise
comparisons show significant difference between 15 and 30
objects (p=0.039) and between 15 and 60 objects (p=0.020)
but not between 30 and 60 objects. Surprisingly,
participants were faster with panning as the number of
objects increased. As discussed below, one explanation is
that participants became disoriented in sparse workspaces.

Errors
An error was recorded if the user selected the incorrect type
of target. The results showed that users were 99.99%
accurate with panning and zooming and 99.98% accurate

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

305

with hop. The difference is not significant and a statistical
test was not performed. One explanation for slightly lesser
accuracy with hop was that on certain trials a few users
aimed at the target during the teleportation. This resulted in
recording incorrect clicks because the scene was animated.

User Preferences
Twelve out of thirteen participants indicated that they felt
they were fastest with hop; one felt that zoom was fastest.
All thirteen participants found hop to be the easiest to use.

Observations of Navigation Patterns
Watching users carry out the task showed clear navigation
patterns for the different techniques. With zooming
interfaces, participants started each trial by a zoom-out
operation, followed by a zoom-in operation on the largest
cluster in the scene. From this initial inspection, users
performed clockwise or counter-clockwise zoom-out/zoom-
in operations until the target was located. With panning,
participants panned vertically or horizontally to initially
bring the off-screen targets into view. Subsequent panning
operations were performed, either clockwise or counter-
clockwise, until the target was located.

Participants applied two distinct navigation patterns with
hop; one pattern was used at the beginning of the
experiment and the second pattern was used in subsequent
trials until the end of the experiment. In the early trials, a
participant would invoke the laser beam and aim it toward
individual halos. All users would begin and complete a
sweeping movement of the laser in proximity of a halo. If
the resulting proxy represented a target of interest, the user
performed the teleportation; otherwise the user continued in
small steps to invoke individual proxies. However further
into the experiment, we noticed that participants performed
wider sweep operations with the laser beam. This action
invoked many proxies simultaneously. The user scanned the
proxies on the screen and then initiated the teleportation. In
these later trials, the center of the laser beam sweep was
usually closer to the edge of the screen than in earlier trials.

DISCUSSION
The user study provides evidence that a combination of
halos and proxies is an efficient way to find and select off-
screen targets. The main findings were:
• Selection times with hop were approximately half of what

they were with either zoom or pan;
• Performance with hop remained constant regardless of

changes in the distance of off-screen objects;
• Selection time with the zooming interface increased both

with the number of objects and with object distance;
• Performance with panning improved as the number of

objects increased.
In the following sections we consider reasons for these
results, we discuss how hop will generalize in real-world
systems, and summarize the main lessons for designers.

Reasons for our findings
The main reason for the performance of hop is the reduction
in the number of navigation actions that users need for
completing the task. Since the first part of the task is to find
and evaluate targets, bringing all desired targets towards the
user greatly reduces the amount of navigation work
required. A hop involves one set of actions – a click-and-
drag to create the circle of movement, another drag to bring
proxies into range, and a visual search and selection to
choose a proxy. In contrast, searching for a target in both
zoom and pan requires multiple actions. We recorded the
number of actions of these types: each trial with hop
required about 1.3 operations as described above, each trial
with zoom required about 16 operations, and each trial with
pan required about 21. The high correlation between the
number of navigations and performance times shows that
the amount of navigation is a significant factor in off-screen
targeting. This result confirms the minimal navigation
design principle defined earlier.

A second result that requires explanation is that panning
was faster in higher-density conditions. One reason is that
larger densities helped participants stay oriented and aware
of screen boundaries. Participants became disoriented when
locating an off-screen target with panning, a problem that
was more acute when several panning operations did not
reveal any objects. The lower concentration of distracters in
small densities typically resulted in users panning multiple
times to locate clusters. With larger densities, these
distracters themselves gave information about direction of
travel and of the boundary of the workspace. With a denser
scene, the chances of the user going astray during a pan
operation was less likely than in a sparse scene.

Limitations to the hop technique
Although hop was by far the most effective technique in our
study, there are certain limits to the technique.
• Clutter. Halos add visual information to the screen, and

even with our modifications to the original halo
presentation, large numbers of objects will occlude the
screen edges, reducing usable space. Hop can still work
in cluttered situations, although the user has reduced
control over which proxies are created. The clutter can be
reduced by replacing halos with glyphs. The radius of the
glyph could indicate the distance of the off-screen object.
When two or more off-screen objects are in proximity,
concentric circles could be inserted in the glyph, as in [1].

• The nature of the inspection task. In our study, the hop
proxies provided the right amount of detail to determine
whether objects were legitimate targets. However, other
tasks may require information that is not provided by our
current proxies. For example, if contextual information is
important in deciding on targets, a hop user may need
several teleportations before finding the target.

• Large-scale context. Hop, like all proxy techniques, takes
targets out of context in order to bring them closer.
Techniques that preserve awareness of the overall

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

306

context, such as zooming, may allow users to better
decide on which targets are most likely to be legitimate.

• Getting lost. The teleportation that is inherent to hop may
cause some users to lose track of where they are in the
overall space. We believe that this problem could easily
be remedied by the addition of an inset overview that
shows the user’s current location in the workspace.

Using hop in real-world applications
The major strength of hop is that it allows the user to
navigate quickly to an interest area off-screen to inspect
whether information in that region is important. However,
there are several issues that must be considered if it is to
work in real-world tasks.

Filtering. Hop depends on a filter applied by the user that
specifies which objects will be inspected. Once the filter is
applied, hop can display the halos for all the objects off-
screen. The remainder of the interaction technique would
behave similarly as in the experimental setup.

Drag-and-drop to off-screen locations. Many applications
will require that users be able to take objects to the off-
screen location. Hop can be adapted for this task; since the
proxies stay on the screen for a short time after they appear,
the user could drag an object to the proxy to initiate the
action. If the visible lifespan of the proxy is too short, users
could also drag the proxy onto the real object; the proxy
would ‘capture’ the object to be moved, and the
teleportation would begin.

Small-screen devices. The hop technique can be adapted for
small viewports such as those available on PDAs or larger
mobile phones. However, as with other proxy-based
techniques, the number of proxies that can be displayed
simultaneously is limited. One approach would be to reduce
the time span for which a proxy is visible, allowing other
proxies to be shown. Another strategy would be to resize
the proxies as has been done with other systems (e.g., [6]).

Alternative Designs for Hop
Several alternative designs can improve various aspects of
hop. Augmenting halos (as in [27]) to show information
about the object is one possible extension to hop. This
design would require that users learn a new mapping from
information to visual dimension and does not allow for the
amount of detail possible with a proxy. However, enhanced
halos could help the user decide which proxies to invoke.

An alternative to the laser beam would be to allow the user
to select or cross halos with a pointing device. This
technique could work in many situations; however, crossing
several halos could be difficult, and dragging a stylus
around a screen edge is difficult on devices that do not have
a raised frame around the screen. Crossing also requires that
the user move away from the original area of interest.
Additionally, interacting with a laser beam has benefits
over crossing for devices with jog-dial controls. In these
cases the user can press the jog-dial to invoke the laser, then
spin the jog-dial to rotate the laser and press the dial to

select a target. However, for a wider range of flexibility,
crossing can be used as an adjunct to the laser.

Comparing hop to other navigation techniques
As stated above, we compared hop to zoom and pan
because these are the most common techniques in current
applications. There are, however, a number of
modifications that could be made to zooming or panning to
improve their performance, and there are other navigation
techniques that could be tested.

Panning with halos. As shown by Baudisch and Rosenholtz
[1], halos improve performance over ordinary panning.
However, halos alone do not reduce the time required to
pan the view to the target, and therefore we believe that the
addition of proxy teleportation in hopping would still
outperform this technique.

Focus+context views. Fisheye displays or moveable-
magnifier views could allow users to inspect potential
targets more quickly than was possible with our
implementation of zooming. We plan to test hopping
against these techniques in the future; however, both
fisheyes and magnifiers introduce additional problems that
may reduce their efficacy. For example, fisheye views can
make targeting more difficult, and moveable magnifiers can
occlude much of the context, particularly on small screens.

Lessons for Practitioners
We believe there are several lessons designers of large
visual workspaces might find valuable from our findings:
• In large workspaces that necessitate off-screen targeting,

designers should consider hopping as an alternative to
zooming or panning.

• Bringing potential targets towards the user (i.e. proxies)
assists navigation on small screens as much as it does on
large displays, but should be coupled on the small screen
with awareness of off-screen content.

• Off-screen targeting techniques should be designed using
the minimal navigation principle to reduce overall
navigation time.

• For short off-screen distances and sparse datasets, zoom-
based interfaces should outperform panning.

CONCLUSION
Many applications provide large visual workspaces with
small viewports, resulting in off-screen content. No current
navigation technique is able to meet all of the design goals
for selecting off-screen targets. We introduced a new
technique – hop – to address this problem. Hop allows users
to quickly and easily navigate to a region outside the
viewport; it uses halos to provide an awareness of objects
outside the view, a ‘laser beam’ to create proxies of specific
off-screen objects, and a teleportation mechanism that takes
the user to the remote location.

We carried out a user study to compare hop to two
mainstream navigation techniques, grab-and-move pan and
two-level zoom. Users were able to select off-screen targets

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

307

in half the time that was needed by either of the other two
techniques. In addition, all users preferred using hop. Our
results underscore the value of both halos and proxies, and
show that these techniques can be successfully combined.

In future work, we are planning to continue studying hop in
a variety of settings. First, we plan to test the technique in a
more realistic task, in which the background data (e.g., the
map) is important for deciding on targets. Second, we plan
to investigate hopping with mobile devices and dynamic
(e.g., moving) off-screen objects. We also want to test hop
in tasks that involve other types of off-screen navigation,
such as spatial comparisons between elements in different
locations. Last, we plan to investigate extensions to hop,
such as adding read wear [23] to halos, to assist the user in
keeping track of areas that have already been inspected.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable suggestions. This
research is supported by NSERC.

REFERENCES
1. Baudisch, P. and Rosenholtz, R. (2003). Halo: a

technique for visualizing off-screen objects. Proc.
CHI’03, 481-488.

2. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,
Tandler, P., Bederson, B., and Zierlinger, A. (2003).
Drag-and-pop and drag-and-pick: techniques for
accessing remote screen content on touch- and pen-
operated systems. Proc. Interact’03, 57-64.

3. Baudisch, P., Good, N., Bellotti, V., and Schraedley, P.
(2002). Keeping things in context: a comparative
evaluation of focus plus context screens, overviews, and
zooming. Proc. CHI’02, 259-266.

4. Baudisch, P., Xie, X., Wang, C., and Ma, W. (2004).
Collapse-to-zoom: viewing web pages on small screen
devices by interactively removing irrelevant content.
Proc. UIST '04, 91-94.

5. Bederson, B. B. and Hollan, J. D. (1994). Pad++: a
zooming graphical interface for exploring alternate
interface physics. Proc. UIST '94, 17-26.

6. Bezerianos, A. and Balakrishnan, R. (2005). The
vacuum: facilitating the manipulation of distant objects.
Proc. CHI '05, 361-370.

7. Björk, S. (2000). Hierarchical flip zooming: enabling
parallel exploration of hierarchical visualizations. Proc.
AVI '00. 232-237.

8. Björk, S., Holmquist, L. E., Redström, J., Bretan, I.,
Danielsson, R., Karlgren, J., and Franzén, K. (1999).
WEST: a Web browser for small terminals. Proc. UIST
'99. 187-196.

9. Cockburn, A. and Savage, J. (2003). Comparing Speed-
Dependent Automatic Zooming with Traditional Scroll,
Pan and Zoom Methods. Proc. CHI’03, 87-102.

10. Gutwin, C. (2002). Improving Focus Targeting in
Interactive Fisheye Views, Proc. CHI’02, 267-274.

11. Gutwin, C. and Fedak, C. (2004). Interacting with big
interfaces on small screens: a comparison of fisheye,
zoom, and panning techniques. Proc. Graphics Interface
’04, 145-152.

12. Hinckley, K., Cutrell, E., Bathiche, S., and Muss, T.
(2002). Quantitative analysis of scrolling techniques.
Proc. CHI '02, 65-72.

13. Hornbæk, K. and Frøkjær, E. (2001). Reading of
electronic documents: the usability of linear, fisheye,
and overview+detail interfaces. Proc. CHI '01, 293-300.

14. Igarashi, T. and Hinckley, K. (2000). Speed-dependent
automatic zooming for browsing large documents. Proc.
UIST '00, 139-148.

15. Johnson, J. A. (1995). A comparison of user interfaces
for panning on a touch-controlled display. Proc.
CHI’95, 218-225.

16. Kaptelinin, V. (1995). A comparison of four navigation
techniques in a 2D browsing task. Proc. CHI’95
Extended Abstracts, 282-283.

17. Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N.,
and Kurtenbach, G. (2004). A remote control interface
for large displays. Proc. UIST’04, 127-136.

18. Lam, H. and Baudisch, P. (2005). Summary thumbnails:
readable overviews for small screen web browsers.
Proc. CHI '05, 681-690.

19. Moscovich, T. and Hughes, J. F. (2004). Navigating
documents with the virtual scroll ring. Proc. UIST '04,
57-60.

20. O’Hara, K. and Sellen, A. (1997). A comparison of
reading paper and on-line documents. Proc. CHI’97,
335-342.

21. Robbins, D., Cutrell, E., Sarin, R., & Horvitz, E. (2004).
ZoneZoom: map navigation for smartphones with
recursive view segmentation. Proc. AVI’04, 231-234.

22. Sarkar, M., and Brown, M. (1992). Graphical Fisheye
Views of Graphs. Proc. ACM CHI ‘92, 83-91.

23. Skopik, A. and Gutwin, C. (2005). Improving
revisitation in fisheye views with visit wear.
Proceedings CHI’05, 771-780.

24. Smith, R.B., Hixon, R., and Horan, B. (1998).
Supporting Flexible Roles in a Shared Space. Proc.
CSCW '98, 197-206.

25. Smith, G. M. and Schraefel, M. C. (2004). The radial
scroll tool: scrolling support for stylus- or touch-based
document navigation. Proc. UIST '04, 53-56.

26. Tan, D., Meyers, B., Czerwinski, M. (2004). WinCuts:
manipulating arbitrary window regions for more
effective use of screen space. Proc. CHI’04, 1525-1528.

27. Zellweger, P. T., Mackinlay, J. D., Good, L., Stefik, M.,
and Baudisch, P. (2003). City lights: contextual views in
minimal space. Proc. CHI’03, 838-839.

28. Zhai, S., Smith, B., and Selker, T. (1997) Improving
Browsing Performance: a study of four input devices for
scrolling and pointing tasks. Proc. IFIP HCI’97, 286-
293.

CHI 2006 Proceedings • Multidisplay Environments April 22-27, 2006 • Montréal, Québec, Canada

308

