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Evaluating the intersection of two rational paramet-

ric surfaces is a recurring operation in solid modeling.

However, surface intersection is not an easy problem

and continues to be an active topic of research. The

main reason lies in the fact that any good surface

intersection technique haa to balance three conflict-

ing goals of accuracy, robustness and efficiency. In

this paper, we formulate the problems of curve and

surface intersections using algebraic sets in a higher

dimensional space. Using results from Elimination

theory, we project the algebraic set to a lower dimen-

sional space. The projected set can be expressed as

a matrix determinant. The matrix itself, rather than

its symbolic determinant, is used as the represent a-

tion for the algebraic set in the lower dimensional

space. This is a much more compact and efficient rep-

resent ation. Given such a representation, we utilize

properties of straight line programs and results from

linear algebra for performing geometric operations on

the intersection curve. Most of the operations involve

evaluating numeric determinants and computing the

rank, kernel and eigenvalues of matrices. The accu-

racy of such operations can be improved by pivoting

or other numerical techniques. We use this represen-

tat ion for inversion operation, computing the inter-

section of curves and surfaces and tracing the inter-

section curve of two surfaces in lower dimension.
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1 Introduction

Many current geometric and solid modeling sys-

tems use parametric curves and surfaces for design-

ing geometric objects to satisfy various interpolator,

smoothness and aesthetic requirements. When it

comes to dealing with intersections of these curves

and surfaces, current algorithms fail to meet the

minimum standards of robustness, accuracy and effi-

ciency that these applications demand. Most of the

difficulties arise due to the fact that any exact al-

gorithm for these problems tends to be slow due to

the large coefficient size of the exact result. The ap-

proximate algorithms are far from being robust and

their accuracy varies with the surface degree, with

the local surface geometry at the intersection curve,

and the angle at which the surface intersect. hlore-

over, the numerical stability of these calculations is

not completely understood, but appears to be poor

for at least some of the necessary calculations. As a

result, it is widely believed that any good surface in-

tersection technique has to balance three conflicting

goals of accuracy, robustness and efficiency [H089;

PG86].

Earlier approaches to surface intersection used

recurs,ve subdivision techniques based on the

paradigm of ‘divide and conquer’ [LR80; PG86]. The

main idea is to subdivide the surfaces into small

pieces until each piece satisfies some flatness crite-

rion. However the main problem with the approach

lies in constructing the topology of the resulting curve

from the individual intersection pieces. The algo-

rithm is not robust and may fail in the presence of

simple singularities.

Another approach for evaluating surface inter-

sections is that of tracing the intersection curve

[BHLH88; BK90; PG86]. The main idea behind trac-

ing techniques is to compute a starting point on each

component and locate all the singular points. Given

the starting points, these algorithms use marching

methods to trace the intersection curve and in the
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process use robust methods to determine all the

branches at singular points.

It is possible to represent the intersection curve

ss an algebraic set in the higher dimensional space

spanned by the parameters of two surfaces. Given

such a formulation, techniques like implicitization

can be used to obtain a closed form and exact rep-

resentation as an algebraic plane curve of the form

~(u, v) = O, where .f(u, v) is a bivariate polynomial

[Fa86]. Such a representation is obtained by implicit-

izing one of the parametric surfaces and substituting

the other parametrization into the implicit represen-

tation. When it comes to tracing, we may choose to

trace the curve in the higher dimension or its projec-

tion in the lower dimension [H088]. However, [H088;

H090] counsels against computing the projection in

the lower dimensional space for the following reasons:

●

●

●

Implicitizing a parametric surface entails sub-

stantial symbolic computation for degrees higher

than cubic. Generally resultants are used for

implicitization and it is believed that the use

of resultants may introduce extraneous factors,

which pose additional problems.

Substitution of the parametric formulation into

the implicit form, although conceptually simple,

is numerically delicate and can lead to substan-

tial errors. This is mainly due to catastrophic

cancellation [P P88].

By Bezout’s theorem, the degree of the intersec-

tion curve is equal to the product of the degree of

the intersecting surfaces. Thus, with the result-

ing high algebraic degrees numerical difficulties

arise even when evaluating the resulting curve at

some point.

As far as the problem of computing a point on each

component is concerned, a recent approach of loop

detection is presented in [SM88]. The basic idea is

to subdivide the parametric surfaces, such that the

intersection of subdivided surfaces (considered piece-

wise) has no closed loops and all starting points can

be obtained by the intersection of boundary curves of

one surface patch with the other surface. The alg~

rithm in [SM88] does not account for singular points

and has been found slow in practice. Thus, no good

algorithms are available for finding a point on each

component or the singular points on the intersection

curve.

We use results from Elimination theory to rep-

resent the implicit equation of a rational paramet-

ric surface as a matrix determinant [MC90a]. The

main idea involves using the matrix itself, rather

than its symbolic determinant, for representing the

implicit representation and the projection of inter-

section curve. To evaluate such a representation we

use numeric substitution and Gauss elimination. The

resulting algorithm is efficient and its numeric accu-

racy is improved by techniques like pivoting. Further-

more, we use properties of straight line programs to

evaluate the partial derivatives of the function used

for representing the intersection curve. As a result,

we are able to reduce the problems of finding a start-

ing point on each component and the singular points

to curve-surface intersection and computing solutions

of nonlinear equations.

We use our representation in coming up with ef-

ficient and robust algorithms for curve-surface inter-

section and computing the inverse image of a point on

the parametric surface. The techniques involved are

computing the eigenvalues and eigenvectors of a ma-

trix, singular value decomposition and determinant

computation. The numerical accuracy of such opera

tions is well understood and efficient implementations

are available as part of standard packages like LIN-

PACK and EISPACK [BDMS79; GBDM77]. More-

over, we use this represent at ion for tracing the inter-

section curve in lower dimension.

The rest of the paper is organized in the fol-

lowing manner. In Section 2 we present some back-

ground material on surface intersection, implicitizing

parametric surfaces and how Elimination theory can

be used for representing the implicit equation of a

parametric surface as a matrix determinant. This

formulation is used for representing the intersection

curve and efficient and numerically stable algorithms

are presented for evaluating the function and its par-

tial derivatives in Section 3. In Section 4 we present

two main applications of our representation: com-

puting the inverse image of a point and curve-surface

intersection. We also present results of our imple-

ment ation of these applications. Finally in Section

5, we address the problem of tracing the intersec-

tion curve and reduce the problem of finding a point

on each component and the singular points to equa-

tion solving. We consider the curve represented in

higher dimensional space as well as its projection in

the lower dimensional space. Various approaches for

equation solving are compared and some open issues

are presented.

2 Background

The problem of surface intersection involves comput-

ing an appropriate representation of the intersection

curve and designing suitable algorithms for evalua-

tion and performing geometric operations. The exact

requirements on the representation and algorithms
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are application dependent. In general, any represen-

tation should provide functionality for the following

operations:

●

b

●

e

Evaluate and render the intersection curve (all

components and branches).

Decide whether a point (X, Y, Z) lies on the in-

tersection curve.

Sort the points lying on the intersection curve.

Use it as a boundary edge for a trimmed surface.

Many a times the intersection curve consists of

a single component without any singularities. How-

ever, even simple cases like intersection of two cylin-

ders can give rise to singularity. In this case the in-

tersection curve is an algebraic space curve of degree

four. For tensor product bicubic B6zier patches the

intersection curve is a space curve of degree 324 and

it is simple to come up with cases where the intersec-

tion curve has more than one component (as shown

in Fig. I) and thereby adding to the complexity of

the intersection problem.

Fig. I

Intersection curve consisting of eight components

2.1 Implicitization

It is well known in algebraic geometry that if one

of the surfaces is represented parametrically and the

other one implicitly, an implicit representation of

the intersection curve can be obtained by substi-

tuting the parametric formulation into the implicit

representation. A B&zier surface is a rational para-

metric surface. The fact that the set of rational

parametric surfaces is a proper subset of the alge-

braic surfaces implies that every B6zier surface can

be represented as an algebraic surface of the form

~(z, y, z, w) = O, where .f(x, y, z, w) is an irreducible

homogeneous polynomial [SR85]. In other words,

given two B6zier surfaces

F(s, t) = (X(s, t), y(s, t), Z(s, t), ~(S, t))

(1)

and

G(u> v) = (~(u, v), ~(u, v), ~(u, v), ~(u, v)).

Implicitize F(sJ t) into an algebraic surface of the

form ~(z, y, z, w) = O. Substitute the other

parametrization ~o obtain an exact representation

the intersection curve as:

$(x(u, v), Y(U, v), E(U, V),w(u, v)) = o,

O<u <l, O<v <l.

of

The problem of implicitization corresponds to

formulating parametric equations like

Xt’v(s, t) – X(s, q = o
yw(s, t) – Y(s, t) = o
Zw(s, t) – Z(s, t) = o

and eliminating the variables s and t.Techniques for

eliminating variables have been well known in classi-

cal algebraic geometry for more than a hundred years

[Sa1885; Wd50]. As far as geometric and solid model-

ing are concerned, these techniques were resurrected

by [SAG84]. In particular, [SAG84] used resultants

to implicitize tensor product surfaces into their cor-

responding implicit representation. Some recent ap-

proaches to the problem of implicitization include the

use of Gr6bner bases [Bu85; H089]. However, most

of the results were negative and in general, it is be-

lieved that any algorithm based on the implicitization

approach can be inefficient and numerically unstable

for surface intersection for reasons highlighted in the

previous section and given in detail in [H088; H090].

The problem of implicitization has recently been

analyzed in [Ch90; MC90a]. In particular, it has

been shown that if a parametrization haa no base

points, the resultant of the parametric equations cor-

responds exactly to the implicit representation. The

base points of a parametrization are defined as the

common rootsl of

X(s, q = o; Y(s, t) = o; Z(s, q = o; W(s, t) = o.

For a random choice of coefficients a parametrization

has no base points. The three parametric equations

are of equal degree and [MC90a] use this property

along with results from Elimination theory [Di08] to

1They also include the roots at infinity
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show that the implicit equation can be represented as

a matrix determinant. For a tensor product surface

of the form (Smtn) the order of the matrix is 2rnn

and for a triangular patch of degree n the matrix has

order 2n2 — n [MC90a]. Each entry of the matrix is

a linear polynomial of the form

Q~j Z+ bijy+Cij,Z+(lij U),

where aij, bij, cij and dij are rational functions of

the given parametrization. If a parametrization has

simple base points, it is still possible to represent the

implicit represent ation as a matrix determinant. An

efficient algorithm based on Vandermonde interpol~

tion has been presented in [MC90a] for computing

the resultant of polynomial equations and thereby

used for implicitization. In particular, it has been

shown that it is possible to implicitize parametric%

tions like tensor product bicubic surfaces in less than

two minutes on machines like the IBM RS/6000. The

implementation has been restricted to exact arith-

metic. Although this algorithm is fast for practical

applications, it becomes unattractive due to issues of

numeric stability in the context of floating point com-

putations and the degree of the resulting polynomials

obtained after substitution.

3 Representation of Intersec-

t ion Curve

We make use of results of [Di08] and [MC90a] to rep-

resent the implicit equation as an unexpanded deter-

minant and present algorithms to perform geometric

operations on the represent at ion. Given two B6zier

surfaces, F(s, t) and G(u, v) as in (l), we use the

corresponding formulation of resultant (depending on

the fact whether F(s, t) is a tensor product surface or

a triangular patch) and represent the implicit equa-

tion as a matrix determinant. The main idea is to

use the matrix itself, rather than its symbolic deter-

minant, as a representation for the implicit form and

subsequently for the intersection curve. Later on we

will show that this is a much more compact, efficient

and numerically stable represent ation.

Given ~(z, y, z, w), as a matrix determinant

and dij can be represented as rational functions of

the given parametrization. Furthermore, their com-

putation is efficient and numerically stable.

The implicit representation of intersection curve

is obtained by substituting the parametrization

G(u, v) into ~(x, y, z, w). As a result, the intersec-

t ion curve is represented as zero set of a determinant.

The corresponding matrix is

M(U> 0) = f(~(tb V),F(% v),~(% V), w(% w)) (3)

[

911(%0) . . . !71n(u, v)
921(%V) . . . g2n(rJ, v)

= d>
9nl(~,~) . . . gnn(’U,’V))

ul<?J<t62, V1<V<V2,

where

9ij(~,~) = .fij(~(~, ~), ~(~, w), Z(tt, V), TV(U, V)).

In this case we substitute the parametrization

into a linear polynomial of the form ~ij (z, y, z, w).

In practice, we represent each entry of M(u, v) as 4-

d). As a result, there is no sig-tuple of (aij, bij, Cij, ,3

nificant loss of information due to catastrophic can-

cellation, which is the case when the implicit rep-

resentation corresponds to a polynomial of degree n

[PP88]. The representation of the curve correspond-

ing to Fig. I has been shown in Fig. II. In this case,

the planar curve (which is birationally equivalent to

the space curve) has eight components. In particu-

lar, the curve has two kind of components. Closed

loops are shown as Cl and C2 and the open compo-

nents (the ones that intersect with the boundary) are

01,..:,06.

A

1

01 02

0 03

cl
(

fll(~,Y>2,~) . . . fln(x,y,z,w)
fzl(~, v,z,w) . . . $2n(z, y,z, w)

> (2)

where ~ij (%, y, z, w) is a linear polynomial of the form

aij x + bij y + cij z + dij W. The coefficients aij , bij , Cij

I 05

0 Fig. II

The representation of i~tersection curve in Fig. I
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3.1 Matrix Operations on the Repre-

sentation

We make use of the representation presented in the

previous section to perform geometric operations.

We use the notations ikf(u, v) to denote the ma-

trix used for representing the intersection curve and

D(u, v) to represent the polynomial corresponding

to Determinant(M(u, v)). For geometric operations

like tracing or marching through the intersection

curve, we need to effectively evaluate expressions like

D(ul, WI), DU(U1, vI), D“”(ul, vi), where ul and vl

are real numbers and D* and DUU represent the first

and second partial derivatives with respect to u.

D(ul, VI) can be efficiently and accurately eval-

uated in the following manner:

. Compute the entries of ikf(ul, V1 ) by evaluat-— —
ing Bernstein polynomials X(ul, V1), Y(UI, W),

~(ul, vl ) and ~(ul, w ) and taking their respec-

tive combinations. Techniques for efficient and

accurate evaluation of Bernstein polynomials are

well known [Fa86].

● Given JM(u1, vi), a matrix with numerical

entries, use Gauss elimination to compute

D(uI, WI). Furthermore, use pivoting techniques

to improve the numeric stability of the result-

ing computation [GV89; Wi63]. It is possible

to compute the condition number of the matrix

and come up with a tight bound on the numeri-

cal accuracy of the result. Furthermore, efficient

and well tested software for such operations is

available as part of LINPACK [BDMS79].

To compute the first and higher order partials,

we make use of the fact that a determinant can be

represented as a straight line program. In this case,

we modify the matrix structure such that entry con-

(sists of a tuple Gi~(~l) ~1) = (gi~(ulj ~l),g~ al, U1))!

where g; (ul, Vl) represents the partial derivative of

gij (u, v) with respect to u and specializing u = U1

and v = V1. The resulting matrix structure is of the

form

R(ul, Vl) =

[’

G1l(ul, v1) . . . Gln(~l,~])

. . .

Gnl(ul, vl) . . . Gnn(ul, vl)‘ 1
To compute D(ul, Vl) and D“ (ul, Vl) we perform

Gauss elimination. We consider the matrix formed

by first entry of each tuple (equivalent to itf(ul, q))

and proceed as if we are trying to compute its deter-

minant. As a side effect we change the entry in the

second tuple. Assume we are operating on the ith

and kth rows of the matrix. A typical step of Gauss

elimination is of the form

gkj = $Jkj – ~gij,

where gkj represents the element in the kth row and

jth column of the matrix. In the new formulation

this step is replaced as

(4)

We make a choice for the pivot element based on the

first tuple (i.e. gij entry). After Gauss elimination

is complete, we compute D(ul, VI) and D“ (ul, Vl) in

the following manner:

n

D(u1) Vl) = ~gii
i=l

This procedure can be easily extended to com-

pute the higher order partials. Furthermore, the

analysis of Gauaa elimination may be used for analyz-

ing the numerical accuracy of partial derivatives com-

putation. To insure the numeric stability of Gauss

elimination, it is required that the intermediate c~

efficient being generated do not grow in magnitude.

Since gii occurs in the denominator term in (4), the

pivoting process chooses gii to be the element of max-

imum magnitude (with respect to the ith column or

the rest of the matrix). The computation of g~j in-

volves division by (gii)z. At the moment we have

partial results from this analysis and our implemen-

tation indicating that this method should be numer-

ical stable.

4 Applications of the Repre-

sentation

In this section we highlight two main applications of

our represent ation. They are computing the inverse

coordinates for a point (zl, ~1, Zl) lying on the surface

and the intersection of curves and surfaces. Both

these operations are used in the algorithm used for

tracing intersection curves in the next section.
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4.1 Inversion Operation

Frequently we are given a point (xl, yl, Z1) and asked

to determine if this point lies on the intersection

curve of F(s, t) and G(u, v). Previous approaches

to this problem take the surface parametrization and

formulate the equations

l?lw(s, t) – x(s, t) = o

?hw(%t) – Y(s, t) = o
Zlw(s, q – Z(s, q = o

and determine whether these equations have a com-

mon solution in the range O ~ s < 1 and O ~ t < 1

(assuming that we are considering the intersection of

B6zier surfaces). The same procedure is repeated for

the other surface. However, root finding can be slow

in practice and in this section, we show how to effec-

tively use our representation for solving the inversion

problem

Fig. III

Inversion operation

):,:
0

,

I

The implicit representation of the surface is the

determinant of ~(x, y, z, w), as formulated in (2).

The point (ZI, yl, Zl) lies on the smface if and only

if the determinant of (f(xl, yl, Z1, 1)) obtained after

substitution is zero. While using floating point arith-

metic, it is also possible to obtain tight bound on the

errors of computation [Wi63].

We used results from Elimination theory to rep-

resent the implicit equation as a matrix determinant

[MC90a]. Assume that the given surfaces are ten-

sor product surfaces of the form (s%~). Techniques

from Elimination theory take the following paramet-

ric equations:

and reduce it

form

where

Zw(s,q – X(s, t) = o

yw’(s,t) – Y(s, t) = o

Zw(s, t) – Z(s, q = o

to a problem in linear algebra of the

Mx = o,

[:

fll($, v,z, w) . . . fl?a(z, y,z, w)

M=

M&,lv) .:. A4Z,Y, Z,W)‘1
[ : 1 m

x= t ,0= o ,

[ s,d-1~d-1 ] 101
and M is equivalent to $(z, y, z, w) in (2) and n =
2dz.

The fact that the determinant of ~(xl, yl, ZI, WI )

is zero (or very close to zero) implies that the nu-

meric matrix is singular (or nearly singular). Let

us assume that the given parametrization is faithful

and (Z1, yl, Z1, Wl) does not correspond to a singular

point. Consequently it has a unique preimage and

~(zl, yl, Z1, WI) is a matrix whose kernel has dimen-

sion one. We can use a technique like SVD (singu-

lar value decomposition) to accurately determine the

vector in that kernel [GV89; Wi63]. Let that vector

be V = (W1V2. . .~2d2)T. As a result, the preimage of

the point (zl, yl, Z1, Wl) can be obtained by solving

the equation

k

1

s

:’
—

V1

V2‘1.,vzd2

where k is a scalar. Good implementations of SVD

are available as part of LINPACK [BDMS79]. Since

we are only interested in verifying whether zero is

an eigenvalue of the matrix and compute the corre-

sponding eigenvector, we may use routines for condi-

tion estimator (SGECO from LINPACK) [BDMS79].
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It is more efficient than computing the SVD of the

matrix.

A similar procedure can be applied to the other

parametrization. Thus, the problem of inversion has

been reduced to the computation of determinants and

the kernel of matrices.

4.2 Intersecting Curves and Surfaces

Given a B6zier curve

G(u) = (X(u), Y(u), Z(u), W(u)) O < u <1

of degree d and a B6zier surface F(s, t). Let

~(z, y, z, w) be the matrix corresponding to its im-

plicit representation. The problem of intersecting

G(u) and F(s, t) can be reduced to solving three non-

linear equations in three unknowns. However, our

aim is to find all the roots in the domain of interest

(as shown in Fig. IV). Algebraic techniques like re-

sultants and Gr6bner bases are too slow for practical

usage and in the context of floating point computa-

tion, the accuracy of results using these methods is

not completely understood. Newton’s method is fast

and numerically stable, however it does not guaran-

tee all the roots in the given domain.

Fig. IV

Intersecting curves and surfaces

In this section we use our formulation of the im-

plicit representation and reduce the problem of curve-

surface intersection to an eigenvalue problem. Effi-

cient algorithms for solving eigenvalue problems are

well known in numerical analysis [GLR82; GV89].

Furthermore, good implementations of these algo-

rithms are available aa part of a package like EIS-

PACK [GBDM77].

Given ~(z, y, z, w), we substitute the parametric

equation of the curve to obtain a matrix of the form

[

911(U) .$. 91n(~)

1M(u)=; ... ; ~gnl(uj...9nn(~)

where

9ij(”) = .fij(x(u), ‘(u), ‘(u), ‘(u))”

The determinant of Al(u) is a univariate polyno-

mial in u, and its roots correspond to the preimages

of intersection points between the curve and the sur-

face. Each entry of M(u) is a univariate polynomial

of degree d and let us represent it as matrix polyno-

mial

~(~) = tJd?&+~d-l~d-l +...+~~l +~0,

where itfi’s are matrices of order n with numeric en-

tries. Let us assume that ~d is a non-singular ma-

trix. As a result the roots of the following equations

are equivalent

Det(kf(ri)) = O,

Det(Af;l) Det(Lf(u)) = O.

Let

~(~) = ~dlfl +ud-l~&l + ...+~~l +~0,

where

Zi = M~lMi, O<i<d

and In is an n x n identity matrix. Given ~(u), we

use Theorem 1.1 [G LR82] to construct a matrix of

the form

I

o 1“ o 0
0 0 L ::: 0

c=:::;;

I

, (5)

o 0 0 . . . L
‘~(1 ‘ml ‘~2 . . . ‘~d- 1

such that the eigenvalues of C correspond exactly to

the roots of Det(~(u)) = O. C is a numeric matrix

of order dn. If Md is a singular matrix, techniques

to compute the roots of Det (M(u)) = O are given in

[GLR82].

‘lIc
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Most of the currently known algorithms find all

the eigenvalues of the given matrix. In our applica-

tions, we are only interested in the eigenvalues lying

in the domain, say [u1, u2]. For example, when we are

dealing with B6zier curves and surfaces, the domain

is [0, Ii.

4.2.1 Implemental ion

We used EISPACK routines for computing the eigen-

values of matrices. Many special purpose algorithms

are available for computing the eigenvalues of matri-

ces, which make use of the structure of the matrix.

As far as matrix C in (5) is concerned, we treat it

as a general unsymmetric matrix. We use the rou-

tine RG from EISPACK for computing the eigenval-

ues [G BDM77]. Given a general unsymmetric ma-

trix, it makes use of balancing techniques, reduces

it to upper Hessenberg form and uses the shifted

QR algorithm on the resulting matrix to compute

the eigenvalues [GV89]. The current implementation

of these routines compute all the eigenvalues. The

performance of eigenvalue computation routines for

matrices of different order are given in Table I. The

timings correspond to the implementation on an IBM

Rs/6ooo.

Order of Matrix I Time in seconds

15 i 8631.839844X 10-6 I
20 15717.63965 X 10-6

25 25753.00000 X 10-6

30 38763.23828 X 10-6

35 57124.16016 X 10-5

40 77398.03906 X 10-6

45 103343.5234 X 10-6

50 133956.2344 X 10-6

55 165395.0469 X 10-6

60 212041.2812 X 10-6

65 262103.1250 X 10-6

Table I

The performance of eigenvalue computation routines

While considering the intersection of a cubic

B6zier curve with a bicubic patch, the order of C in

(5) is 54. However, the performance of the implemen-

tation presented above can be improved by making

use of the structure of C to reduce it to an upper Hes-

senberg form. Typically, the intersection of a B6zier

curve with a bicubic patch result in two or three in-

tersections in the domain of interest and we are only

in interested in those eigenvalues. The current imple-

mentation computes all the 54 eigenvalues and many

of them are complex numbers, too. However, this al-

gorithm guarantees all the intersection points and is

therefore, robust.

This technique is also directly applicable for ray

tracing parametric surfaces. Every ray is a paramet-

ric curve of degree one and as a result each entry of

ill(u) is a linear polynomial. It is simple to find the

intersections of the ray with the control polyhedra

(of the parametric surface). Those bounds can be

used to define the domain of the variable u. For ray

tracing bicubic patches, the order of C’ is 18.

5 Surface Intersections

In the previous sections, we presented a represent

tion of the projection of the intersection curve, as

a matrix determinant, M(u, v) in (3). The determi-

nant is denoted as D(u, v). In this section we consider

the problem of intersecting two B6zier surfaces. To

evaluate the intersection curve, we use the marching

technique. Therefore, we need to determine a point

on each component of the intersection curve and all

the singular points, We consider the problem of trac-

ing the intersection curve in lower as well as higher

dimensional space.

Tracing in lower dimensions correspond to trac-

ing an algebraic plane curve. The main advantage

of this approach lies its abilities to deal with singu-

larities. Simple singularities like cusps and loops can

be easily characterized. Moreover, there is an ele-

gant theory of resolution of singularities in algebraic

geometry, which can be used for dealing with compli-

cated singularities [Wa50]. An analogous process for

surface intersection in higher dimensional space could

be devised in principle, but it would be substantially

more complex because it would map the intersecting

surfaces simultaneously such that the singularity of

the intersection would be resolved [H089].

It is widely believed that the lower dimensional

approach has to cope up with a number of practical

difficulties. Some of them were highlighted in Sec-

tion 1 though a detailed analysis has been presented

in [H088; H090]. However, we feel that our represen-

tation in terms of an unexpanded determinant and

subsequent operations using techniques from linear

algebra and matrix computations take care of the

practical problems highlighted in [H088; H090]. As

a result, it is worthwhile to reconsider the projected

curve in the lower dimensional space as a practical

method for evaluating surface intersections. In this

section, we reduce the problem of finding a point on

each component and singular points to curve-surface

intersection and solving systems of non-linear equw

tions. Therefore, we do not need techniques like loop

detection for finding a point on each component.
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5.1 Curve in Lower Dimension

In this case the curve has been represented as a m~

trix determinant, D(u, v). The singular points of the

projected curve correspond to the roots of the equa-

tions [Wa50]

D(u, v) = o

D“(u, v) = o (6)

D“(u, w) = o

and as a result, the problem of computing singular

points has been reduced to equation solving.

The intersection curve has two kinds of compo-

nents:

Closed loops :- They are of the form Cl and C2

in Fig. II. In other words, the component is

contained in the domain and does not intersect

with any of the four lines, u = O, u = 1, v = O

and v = 1. In this case, at least one point on the

component satisfies the equations

D(u, v) = o

D“(u, v) = o

and we can compute it by finding all the roots

of these equations in the appropriate domain.

Open components :- All other components fall into

this category (01, . . . . 06 in Fig. II). Points on

such components can be determined by finding

the intersections of the curves corresponding to

G(O, v), G(l, v), G(u, O) and G(u, 1) with the

surface F(s, t). Techniques for curve-surface in-

tersection were presented in the previous section.

Thus the problem of computing a point on each com-

ponent and the singular points has been reduced to

curve-surface intersection and finding all roots of

D(u, v) = o

(7)

D“(u, v) = o

O<u <l, O<v <l.

Given a root of the above equations, it can be sub-

stituted into the equation D“ (u, v) = O to check

whether it corresponds to a singular point.

5.2 curve in Higher Dimension

We consider the surfaces F(s, t) and G(u7 v) as de-

fined in (l). The curve is defined in the parameter

space of both the surfaces as an algebraic set of the

form

Fl(s, t, U, v) = X(s, t)w(u, v) – X(u, V)w(s, t) = o

F~(s, t, u, v) = Y(s, t)w(u, v) – Y(u, V)w(s, t) = o

(8)

F3(s, t, ‘u, v) = Z(s, t)w(u, v) – Z(?4, V)w(s, t) = o.

o<s~l, O<t <l, O<u <l, O<v<l

The components of the curve can be classified into

closed loops and open components. The points on

the open components can be computed by reducing

the problem to curve surface intersection. As far as

the problem of finding points on closed loops and sin-

gular points is concerned, we use an approach similar

to the one used for the curve in the lower dimensional

space. Lets consider the algebraic set defined by (8)

and the extrema in the s direction is obtained by con-

sidering the total derivatives of the three equations

and substituting ds = O. The resulting equation is

formulated by considering

where

8Fi = c9Fi(s, t, u, V)

ax ax
, i=l,2,3, 2! e {t, u, v}.

This is equivalent to

[$MIIH=[U
Let J correspond to the matrix on the left hand side

of the above equation and all extremal points of the

curve in s direction satisfy the equation

Det(J) = O.

All the singular points on the curve satisfy the

above equation, too. Furthermore, they also satisfy

the extremal equations corresponding to t,u and v

direction. As a result at least one point on each

closed loop and the singular points are contained in

the roots of

Fl(s, t,u, v) = O

F2(s, t, u, V) = O (9)

F3(s, t,u, v) = O

Det(.J) = O

O<s <1, Ost<l, O<u <l, O<v<l
These are four equations in four unknowns and

hence have a finite number of solutions (in general).

217



5.3 Equation Solving

In the previous section we reduced the problem of

computing singular points and a starting point on

closed loops to finding roots of nonlinear equations.

In particular, the equations for curves in lower and

higher dimensional space are highlighted in (7) and

(9), respectively. In general, the complexity of exact

algorithms for finding solutions of nonlinear equa-

tions is a function of Bezotit number of the given

system. The Be.zout number corresponds to the to-

tal number of solutions that the system has in the

complex projective space (counted properly) [Sa1885;

WM88]. Given a system of equations, techniques

for computing the Bezout number are presented in

[WM8tl]. The domain is not restricted to a subset of

the real space (as in our case). Lets consider the case

of intersecting two bicubic B6zier surface patches.

The intersection curve is of degree 324 (in general).

Lets analyze the problem of finding roots of the equa-

tions for this case. For the projected curve, the mono-

mials of highest degree in the system of equations (7)
are ~54v54 and U53V54. As a result, its Bezout num-

ber is 5778. In other words, the system has 5778

non-trivial solutions in the complex projective plane.

Similarly, the Bezout number of the syste,m (9) is

5346.

The high Bezout number of these system make

algebraic techniques like resultants and Gr6bner

bases impractical [Bu85; MC90b]. Furthermore, in

the context of floating point computations, the nu-

merical accuracy of the results obtained is poorly un-

derstood.

Another method for solving system of nonlin-

ear polynomial equations is the homotopy method

[M087]. It is also possible to use it on polynomi-

als expressed as unexpanded determinants. In the

homotopy method, we start with a known system

of equations (whose solutions are known) and march

along to compute the solutions of the given system.

While marching the number of paths correspond to

the Bezout number of the given system of equations.

Therefore, this approach becomes unattractive due

to the high Bezout numbers of the systems expressed

in (7) and (9). Furthermore, the accuracy of the so-

lutions for such high degree equations is not well un-

derstood.

In practice, we would expect that the system of

equations, (7) and (9), to have very few solutions in

the domain of interest. As a consequence, we pro-

pose to use Newton’s method for equation solving.

However, Newton’s method can never guarantee all

the solutions in the given domain. Two main tech-

niques to improve its performance are the use of inter-

val arithmetic and constrained optimization [PP88;

H089]. [PP88] used this method on low degree curves

and it seems to work well for most cases. We are cur-

rently working on an implementation of this method

for curves expressed in higher and lower dimensional

space.

6 Conclusion

In this paper, we have presented a novel represen-

tation for the surface intersection problem. In par-

ticular, the computation of the represent at ion is ef-

ficient and numerically stable and it is being used

to develop a robust strategy for evaluating the sur-

face intersection. We used results from linear algebra

and numerical analysis to come up with efficient and

numerically accurate algorithms for curve-surface in-

tersection and computing the inverse image of a point

on the surface. In the process we made use of routines

from LINPACK and EISPACK for their implemen-

tat ion.

As far as the problem of tracing the intersection

curve is concerned, we laid stress on the comput at ion

of singular points and a start point on each com-

ponent. We reduced the problem to equation solv-

ing and are currently working on applying Newton’s

method and studying its performance. Many issues

concerning the marching method, like the choice of

step size and robust evaluation of all branches and

components are still open.

The techniques presented in this paper are also

useful for ray tracing parametric surface and repre-

sent ing offsets and blends of curves and surfaces.
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