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ABSTRACT 
A challenge in building interruption reasoning systems is to 
compute an accurate cost of interruption (COI). Prior work 
has used non task-specific cues to predict COI, but ignore 
characteristics related to the structure of a task. This work 
investigates how well characteristics of task structure can 
predict COI, as objectively measured by resumption lag. In 
an experiment, users were interrupted during task execution 
at various subtask boundaries to collect a large sample of 
resumption lag values. Statistical methods were employed 
to create a parsimonious model that uses characteristics of 
task structure to predict COI. A subsequent experiment with 
different tasks showed that the model can predict COI with 
reasonably high accuracy. Our model can be expediently 
applied to many goal-directed tasks, allowing systems to 
make more effective decisions about when to interrupt.  
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INTRODUCTION 
As users increasingly multi-task among proactive systems, 
their tasks are being interrupted more often [10, 18, 22, 27]. 
Though proactive delivery of information can benefit users, 
studies show that interrupting primary tasks can negatively 
impact productivity [4, 7, 9, 29] and affective state [1, 39]. 

To enable users to maintain benefits of proactive systems 
while mitigating these interruption costs, systems are being 
developed that can reason about appropriate moments for 
interruption [14, 15]. To make effective decisions, systems 
must be able to accurately predict the cost of interruption 
(COI). Systems currently predict COI using cues related to 

desktop activity, scheduled user activities, and visual and 
acoustical analysis of the task environment [13-15, 17, 19].  

Systems could predict a more accurate COI if they also 
considered characteristics related to the structure of a task. 
Task structure refers to the subtasks and boundaries within 
a task decomposition [5]. Characteristics of task structure 
include depth of decomposition, types of subtasks, mental 
carryover, etc. Consideration of task structure is imperative 
since it can affect workload [5], which affects the COI [37]. 
Specifically, systems need to consider subtask boundaries 
since they are posited to reflect lower workload [28], which 
typically results in lower COI [37], and since boundaries 
are present in almost every goal-directed task [5]. 

Our prior work empirically demonstrated that interrupting 
at subtask boundaries results in much lower COI than non-
boundary moments [4, 21]. We also found that interrupting 
at boundaries with lower workload results in meaningfully 
lower COI than at boundaries with higher workload. 
However, differentiating among subtask boundaries based 
on workload required the use of a physiological measure. 
This process was overly laborious and required access to 
specialized hardware. However, analysis of the data hinted 
at a possible alternative: leverage characteristics related to 
task structure to predict workload (COI) at boundaries.  

This work investigates how well characteristics of a task’s 
structure can predict the COI at subtask boundaries. In an 
experiment, users performed representative primary tasks 
and were interrupted at various boundaries with peripheral 
tasks. Resumption lag, time to resume primary tasks after 
an interruption, was used to provide ground truth for COI. 

From a candidate set of characteristics, stepwise regression 
was applied to identify the best predictors of resumption lag 
(COI). Resumption lag values were then clustered into three 
classes to allow better interpretation of the COI. A multi-
layer perceptron (MLP) was constructed to learn a mapping 
from the predictors to the COI classes. The generalizability 
of our COI model, consisting of the MLP plus heuristics for 
assigning its inputs, was evaluated in a subsequent user 
experiment using a different set of primary tasks and 
achieved reasonably high classification accuracy.   

The benefit of our COI model is that it can be expediently 
applied to approximate COI at subtask boundaries in many 
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goal-directed tasks. Having access to these values would 
allow interruption reasoning systems to differentiate among 
boundaries, absent the use of a physiological measure of 
workload. Our model could be extended to parts of a task 
other than boundaries as well as integrated into frameworks 
that also consider social and environmental cues [15, 19]. 

RELATED WORK 
We situate our work within broader strategies for managing 
interruption, review empirical costs of interruption to justify 
our direction of work, discuss models for predicting the 
COI, and relate characteristics of task structure to the COI. 

Strategies for Managing Interruption 
There are four known strategies for managing interruption 
[26]; immediate, scheduled (defined intervals), negotiated 
(user determined), and mediated (third party decides). Our 
work contributes to the mediated strategy, where a system 
attempts to determine low cost moments for interruption. 
Mediated strategies can be used to meaningfully mitigate 
the COI [4, 26] and the ability to implement such strategies 
within computational systems has been demonstrated [16]. 

Empirical Cost of Interruption 
Studies show that interrupting tasks at random moments can 
cause users to take up to 30% longer to resume the tasks, 
commit up to twice the errors, and experience up to twice 
the negative affect than when interrupted at boundaries [1, 
4, 21]. Other studies show similar results [2, 8, 26, 39] and 
the differences in COI are typically attributed to differences 
in workload at the point of interruption [4]. Field studies 
also show that interruptions similar to those typically used 
in controlled studies are common in practice [10, 22].  

It is important to mitigate these costs, as response delays or 
errors committed due to interruption can cost human life in 
safety critical domains [27], and unnecessary increases in 
negative affect degrades the user experience in others [34]. 

Interruption reasoning systems seek to deliver information 
when the costs would be low. To achieve this, systems must 
have an accurate model of COI during task execution. Our 
work contributes such a model, based on resumption lag.  

Characteristics of Task Structure and COI  
A model for the COI should consider task structure, as task 
structure generally affects mental workload [5], which 
affects COI [37]. Prior work has sought to further elucidate 
the relationship between characteristics of task structure 
and the COI. For example, Monk et al. [29] and Czerwinski 
et al. [9] decomposed a task into temporal phases and found 
that interrupting during earlier phases had lower cost. 

Our work focuses specifically on one component of task 
structure - subtask boundaries. This is because systems can 
detect them [3] and because they are present in almost 
every goal-directed task [5]. Most importantly, our prior 
work showed that interrupting at subtask boundaries results 
in much lower COI than at non-boundary points [4, 21]. We 
also found that interrupting at subtask boundaries with 

lower mental workload results in meaningfully lower COI 
than interrupting at boundaries with higher workload.  

However, a limitation of our approach was that it required 
the use of a physiological measure to differentiate among 
subtask boundaries. To overcome this limitation, analysis of 
the data suggested that certain characteristics of boundaries, 
e.g., level in the task model, could be used to predict 
workload (COI), absent the use of a physiological measure.  

This work further investigates which characteristics of a 
task’s structure best predict the COI at boundaries and the 
prediction accuracy of the resulting COI model. 

Predicting the Cost of Interruption  
The foremost method for predicting the COI is to build a 
probabilistic model that uses input cues related to desktop 
activity, visual and acoustical analysis of the physical task 
environment, and scheduled activities of the user. To train 
such a model, ground truth for the COI may be defined by 
users [15, 19] or determined empirically [14]. For example, 
Fogarty et al. built a statistical model that maps interface 
events (typing, scrolling, navigating, etc.) to one of three 
classes of task engagement (COI), where ground truth was 
determined using response time to a secondary task [14]. 

Our method of statistical modeling follows prior work, but 
our work differs in that we are using characteristics related 
to the structure of a task and are using resumption lag as the 
ground truth for COI in the model building process. Our 
selection of resumption lag is important, as it provides a 
direct, empirical cost of interruption. Our model can be 
used alone or can complement the use of existing models to 
predict COI more accurately than either could predict alone.  

EXPERIMENT 1: COLLECTING COI DATA  
The purpose of our first experiment was to collect a sample 
of COI data. This was achieved by having users perform 
primary tasks, interrupting the tasks at various boundaries 
with peripheral tasks, and measuring the resumption lag. 

Users 
12 users (7 female) participated in the study. Users ranged 
from 23 to 33 years of age (M=26.33, SD=2.839). Users 
were compensated with a $5 coupon to a local coffee shop. 

Primary Tasks and Models 
Three categories of primary tasks were developed: 

• Video Editing. As shown in Figure 1, users were asked to 
use Windows MovieMaker to compose a short (~ 1 min) 
digital video from provided clips, each about 15-20s. 
Themes of clips included Disney parade, animal antics, 
soccer highlights, baby bloopers and bicycle stunts. The 
user reviewed the clips, added a subset of the clips to the 
editing timeline and edited length/content as desired. Any 
visual transitions of their choice were then added between 
clips. Next, the user reviewed provided audio tracks and 
added the desired track to the video, and then compiled 
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and saved the final video. Users were encouraged to be as 
creative as possible while still following instructions. 

• Route Planning. An interactive map with two routes 
connecting two cities was displayed along with two 
tables. Each route had three segments and each segment 
had distance and fare data associated with it, displayed in 
a tooltip balloon. For the task, the user moved the cursor 
over a route segment, retrieved the distance and fare data, 
entered it into the corresponding row in the table, and 
repeated for the other two segments. The distance and 
fare columns were then mentally added and the result was 
entered into the last row. The user repeated this process 
for the second route and table and then selected the 
shorter and the cheaper routes from drop down lists. 

• Document Editing. Users edited a manuscript annotated 
with three comments that varied in the complexity of the 
edit required. Content included contemporary topics such 
as global warming, legal issues regarding digital media, 
endangered species, the education system in the U.S., etc. 
We felt these topics would be interesting and familiar to 
users. The user edited the document according to each 
comment, stored in a tooltip. After reading a comment, 
the user located the text, made the appropriate edit, and 

repeated this process twice more. Once edited, the user 
saved the document with a name of their choice.  

These tasks were designed to be engaging as well as to have 
meaningful subtasks requiring varying mental effort, salient 
boundaries between the subtasks, and largely prescribed 
execution sequences. The latter constraint was necessary to 
be able to interrupt task execution at specific points for data 
collection. Each task lasted about 5-6 minutes. The latter 
two tasks were adapted from our prior work [20]. 

Since a within-subjects design was used, multiple instances 
of each task were created and we were careful to alter just 
the content, not the basic execution structure of the tasks. 
For example, video editing used different video and audio 
clips, document editing used different content, and route 
planning used different city names and route data. 

To define the structural characteristics of the tasks, GOMS 
models were developed, one per category (see Figure 2 for 
the task model for video editing). Following [5], initial 
models were built based on our own understanding of the 
task’s execution. The models were iteratively refined by 
having users (in a pilot study) perform the tasks and 
matching the models to the observed execution sequences. 
This continued until the models achieved high accuracy.  

In developing the task models, we tried to balance having 
enough detail to identify lower-level boundaries with being 
able to allow for variability in the execution sequences. For 
example, the model in Figure 2 includes a subtask for insert 
transition at level 3, but whether a user drags or copies and 
pastes a transition to the timeline is not explicitly modeled. 
This allowed us to model the adjacent boundaries yet still 
capture some variability. We found that decomposing a task 
to about 3-5 levels typically achieved the desired balance. 

The final models were evaluated against the interaction 
sequences from the actual study. Each model achieved 
more than 90% accuracy with no obvious patterns in the 
errors. Models for route planning and document editing 
were adapted from our prior work [20] while the model for 
video editing was newly constructed for this work. 

Figure 1: The video editing task. A user creates a short digital 
video by composing and editing provided clips, inserting 
transitions between clips, and adding a suitable audio track. 

Figure 2: Part of the GOMS model for the video editing task, showing details for the Edit Video subtask. Time moves from left to right. 
The models were developed to strike a balance between having an appropriate level of detail and allowing for variability in execution 
sequences. Diamonds indicate common alternative sequences that were explicitly modeled and solid dots indicate optional subtasks. 
Values for predictors ([level, carryover, difficulty of next subtask]) are shown at a sample of the subtask boundaries. 
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Peripheral Tasks 
A realistic stock scenario was presented, adapted from prior 
work [4]. Each scenario consisted of a fictitious company’s 
name along with the quantity, date, and price of shares that 
the user hypothetically purchased from that company. Each 
scenario also contained the price of the stock and a one 
sentence “news-flash” about the company. After analyzing 
the scenario, the user selected one of five trading actions; 
do nothing, buy a few more shares, buy many more shares, 
sell a few shares or sell all shares. Multiple instances of the 
task were created and each required about 20s to perform. 

This task was used because it is representative of peripheral 
information that users often receive [24, 25] and because 
analyzing the scenarios taps cognitive resources [37]. 

Moments for Interruption  
For each task, we selected a sample of ten representative 
subtask boundaries from the corresponding GOMS model. 
For example, for video editing, boundaries included the 
point after dragging a clip and dropping it on the timeline, 
but before making any edits; after making the last edit on 
the timeline, but before adding transitions; after completing 
the video editing but before saving it, etc. The set of 
selected boundaries sampled different levels and temporal 
positions in the task model. Boundaries for the other tasks 
were selected using a similar strategy. 

Experimental Setup 
A Wizard of Oz technique was used to time delivery of the 
peripheral task. The experimenter monitored a user’s task 
execution using a Real VNC client and delivered peripheral 
tasks at the selected boundaries using a remote command.  

For each selected boundary, the experimenter waited for the 
user to make a directed action signifying the start of the 
subsequent subtask, based on the task model. This method 
mimicked how systems may identify boundaries in practice 
[3]. Since a high speed LAN connection was used, there 
was negligible latency from when the peripheral task was 
commanded to when it actually appeared on a user’s screen. 

Procedure 
Upon arrival at the lab, a user went through an informed 
consent process and received general instructions for the 
study. Since a within-subjects design was used, the primary 
task categories were presented using a Latin Square design.  

For each category, the user received specific instructions, 
performed a practice and then performed the actual trials.  
A user performed five task trials and was interrupted twice 
during each trial. Interruption moments were randomly 
selected from the defined set of ten, without replacement. 
The peripheral task was presented in a modal window and 
covered the main work area, prompting a task switch at the 
defined moment. Users were asked to begin the peripheral 
task as soon as it appeared and, once complete, to resume 
the primary task as quickly as possible. This process was 
repeated for each task category. The study lasted 90 min.  

Measurements 
Resumption lag was used as the cost of interruption. It was 
measured as the time difference from when the peripheral 
task window was closed to when the user made the first 
observable action in the resumed primary task [2].  

Other measures could have included error rate and affective 
state. Errors were not used because they would be difficult 
to judge for creative tasks such as video editing and it is 
unclear what time window should be used for attributing 
errors to the interruptions. Affective state was not used 
since this is often measured using a subjective rating, which 
would likely change based on the interruption’s content. 
Resumption lag is objective, continuous, and well defined. 

RESULTS AND DEVELOPMENT OF THE COI MODEL 
A total of 360 resumption lag samples were collected. To 
normalize the resumption lag data, a natural log transform 
was applied, which is common for performance data. 
Outliers and data values corresponding to errors (e.g., the 
experimenter missed a boundary due to the user deviating 
from the model) were removed from the data (~ 6%). This 
left a total of 337 samples in the data set. As shown in 
Figure 3, the resulting transformed data set ranged from 
4.10 to 9.86 (M=7.3, SD=1.04). These results are consistent 
with resumption lag data reported in prior work [2, 21, 36]. 

With this transformed data, we proceeded to building the 
COI model. This consisted of identifying candidate factors, 
using stepwise regression to determine the most predictive 
ones, clustering the data into discrete classes, and learning a 
mapping from the predictive factors to those classes. 

Identify Candidate Factors 
The first step was to propose a candidate set of structural 
characteristics related to boundaries. Based on prior work 
and our own experience, we identified these factors: 

• Level. The level of a subtask boundary is defined as (1 +) 
the depth of the shared ancestor of the adjacent subtasks. 

Figure 3: Histogram of the transformed resumption lag data. 
The distribution is near normal, with more values in the 
middle and fewer at either end of the scale. Each bar 
represents the number of values that fall between the value 
corresponding to the previous bar and itself. 
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This factor was selected because prior work has shown 
that level affects how much mental workload decreases at  
boundaries [20] and that interrupting at boundaries at 
different levels in the task model influences COI [21]. 

• Presence of a visual resumption cue. This factor was a 
binary value (0=no cue) indicating whether the state of 
the primary task at the point of interruption provides an 
obvious visual cue for resuming it. The presence (not 
saliency) of cues has been thought to reduce COI [2, 6]. 

• Percent of task complete. This refers to how much of the 
overall task is complete at the boundary. To provide an 
accurate value, we timed a few users performing the tasks 
and then mapped the percent complete to each boundary 
in the model. Temporal position in a task (e.g., beginning, 
middle, end) has been shown to affect COI [9, 28, 29]. 

• Percent of parent subtask complete. This factor was 
similar to the previous one, except that percent complete 
was now measured relative to the parent of the subtasks 
adjacent to the boundary. This factor was considered 
because users often chunk execution of tasks [30]. 

•  Difficulty of preceding subtask. There is no standard 
method for computing the difficulty of subtasks. We thus 
adapted a heuristic often used to approximate difficulty 
when predicting resource conflicts between tasks [37]. 
The leaf subtasks (operators) were categorized based on 
presumed difficulty and the categories were qualitatively 
ordered based on their presumed cognitive demands. As 
shown in Table 1, this produced 6 categories, with ‘1’ 
being least demanding. For example, a mouse movement 
was assigned 1 whereas mental calculation was assigned 
6. If the preceding subtask was a goal subtask, the 
difficulty of its last operator was used. For example, the 
boundary between edit video project and save video 
project in the video editing task was assigned 1, as this 
was the difficulty of the last operator (trim audio track). 
Difficulty of preceding subtask was considered because 
COI is thought to depend on a user’s mental workload at 
the point of interruption [4]. 

• Difficulty of next subtask. This factor was included for the 
same reason as the previous one and its value was 
computed analogously. If the next subtask was a goal 
subtask, the difficulty of its first operator was used. 

• Carry over at boundaries. This factor refers to how much 
data must be maintained across a boundary. Similar to 
difficulty, we categorized boundaries based on presumed 
carryover, resulting in four categories, and qualitatively 
ordered them by assigning values of 0 (no carryover) to 3 
(high carryover). For example, maintaining a seven digit 
value across a boundary in route planning was assigned 3, 
while retaining where to position a clip in a video after 
selection was assigned 1. We included this factor since it 
provided another estimate of workload at a boundary.  

These values were computed for each boundary in the task 
models. Though additional characteristics could have been 
included, we restricted this first set to those identified in 
prior work and that could be computed relatively easily. 

Determine the Most Predictive Factors 
The next step was to determine which of the candidate 
factors were the most predictive of resumption lag. The 
technique employed was stepwise multiple regression. 

 We first checked the global utility of the regression model. 
A multiple regression analysis with Resumption Lag as the 
dependent variable and all candidate factors as independent 
variables was performed. The linear regression model was 
predictive (F(12,336)=11.23, p<0.0001, adjusted R2=0.25) 
and the residuals of the regression model met the normality 
assumption. Passing the global utility test strongly suggests 
that at least one of the candidate factors has a non-zero 
coefficient and is predictive of resumption lag. 

To create a parsimonious model (the least number of factors 
that explain as much of the variance in the data as possible), 
a stepwise model building technique was employed. As 
summarized in Table 2, this technique showed that Level, 
Carry Over, and Difficulty of Next Subtask were the most 

Difficulty Category Example 

1 ( Least) Motor movements Move mouse towards a menu item or select a menu item 

2 Easy content generation Enter a new filename or select a transition for a video clip 

3 
Comprehension or store information 
in memory 

Read text or comments, retrieve a route segment’s distance and 
fare information and commit it to memory 

4 Recall information Recall a route segment’s distance and fare information 

5 Creative content generation Edit document text or edit video clips 

6 ( Most) Mathematical reasoning Add distance or fare information 

Table 1: The six levels of subtask difficulty in our tasks, their corresponding categories, and examples of each.  

Model β Std Err t p 

Constant 6.197 0.138 44.92  0.0001 

Level 0.38 0.068 5.581 0.0001 

Carry Over 0.158 0.067 2.351 0.019 

Difficulty 0.077 0.038 2.063 0.040 

Table 2: Regression model with the three predictive factors. 
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predictive of Resumption Lag, with adjusted R2 = 0.26. This 
means that 26% of the variance in Resumption Lag can be 
explained by these three characteristics alone, a very 
positive result given the innate complexities of the human 
information processing system [5].  

When compared to the full model, the amount of variance 
explained changed little, yet the number of factors was 
reduced to three. Also, the reduction to these three 
particular factors suggests that COI depends more on the 
characteristics that reflect current and prospective allocation 
of mental resources (workload) than on those that reflect 
temporal position or cue availability.  

An interruption reasoning system could use this model to 
predict resumption lag for each boundary in a task model. 
However, given the model’s modest correlation coefficient, 
a challenge for systems is to interpret the meaningfulness of 
differences among predicted values (e.g., how much better 
is 7 than 7.5), as each prediction has error associated with 
it. Though a z-score accounts for variance in the data set, it 
does not account for the error in the predicted value itself. 

Thus, we decided to cluster resumption lag into classes such 
that there was a meaningful difference between them. This 
would allow the model to be adapted to predict the classes 
rather than specific values, which would enable increased 
prediction accuracy, at the price of decreased sensitivity. 

Determine Cost Classes 
K-means cluster analysis was applied to the data. The goal 
was to identify the largest number of clusters such that 
meaningful differences would be maintained between them. 

Based on several data visualization techniques, we found 
that about 3-5 clusters would be appropriate. Analyzing 
each number, we found the use of 3 clusters (COIL, COIM, 
and COIH) to be most appropriate. With these clusters, 75 
values fell into COIL (M=5.938, SD=0.612), 177 values 
into COIM (M=7.252, SD=0.376) and 85 values into COIH 
(M=8.628, SD=0.505). An ANOVA showed that the means 

differed (p<.0001 between all pairs). Three clusters were 
the most that maintained these differences between pairs. 

This is consistent with [14], where it was reported that a 
user’s interruptibility could be best classified into at most 3 
classes. Our result is an interesting parallel, as it suggests 
that, absent a physiological measure, a system may only be 
able to effectively classify the COI into at most 3 classes. 

Learn a mapping from predictors to COI classes 
Finally, we needed a mechanism to map from the predictors 
to these COI classes. Unfortunately, the regression equation 
could not be used since the constant term (6.197) was 
greater than the mean of COIL (5.938), thus it could not 
always map predictors to this class. After analyzing several 
methods, we settled on the use of a multi-layer perceptron 
(MLP). Unlike a Naïve Bayes model, for example, an MLP 
model does not require the predictors to be independent. 

Back propagation was used to learn an MLP model, with 
Level, Carry Over and Difficulty of Next Subtask as input. 
There was one hidden layer and three outputs, one for each 
COI class. Figure 4 shows the resulting MLP. 

A 10-fold cross validation technique was used to evaluate 
the model. Table 3 shows the distribution of predicted vs. 
actual COI classes, where the diagonal represents correct 
predictions. The overall number of correct predictions was 
63.2%, much better than chance (N(0.33, .000656)=24.67, 
p<.0001). Inspection of the table shows that the model is 
most accurate for COIL and COIM, but slightly less accurate 
for COIH. However, the most egregious type of error, 
predicting COIL when it is actually COIH, is low (4.7%). 

The next step was to evaluate how well the model predicted 
COI classes when applied to boundaries within tasks that 
are different from those used in the model building process. 

EXPERIMENT 2: EVALUATING THE COI MODEL 
A second experiment was conducted to evaluate how well 
our COI model (the MLP plus heuristics for assigning its 
inputs) predicted COI classes when applied to boundaries 
within different tasks. Specifically, we wanted to (i) 
evaluate the accuracy of the predicted COI classes; and (ii) 
test whether there are differences in resumption lag between 
predicted COI classes, which would validate that reasoning 
systems should integrate the use of our model. 

Predicted Cost 
 

COIL COIM COIH Total 

COIL 
42 

(56%) 
32 

(42.7%) 
1 

(1.3%) 
75 

(100%) 

COIM 
24 

(13.6%) 
136 

(76.8%) 
17 

(9.6%) 
177 

(100%) 
Actual 
Cost 

COIH 
4 

(4.7%) 
46 

(54.1%) 
35 

(41.2%) 
85 

(100%) 

Table 3: Distribution of predicted vs. actual COI classes for the 
model building tasks. 

Figure 4: The MLP model that maps the predictors (Level, 
Carryover, and Difficulty of next subtask) to the COI classes. 
The input nodes are the predictors identified from the stepwise 
regression analysis while the output nodes correspond to the 
COI classes determined from the cluster analysis. 
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Users 
A different set of 12 users (2 female) participated in the 
study, with ages from 21 to 26 (M=24.2, SD=1.8). Users 
were compensated with a $5 coupon to a local coffee shop. 

Tasks and Models 
Two new tasks were developed for this experiment:  

• Collage Generation. As shown in Figure 5, users were 
asked to create collages in Adobe Photoshop that would 
communicate a given theme. Themes included activities 
in amusement parks, life as a CS student, and experiences 
in summer camps. To foster engagement in the task, users 
were told that the collages would be used for marketing. 
For each theme, four categories, each with four images, 
were provided (e.g., outreach, research, campus, and fun 
for life as a CS student). To create the collage, users 
created a blank image with a specified width and height, 
and then opened all of the source images (16 in total) that 
could be used in the collage. Users were to select at least 
one image from each category, paste it into the collage, 
and size and position it as necessary. After integrating the 
images, users manipulated their layer ordering to create 
the desired look and added at least one visual effect (e.g., 
blurred edges around each layer) to the collage. Finally, 
they saved the collage in a directory with a desired name.  

• Electronic Form Design. Users designed electronic forms 
using Adobe Designer. Forms included a registration 
form for an HCI workshop, customer satisfaction survey, 
and purchase order. Users were provided with a partially 
completed form and asked to complete it based on given 
requirements. For example, users were asked to construct 
fields for collecting payment information, feedback about 
customer service, and product information as efficiently 
as possible. Widgets such as text fields, check boxes, 
radio buttons, and drop-down lists were available for use. 
Users selected any widgets they felt were most suitable 
for collecting the needed information, placed them on the 
form, and added the appropriate text. 

Similar to the tasks used in the first experiment, these tasks 
were designed to be engaging and to have subtasks 
requiring varying mental effort, observable boundaries, and 
mostly prescribed sequences. Each task took about 5-6 
minutes to perform. Task models were iteratively developed 
and validated using techniques as before. Error rates of the 
task models were low, consistent with the first experiment. 

Predicted COI Classes and Moments for Interruption 
We applied our COI model, consisting of the heuristics for 
assigning values to the predictors and the MLP shown in 
Figure 4, to predict the COI class at each subtask boundary. 
For each subtask boundary, we used our heuristics to assign 
values for the three predictors (Level, Carry Over, and 
Difficulty of Next Subtask). The values were then used as 
input to the MLP, which computed the predicted COI class.  

Figure 6 shows part of the task model for collage generation 
with the predicted COI classes. Including both task models, 
there was a total of 38 subtask boundaries, of which 7 were 
assigned to COIL, 26 to COIM, and 5 to COIH.  

For the specific moments to interrupt, we randomly selected 
a sample of six boundaries from each task model, two from 
each of the three COI classes. The peripheral task, 
experimental setup and procedure, and resumption lag 
measurements were the same as in the first experiment. 

RESULTS OF EXPERIMENT 2 
A total of 144 data samples were collected. Prior to 
analysis, we filtered outliers and any data resulting from 
experimental errors, resulting in 7% of the values being 
removed. This left 134 samples in the data set. Once 
filtered, a natural log transform was applied to normalize 
the resumption lag data. 

Compare Predicted to Actual COI Classes 
The resumption lag values at each boundary were classified 
into their actual COI classes using the cluster information 
determined in Experiment 1.  

Figure 5: Collage generation task. A user created a collage by 
composing images from several categories depicting a certain 
theme. Users included at least one image from each category, 
manipulated the layers, and add visual effects to the collage. 

Figure 6: Part of the GOMS model for the collage generation 
task, showing details for just the Create Collage subtask. The 
predicted COI classes are shown at each subtask boundary. 
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Table 4 shows the distribution of predicted vs. actual COI 
values. As in Table 3, values along the diagonal, where the 
predicted costs match the actual costs, were the highest – 
56% for COLL, 49% for COLM, and 54% for COLH. Our 
model correctly predicted 53% of COI values, much higher 
than chance (N(0.33, 0.00165)=13.05, p<0.0001). 

The most egregious type of error (predicting COIL when it 
is actually COIH) was higher than for the model building 
tasks (20.8% vs. 4.7%), though it was still reasonably low 
overall. One plausible explanation is that there may have 
been increased mental workload across higher-level 
boundaries in these tasks. This would likely cause greater 
resumption lag, while the model would predict a lower cost. 

The classification accuracy for COIL (~56%) is identical to 
what was obtained for the model building tasks, while the 
classification accuracy for COIM decreased from 77% to 
49%, and accuracy for COIH increased from 40% to 54%. 
As before, most errors were made to an adjacent class and 
fewer were made between COIL and COIH. 

Though changes in the distribution occurred, they were not 
unexpected as our heuristics can only approximate values 
for the predictors of Carryover and Difficulty Next Subtask. 
The most important outcome, however, was that the overall 
accuracy and pattern of distribution was very similar to the 
model building tasks. This suggests that our COI model can 
be reasonably generalized to other goal-directed tasks. 

Differences in Resumption Lag among Predicted COI 
For this analysis, we grouped the resumption lag values by 
their predicted (not actual) COI values. An ANOVA 
showed that resumption lag was different among predicted 
COI classes (F(2,131)=25.23, p<0.0001). Post hoc tests 
showed that COIH (M=7.44, SD=0.92) had greater 
resumption lag than COIM (M=6.92, SD=0.66, p<0.013) 
and COIL (M=6.14, SD=0.97, p<0.0001) and that COIM had 
greater resumption lag than COIL (p<0.0001). The means of 
each predicted COI class translates into 1702ms (COIH), 
1012ms (COIM), and 464ms (COIL) respectively, which 
represents meaningful differences for resumption lag data, 
especially when extrapolated over many interruptions.  

Using predicted COI to group resumption lag values was 
important, as the results show that even with some errors, 
the model is accurate enough such that predicted values still 

correspond to empirical, meaningful differences in the cost 
of interruption. This validates that a system can and should 
use our model to differentiate among subtask boundaries, 
enabling more effective decisions about when to interrupt. 

DISCUSSION 
This research explored how well structural characteristics 
of a task could be used to differentiate COI among subtask 
boundaries. By employing a series of statistical methods, 
we showed that three characteristics of task structure (Level, 
Carryover, and Difficulty of Next Subtask) can be used to 
predict COI at boundaries with reasonably high accuracy. 
We also showed that our model’s predictions of differences 
in COI correspond to differences in resumption lag.  

Cognitive theory argues that lower COI should result when 
a primary task is interrupted at moments of lower workload, 
as fewer mental resources must be re-acquired to resume 
the task [37]. The efficacy of our model thus derives from 
its ability to capture the current (Level and Carryover) and 
prospective (Difficulty of Next Subtask) allocation of 
resources (workload) at subtask boundaries. The advantage 
of our model is that it can differentiate subtask boundaries 
based on workload, absent use of a physiological measure. 

In the next sections, we briefly describe how the COI model 
could be used in practice and then discuss its limitations. 

Applying the COI Model in Practice 
We have recently developed a task framework that includes 
a language for describing tasks and a system for monitoring 
execution of those tasks [3]. Our COI model is intended to 
be used with this type of task monitoring framework. 

The language allows the structure and execution sequences 
of a task to be concisely described, but in much less detail 
than those used for user simulation [32]. COI values can be 
assigned to any point in a description, including boundaries. 
To apply our COI model, a person computes values for the 
predictors (Level, Carryover, Difficulty of Next Subtask) at 
each boundary, inputs the values into the MLP (figure 4), 
and encodes the COI predictions within the description.  

During task execution, interface events are matched to the 
task descriptions. When a user reaches a subtask boundary, 
as indicated in the description, the encoded COI value is 
retrieved and can be sent to a broader reasoning framework. 
The framework could then consider this value along with 
social and environmental cues to determine an overall COI.  

The benefit of using our COI model and task framework is 
that it will enable reasoning systems to ground at least part 
of their COI prediction in cognitive theories of resource 
allocation related to task structure, which has not been 
directly considered in existing systems. This is important 
since resource allocation strongly influences the cognitive 
cost of interruption [37] and other types of task switching 
[33].  By considering this information, systems can make 
more effective decisions about when to interrupt, mitigating 
competition for resources and thus the COI. 

Predicted Cost 
 

COIL COIM COIH Total 

COIL 
35 

(55.56%) 
19 

(30.16%) 
9 

(14.29%) 
63 

(100)% 

COIM 2 (4.26%) 23 
(48.94%) 

22 
(46.81%) 

47 
(100)% 

Actual 
Cost 

COIH 
5 

(20.83%) 
6 

(25%) 
13 

(54.17%) 
24 

(100)% 

Table 4: Distribution of predicted vs. actual COI classes for the 
tasks in the second evaluation. 
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Our current COI model would yield the most benefit if it 
were applied to high frequency, routine, or safety critical 
tasks, which often have prescribed execution sequences 
[11]. For tasks with less prescribed sequences, task models 
for significant variations could be created or learned and 
our COI model could be applied to each of them. Though 
this would require a large effort, it may soon be possible to 
develop or adapt tools to automate much of the process 
(e.g., see task modeling tools discussed in [12, 23, 35]). 

Limitations 
Our COI model currently considers only one component of 
task structure – subtask boundaries. This is because systems 
can detect them [3], the cost of interrupting at boundaries is 
lower than at other points [21], and they are present in 
almost every goal-directed task [5]. However, systems may 
also want to differentiate among non-boundary points, i.e., 
subtasks. For example, this could be useful when the 
temporal distance between boundaries is large. To allow 
differentiation among subtasks, our model building process 
could be utilized to extend the current COI model or create 
a complementary model for different types of subtasks. 

The presence, location, or utility of boundaries may change 
as a user’s knowledge of performing a task transitions from 
novel to skilled behavior. As a task becomes skilled, the 
mental representations are thought to become coarser [31], 
eliminating or reducing the utility of some boundaries. 
However, experimental studies have shown that familiarity 
with a task seems to have little effect on how users perceive 
its hierarchical structure [38], suggesting that the mental 
representations for tasks remain fairly stable. Still, skilled 
tasks are typically performed in larger chunks [35] and COI 
models should consider this effect. A possible solution is to 
extend our current COI model to include skill level as a 
predictor and to encode a COI value for each skill level at 
each boundary or other salient point in the task. 

Our current COI model assumes a stable goal structure and 
mostly prescribed execution sequence, as these impact the 
values of the predictors. This means that our current COI 
model is best suited for tasks that meet these constraints, 
e.g., high frequency, routine, or safety critical tasks. One 
approach for addressing this limitation is to create multiple 
task models, apply our COI model to them, and adapt or 
develop tools that can automate much of the process, e.g., 
[12 , 23]. Also, when simpler tasks are composed into more 
complex activities, the COI values assigned to the simpler 
tasks cannot be directly applied to the composition. The 
current solution requires that the COI values be recalculated 
by fully applying the COI model to the broader activity.  

FUTURE WORK 
Our future work is to: 

• Investigate automated methods for building task models 
and predicting COI. In this work, we developed the task 
models by hand and manually applied the COI model. 
Though this process works, it requires a fair degree of 

effort. We are thus investigating how to adapt automated 
task modeling tools (e.g., [23]) to not only fully support 
building hierarchical task models, but also to automate 
the process of predicting COI at the boundaries. 

• Extend the COI model to include non-boundary points. A 
system may need to interrupt at non-boundary points, 
e.g., when the time until the next low-cost boundary is 
too long. Since different types of subtasks, e.g., language 
comprehension, memory store/recall, mental reasoning, 
etc. typically induce different workload, they would also 
have different COI. We would like to follow a similar 
process to extend our COI model for different subtasks. 

• Implement our COI model within an existing interruption 
reasoning system. As discussed earlier, COI values can 
be encoded within machine-parsable task descriptions. A 
user’s task execution can be matched to the descriptions 
to identify when a subtask boundary is reached, retrieve 
its COI value, and pass it along to a broader framework. 
We are more fully implementing this process within [3] 
and will soon be testing its efficacy in practice. 

CONCLUSION 
Our work has made several contributions towards enabling 
systems to compute an accurate cost of interruption (COI). 
First, we drew upon literature in cognitive psychology and 
our prior work to establish that systems need to consider 
task structure when reasoning about when to interrupt.  

Second, using data collected in an experiment, we showed 
which characteristics of boundaries are most predictive of 
resumption lag and then developed a parsimonious model 
that maps these predictors to a set of discrete COI classes. 

Third, our model was applied to predict COI at boundaries 
within different tasks. Results showed that reasonably high 
classification accuracy was achieved. Also, results showed 
that predicted COIs corresponded to meaningful differences 
in resumption lag, validating that systems can and should 
use our model to differentiate among subtask boundaries. 

Finally, we described how our model could be integrated 
into frameworks that consider cues beyond the context of 
the current task. This would allow systems to make better 
decisions about when to interrupt than is possible today. 
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