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Abstract

The present paper addresses the problem of detecting closed

compartments produced by a set of planar faces in the space.

The topology of the set is general, and edges in the final

piecewise planar surface can belong to one, two or more

faces; boundary representations for non-manifold solids are

particular cases. An octree structure (dubbed compartment
Octree) that defines a 3D graph through the volume defined

by the set of faces is proposed, and it is shown that a seed

propagation algorithm on the graph can be used to detect

the existing closed compartments. The algorithm can either

compute the total number of compartments or detect if the

set of faces define a closed solid volume, the outside part

being considered as a separate compartment.

1. Introduction

Several solid representation schemes have been developed for

Geometric Solid Modelling [ReV-83]. Choosing one or other

is closely linked with the application at hand, its domain,

features and interface with the user.

In some applications it is necessary to store volume prop-

erties or volume information of the objects that we want

to model. Some examples are medicaJ imaging [Mea-85],

geological information [Bru-89], computing integral proper-

ties [LeR-82] or detecting assemblies in solids composed of

different materials such a layers in silicon devices [RoC-89].

When this kind of volume information is needed several solid

models are more suitable than others. In particular, octree

representations are shown to be specially useful for this class

of applications.

An octree is a tree that codes the adaptive recursive

subdivision of a finite cubic universe. In this structure, each

node is terminal or has eight descendants. The volume and,

if necessary, the external geometry of the solid are stored in

the allowed terminal nodes. The root of the tree represents

the universe, a cube with an edge of size 2n. This cube is

divided into eight identical cubes, called octants, with an

edge length of 2n-1. Each octant is represented by one of

the eight descendants of the root. If an octant cannot be
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considered terminal (Grey node), it is divided into another

eight identical cubes which are represented as descendants

of the octant in question. The previous process is repeated

recursively until octants can be considered terminals. The

class of terminaJ nodes is a function of the application

[Bru-89][BJN-90]. For example, in classical octrees terminal

nodes are related to cubes that are totally inside the solid

(Black nodes) or totally outside (White nodes).

This paper discusses an octree structure that can be used

to solve some questions related to the volume of a solid.

We use the word object in a very wide way, so we are

thinking about dangling or not dangling and manifold or

non-manifold 3D objects [Req-77]. The only information

we need is a set of planar faces (externals or internal

with respect to the volume) that constitute the 3D object

that we want to analyze (Fig 1). Subsets of these faces can

FWP
Fig 1: Possible input data (2D)

close isolated volumes. We name each of these volumes a

compartment. More precisely, if S stands for the given set

of faces, then each of the connected components of E3 – S
(where E’ stands for the three dimensional euclidean space)

is a compartment.

The proposed octree structure defines a 3D graph through

the volume and can answer questions as how many compart-

ments does the object have, detect if the initial set of faces

bound a closed volume, obtain the connectivity graph among

http://crossmark.crossref.org/dialog/?doi=10.1145%2F112515.112533&domain=pdf&date_stamp=1991-05-01


Fig 2: Mesh vertices and the 3D graph produced by the octree representation

the compartments and calculate the volume of a compart-

ment.

In order to build the octree, an algorithm like that pre-

sented in [BrN-85] can be used. The only information needed

is a set of faces. This information can be extracted from the

BR, CSG or SCR [RoO-89] model of the solid. When the

octree has been built, a seed propagation algorithm can be

used to answer the stated questions.

Some previous works related to this paper are presented

in [Sam-89a]. From a colored classical octree (Black nodes

have a property associated to them, like color) algorithms

for connecting nodes with the same property are presented.

We can obtain this kind of octree from a set of faces but we

have an approximate representation of the volume. [Bru-89]

presents a special type of octrees, denoted mixed octrees,

that can handle solids that have their volume subdivided by

planes.

The paper is organized as follows. Section 2 introduces

several assumptions that the octree representations must

rmtiafy and presents algorithms that solve the stated prob-

lems. Then it gives a definition of an octree scheme satis-

fying those properties, and others that make computation

with it easier. Section 3 contains the necessary proofs. We

discuss some extensions in the conclusions

2. An Approach to the Problem

Let us suppose that an octree is generated, based on the ge.

ometry of the set of faces (Fig 2). Vertices of the cubes cor-

responding to terminal nodes in the octree will be noted as

mesh vertices. Neighbor terminal nodes are those having ge-

ometric contact between their corresponding cubes. Neigh-

bor terminal nodes can be either vertex-connected, edge-

counected or face-connected. Two vertex-connected termi-

nal nodes have associated cubes that share one of their ver-

tices. In edge-connected terminal nodes, there is no vertex-

connection but at least one of the vertices of one of the

cubes is on one of the edges of the other cube. Finally,

face-connected nodes have associated cubes with coincident

faces, but. they are neither vertex-connected nor face-con-

nected (Fig 3). Specific algorithms that give the face, edge

or vertex-connected nodes for a given node of the tree have

been proposed, [Sam-89 b].

The set of planar faces induces a local compartimentation

in every cubic volume corresponding to a terminal node

of the octree. The connected regions of the space within

every terminal cube will be noted as local compartments.

Note that two points in different local compartments may

belong to the same compartment, as it is possible that

they are connected through a path external to the node,

(Fig 4). We shall call perimeter of a local compartment to

the intersection of the local compartment with the boundary

of the node. This perimeter is formed by several polygons

each of which results of intersecting the local compartment

with one of the faces of the node. We will call each of these

polygons a face of the perimeter. A face of the perimeter of

a local compartment is called significant if it intersects more

than one edge of the node. A local compartment that does

not contain any of the eight vertices of its associated node is

called volatile Let us make now the following assumptions,
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Fig 3: Neighbor node connectivities. Examples of vertex-connected, edge-connected and face-connected nodes.

Fig 4: Two points PI and P2 belonging to different

Al-

A2-

A3-

A4-

local compartments may belo;g ‘to the same

compartment

The octree representation is such that for every com-

partment, there exist at least one mesh vertex belong-

ing to it.

For every terminal node, the octree representation

keeps a classification of its mesh vertices in different

sets, such that vertices belong to the same set if and

only if they are in the same local compartment.

For any two contiguous compartments (that is for any

pair of compartments that have a portion of a face in

common) there is a terminal node in the octree having

at least one vertex in each of the two compartments.

Removing all the volatile local compartments does not

break an; of the compartments int~ disjoint compart-

ments, nor does it change the number of compartments.

This last assumption guarantees that all the relevant infor-

mation is actually captured by non-volatile compartments,

and is therefore crucial. It is not easy to verify directly in

this form, so we will actually check that the perimeter of the

local volatile compartments that our scheme generates are

connex, and that significant faces of volatile local compart-

/’”

ments cannot be adjacent. In fact, several local compart-

ments sharing significant faces may define a duct that es-

tablishes certain connection chanel. However. one can never

obtain such a duct by adjoining local compartments by their

non-significant faces,

Note also that, since no compartment can have zero

neighbors, Al is implied by A3. If these assumptions are

satisfied, the following problems can be solved by means of

the octree representation of the set of faces,

2.1. Several Problems

Problem 1: Obtain the number of compartments as-

sociated to the initial set of faces. (All faces are inside

the root cube —universe— of the octree; the outside part

of the object is also considered as a compartment which

always contains the 8 vertices of the root cube).

Because of the assumptions Al, A2, and A4, the algorithm

in Fig 5 gives a solution of this problem, based on a seed

process through the octree nodes.

In the last procedure, the seed first propagates from a

mesh vertex to all vertices in the same set in the node being

visited. Then, not yet visited neighbor nodes n’ to the

present node n are considered, using face, edge and vertex-

connectivities. However, it must be observed that finding a

vertex w of n’ in the same local compartment of rn involves

geometric computations in face and edge connected nodes,

as the geometry of the set of faces restricted to the common

face or edge must be taken into account (Fig 6).

In this figure, mesh vertex V1 propagates the seed to

vertex V3 in Fig 6–a, or to vertex V4 in Fig 6-b.

We will show in section 3 that the seed propagation

algorithm 2.1 in every closed compartment is complete, in

the sense that given any two mesh vertices of the same

compartment, a seed process starting at the first of them

always reaches the second.

Problem 2: Detect if the initial set of faces bound a

closed —solid— volume. J

After algorithm 2.1, problem 2 is solved

as shown by the following algorithm,
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Fig 6: Propagation in

to V3 in figure

case of nc

nc := O

Consider all mesh vertices as non-marked

While there is at least one non-marked mesh vertex do

search for the first non-marked mesh vertex

mark it

pick terminal node that has this point as a vertex

propagate (mesh.ve~tez, node)

?tC:=nc+l

end do

procedure propagate (m, n) is

for each vertex v of n in the same set as m do

mark v

end do

for each not yet visited connected neighbor n’ do

if find vertex w of n’ in the same

local compartment of m then

propagate (w, n’)

end if

end do

end procedure

Fig 5: Algorithm 2.1

TE!uVI

\

V3 V4

face-connected nodes depends on the geometry of the compartment walls. V1 propagates

6-a, and to V4 in figure-6-b.

1: There is no closed volume defined by

the set of faces

2: The set of faces bound a closed volume

~ 3: The set of faces bound a closed volume

with nc — 1 compartments

end case

Problem 3: Obtain the connectivity graph among the

compartments defined by the set of faces. Vertices of

the connectivity graph are the compartments obtained

from the solution of problem 1; an arc exists between

two compartments if they are contiguous (separated by a

planar face of the initial set).

Because of assumption A3, this problem can be solved by

a tree traversal after the seed process described in the

algorithm 2.1, as for every two contiguous compartments

there exists at least a terminal node of the octree with sets

of mesh vertices corresponding to these two compartments.

Then,

for every terminal node in the octree do

if not all vertex sets belong to the

same compartment then

create a graph arc for every two contiguous

vertices of the node

belonging to sets with different marks if it

does not yet exist

end if

end do

2.2. The Implementation Proposed

As has already been stated, the propagation of the seed

information through face and edge connectivities —which

is essential for algorithm 2. 1— must be based on the local

geometry of the set of faces. As a consequence, terminal
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Fig 8: Terminal octree nodes can be homogeneous (a, b), face nodes (c) and junction nodes (d)

Fig 7: Propagation between face connected nodes is

based on the local geometry. It can involve

complex operations that produce incoherence

and lack of robustness. In the figure, vertices

of the small node propagate only to the bottom

vertex of the largest node

nodes must keep geometric information of the planar faces.

In complex configurations, such as the one shown in Fig 7,

propagation can become cumbersome. Robustness must

also be guaranteed in cases where independent decisions on

different compartments may become incoherent.

In order to avoid these problems, we propose an octree

definition with the following node types (fig 8), which we

will call Compartment Octrees.
Homogeneous node: It corresponds to a cube

that, because of the clipping process in the

recursive division of the space, it contains either

no face of the boundary representation, or only

one face together some of its edges. (Either

no part of the surface is inside or it contains a

part of it; but in this last case, the surface does

not divide the inside part of the cube, which

remains connected)

Face node: It corresponds to a cube containing

one face of the boundary representation, but no

edges.
Junction node: It corresponds to a cube con-

taining two or more faces, all converging to a

single vertex or an edge inside the cube.
Grey node: Every cube in the subdivision pro-

cess that cannot be assimilated to any of the

previous types, and therefore must be subdi-

vided.

By defining the valence of a node as the number of local

compartments in the part of the solid inside the cube, we

can say that homogeneous nodes have valence = 1, while the

valence of face nodes is 2 and junction nodes have valence

greater or equal than two.

This definition obviously fulfills assumption A2. Assump-

tions A3 and A4 will be verified in section 3. As observed

above, Al is implied by A3. Moreover, as will be shown

in the following section, if two mesh vertices VI and V2 of

neighbor face, edge or vertex-connected nodes belong to the

same compartment, then V2 can always be reached from VI
using only vertex connectivities from node to node, through

a traversal of the 3D octree graph. Then, as a consequence,

problem 1 can also be solved by the algorithm in Fig 9.

The main difference between algorithms 2.1 and 2.2 is

that algorithm 2.2 does not use geometric operations in the

propagation from node to node; this process is performed

simply through common mesh vertices. For solving prob-

lems 1, 2 and 3, it is sufficient that terminal nodes keep the

classification of mesh vertices in different sets, as required by

assumption A2, without keeping further geometric informa-

tion of the planar faces. Point-compartment classification

geometric tests must be done only during the octree con-

struction, and the relevant information for the algorithm is

kept in the classification of mesh vertices into sets in termi-

nal nodes. Consequently, robustness of the seed algorithm

is guaranteed.

On the other hand, if the codification of terminal nodes

associates to every set of vertices the value of the volume

of the corresponding local compartment, then the following

problem can be solved as a corollary of problem 3,

Problem 4: Compute the volume of each of the compart-

ments defined by the set of faces.

This problem can only be solved approximately, since vola-

tile local compartments will not be accounted for. However,

this error can be arbitrarily reduced by modifying the defi-

nition of junction nodes for this problem, replacing it by:



nc := o
Consider all mesh vertices as non-marked

while there is at least one non-marked mesh vertex do

search for the first non-marked mesh vertex

mark it

pick terminal node that has this point as a vertex

propagate (mesh-vertex, node)

nc:=nc+l

end do

procedure propagate (m, n) is

for each vertex v of n in the same set as m do

mark w

end do

for each marked vertex w of node n do

for each not yet visited node n’ sharing mesh vertex w do

propagate (w, n’)

end do

end do

end procedure

Fig 9: Algorithm 2.2

Junction node: It corresponds to a cube con-

taining two or more faces, all converging to a

single vertex or an edge inside the cube. More-

over, either each local compartment is non-vo-
latile, or the side of the node’s cube has a pre-

define size e

This difficulty may not be circumvented by requiring

that each junction node have at least one vertex in each

of its local compartments, as there may be points such

that any neighborhood of them intersects more than eight

compartments, forcing infinite subdivision or else producing

an approximation as above.

Note also that this solution of problem 3 computes in this

case not only the volume of the existing compartments, but

their connectivity graph. As a consequence, modifications

of the volume due to changes in “porosity” in faces that

separate contiguous compartments are straightforward.

The computation of more complex volume properties

requires that terminal nodes keep geometric information of

the local set of faces.

3. Validity of the Proposed Scheme

In the previous section we introduced several problems

and algorithms to solve them using an octree satisfying

assumptions Al, A2, A3 and A4. Along the way, we have

made several claims that we will now prove. Essentially,
these are: that a Compartment Octree satisfies A3 and A4,

that the seed propagation is complete, and that dealing with

vertex-connectivities is enough for Compartment Octrees.

Each of the following subsections deals in turn with each of

these problems.

3.1. Compartment Octrees Satisfy A3 and A4

Let us first prove A3. That is, we want to see that for

every pair of neighboring compartments there is a node in

the octree that has at least one vertex on each of the two

compartments.

Proofi If the two compartments

polygon P, then look at a terminal

are separated by the

node which contains a

portion of this polygon. If it is a face node, then it has

at least one vertex on each of the two compartments as

required. If it is a junction node, then either it fulfills the

requirement or there is at least one more polygon going out

of the node through the same facets. This can happen in

several ways (see Fig 10). In all but one, (depicted in Fig 10–

a) there is a facet in the junction node that is crossed by

both polygons but has no point common to both of them. In

this cases, since the polygons cannot converge to a vertex or

edge on the neighboring node, that node at this level must

be grey, and is subdivided into face nodes, one of which

contains a portion of P and thus fulfills the requirement

imposed by A3,

On the other hand it is clear that not all of P may be

contained in junction nodes with a configuration like that in

Fig 10–a, so the proof is complete.

Observe that by this argument, if we chop off a compart-

ment all the portions consisting of local compartments in

junction nodes that are not represented by any of the ver-

tices of the node, then we obtain a smaller volume, but it is

still connected.

As for assumption A4, its proof has been mentioned in

passing in the previous argument. For a junction node

(the only kind that may have volatile local compartments)

to have a significant face on a volatile local compartment,

there must be more than one polygon going out of the node

through the facet containing such a face, and since they

cannot converge again in the neighboring node to a vertex

or an edge, that node cannot be another junction node.
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Fig 10: Examples of junction nodes having no “Grey faces” (a) and having them (b, c, d)

3.2. Seed Propagation is Complete

Recall that by this we mean that mesh points that belong

to the same compartment ought to end up having the same

mark.

To prove it, we will need to introduce some notaion

and definitions. First, note that since the relation “is

connected to” between neighboring nodes is reflexive, the

seed propagation algorithm (2. 1) is also reflexive. That is,

if from V the seed can propagate to W, then so can it

go from W’ to V. Hence, it is easy to see that the seed

propagation algorithm defines an equivalence relation ‘w’

among the mesh points. Namely

V * W ~ the seed propagates from V to W.

Consider now a closed connected compartment C. By as-

sumption A4, if we remove all the volatile local compart-

ments contained in C, we will obtain a closed connected

subset o C. That is, by removing those pieces we will not

break C’ apart. Let C’ denote this simplified compartment.

Obviously a mesh point belongs to C if and only if it belongs

to C’, as the parts removed did not have any mesh points

of their own. Now take the set of all mesh points in C’ and

break it up in equivalence classes modulo ‘N’. We would

like to show that there is only one such class. To prove it,

we will define the s~an of a class a. Given a mesh Doint

m, let Nm denote

octree that have m

tie set of all the terminal nodes ii the

as a vertex. Also let n~ denote the local

compartment contained in node n that contains the vertex

m. Then we define the span a of a class a as

a(a)= u u nm cc’.
mEa nE N,,,

Supose now that there are different equivalence classes.

Then there must be some pair (a, ~) such that a (a) and

u (,!3) are contiguous (share a portion of a facet through

which they are connected), or otherwise we would have

broken C’ into disjoint components. But if a (a) and

~ (~) are contiguous in the sense just stated, then the seed

propagation algorithm 2. would have propagated the seed

from a vertex in a to a vertex in ,B and therefore a = /3.

Therefore there cannot exist more than one equivalence

class in a compartment, or in other words, the algorithm

is complete, which finishes the proof.

3.3. For Compartment Octrees, Vertex Connectivi-

ties Suflice

In the preceding section, it has been pointed out that cor-

rectly propagating the seed to neighboring vertices that are

edge or face-connected requires using geometric information

that has to be carried along in the nodes and carefully eval-

uated in order to produce the same result no matter the

order in which the seed propagation is carried out. It has
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also been stated that with Compartment Octrees, not only

assumptions Al through A4 hold, but also the fact that for

these special octrees vertex-connections also give a complete

seed-propagation algorithm, attaining a better robustness

and no longer requiring the storage of the geometric infor-

mation, although some applications may require it nonethe-

less for purposes other than the compartment detection. We

now turn to verifying this statement.

To show this, we will actually show that, for these oc-

trees, following vertex connectivities gives the same result

as following also edge and face connectivities, and then the

previous argument proves completeness in this case too.

In order to avoid confusion, in the following “faces” or

“polygons” will stand for the data faces that define the

compartments, whereas “facets” will denote the six faces

of a terminaJ node. We will also use “restricted polygons”

or “restricted faces” to refer to the intersections of the faces

with a plane or a line.

We will need for our argument the notion of induced

quadtree on a plane. Let p be a plane parallel to a coordinate

plane and passing through the root cube of the octree. Let

p+ and p– denote the two planes parallel to p lying on both

sides of it at a distance c, where c is any arbitrarily small

positive number. In fact we need it to be smaller than the

closest mesh point not lying on p. The octree restricted to

either of these planes is a quadtree on the plane. Consider

the auadtree on o obtained bv shifting back onto o the two

quadtrees thus obtained on p“+ and p– and merging them.

This is what we will caH the induced quadtree on p. This

construction is necessary because we will want to focus on

cases where p is the support plane of a facet, and thus the

auadtree on o+ and on o– will oft en differ. Our definition

above amounts to locally choosing the finer of the two in

each region of p.

The first important fact about these induced quadtree

is that it is a “Compartment Quadtree” for the plane p

and the traces of all the given polygons on p, although it

rnobablv has been overdivided (that is: nodes that were\
perfectly valid terminal nodes for such a quadtree have been

subdivided nonetheless).

This fact is not trivial, but follows from the fact that

a facet of a homogeneous node as defined in section 2 is

either a homogeneous node of a quadtree associated to the

restricted faces, or it is a face node (Fig 11). The facets

I )–-–-I––-7’
/

/
/

/ /’”
Fig 11: Facets of a homogeneous node are homogeneous

or face nodes of the induced quadtrees

of a face node are in turn homogeneous or face nodes of

such a quadtree (Fig 12) and facets of a junction node are

/ I

/ I

/
/

/
/

/
/

/

Fig 12: Facets of a face node are either homogeneous or

face nodes are either homogeneous or face nodes

of the induced quadtree

either homogeneous, face, junction or grey nodes of such a

quadtree. However, when they are grey (Fig 13) there are

/

ace node

junction node

1;

I

/,/’

// \
grey node

Fig 13: Facets of junction nodes include all possibilities

more than one polygon going out across that facet, and they

do not have any points in common on the facet. Therefore

these polygons cannot converge to a common vertex or edge

on the neighboring node of the octree, and thus the neighbor

in that direction on the same subdivision level of the octree

must be a grey node, and its subdivision will induce on

the facet’s quadtree the corresponding subdivision yielding

smaller face nodes. This is the role of merging the quadtrees

induced on slightly shifted planes, so that locally we always

end up with the finer of the two quadtrees.

A similar argument shows that the restriction to au edge

is a “Compartment bintree” corresponding to the traces on

the edge of the given polygons, probably over-subdivide[l.

All nodes here are either homogeneous (and both ends are

in the same compartment) or face nodes (and both ends lie

in neighboring compartments).
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Now of course in the case of these bintrees the only

possible connectivity is the vertex connectivity, and it is

clear from the previous enumeration of possible cases that

the vertex-based seed propagation is complete in this case.

Also these bintrees will fulfill assumptions Al through A3,

and in particular will contain at least one mesh point in each

compartment that intersects the edge.

Now go up in the number of dimensions. Let us look at the

induced quadtree on the plane that supports certain facet

of a terminal node in the octree. Now edge connectivities

are possible, but when they happen, the edge on which they

appear is an edge of the original octree, on which the germ
propagation along the restricted bintree is complete, as we

have just shown. So the seed will propagate properly across

this kind of connectivity, and the process, on this quadtree,

will be complete.

Now given a node of the octree, with a vertex in a given

compartment, the germ will properly propagate to all mesh

points on the edges converging onto that point, and on all

the mesh points on the facets containing that point, and

thus to all nodes having edge or face contact on either of

these. If the compartment contains part of another facet not

containing this vertex (nor any other of the terminal node

under consideration), then the edge joining that face with

one of the three facets containing the vertex must contain

a mesh point inside the compartment, to which the seed

arrives because the propagation on the facet is complete,

and from which the seed propagates to all and any other

mesh points on this last facet (see Fig 14).

Fig 14: For junction nodes, the subdivision on the

neighboring nodes produce the necessary mesh

points to properly propagate the information

Thus, if two nodes of a compartment octree are face or

edge-connected, the propagation of the seed through vertex

connections will eventually reach the connecting vertex on

the facet or edge, and will thus propagate correctly into the

neighboring node. This completes the proof.

4. Conclusions

In the present paper, an octree structure for detecting closed

compartments in sets of faces in the space has been pro-

posed. Compartment octrees derive from extended octrees,

and adapt the space subdivision to the geometry of the given

set of faces. The octree generation is based on clipping and

localization of geometric information. A subsequent seed

propagation algorithm which involves no geometric compu-

tations can be used to obtain the number of closed compart-

ments, to detect if the set of faces enclose a closed volume,

to obtain the connectivity graph among compartments, or

to compute the volume of every compartment if information

from local compartments is kept in terminal nodes during

the generation process.

The robustness of the aJgorithm is ensured by the fact

that no geometric operation is performed after the octree

structure has been obtained. The proposed structure can

also be used for several related problems. We can mention,

for instance, the detection of dangling faces in potential

boundary representations. Dangling faces lead, during the

octree generation, either to homogeneous terminal nodes

with one face, or to face or junction nodes having two

identically colored sets after the seed propagation.

In order to extend the use of the proposed octree strnc-

ture to more complex problems such as the computation of

the precise volume and other volumetric properties, it would

be necessary to keep explicit geometric information in ter-

minal nodes. This information is also necessary when an

incremental evaluation of compartments is required.
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