
Availability Bars for Calendar Scheduling
 

 

Abstract Andrew Faulring 

Carnegie Mellon University 

5000 Forbes Avenue 

Pittsburgh, PA 15217 USA 

faulring@cs.cmu.edu 

 

Brad A. Myers 

Carnegie Mellon University 

5000 Forbes Avenue 

Pittsburgh, PA 15217 USA 

bam@cs.cmu.edu 

Calendar scheduling is a difficult task for people who 
have overbooked calendars with many constraints. 
Currently, calendar applications do not allow users to 
specify scheduling constraints such as how preferable a 
free time is for scheduling a new meeting or to what 
extent an existing meeting can be rescheduled. This 
paper introduces the “availability bar,” an interaction 
and visualization technique for complex calendar 
scheduling constraints. Availability bars, embedded in 
calendar applications, can help users who manually 
schedule meetings. Availability bars can also mediate 
communication with calendar scheduling agents that 
gather availability constraints, search for times that 
satisfy the constraints, and negotiate with invitees 
when no satisfactory time is found for the constraints. 

Keywords 
Constraints, calendar scheduling, visualization 
techniques, intelligent user interfaces, agents. 

ACM Classification Keywords 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces; H.4.1 [Information Systems Applications]: 
Office Automation---Time management. 

Copyright is held by the author/owner(s). 

CHI 2006, April 22–27, 2006, Montréal, Québec, Canada. 

ACM 1-59593-298-4/06/0004. 

Introduction 
People perform many problem-solving tasks, such as 
scheduling meetings, arranging travel, and making 



 

purchasing decisions, that require searching for 
solutions that satisfy complex constraints. Constraints 
define preferences on the solution’s properties and the 
relative importance among all of the constraints. We 
are investigating constraint specification and 
visualization in the context of calendar scheduling. 

Existing shared and non-shared calendar applications 
do not represent complex availability preferences for 
busy professionals such as managers and university 
faculty, making it difficult for meeting organizers to 
solve calendar scheduling tasks. While shared tools 
support collecting each invitee’s free and busy times, 
they do not allow invitees to specify implicit, individual 
preferences such as how early in the day they are 
willing to meet, when they prefer to eat lunch, and so 
forth [7]. Despite their benefits, shared tools are not 
always available since they usually require a centrally 
managed server, for example a Microsoft Exchange 
Server. Some organizations choose not to operate such 
servers, and those that do generally limit access to 
their members, rendering the tools useless when 
scheduling meeting with people outside of the 
organization. Falling back to non-shared calendar tools 
forces the meeting organizer to collect availability 
constraints, generally via email, from each invitee, who 
upon receiving such a request must find times in their 
calendar when they are available. Email forces both 
people to convert availability constraints between 
natural language and graphical calendar 
representations, a tedious and error prone process. 

Neither type of calendar system supports other 
important subtasks. First, when no common free time 
exists, the meeting organizer might try to negotiate 
with the invitees to determine if any of them can adjust 

their availability, perhaps by rescheduling a meeting. 
Second, given the choice among multiple possible 
meeting times, the meeting organizer has no simple 
way to determine how well each option satisfies the 
complex constraints. Third, the meeting organizer may 
need to modify the relative importance among the 
constraints. For example, some invitees’ availability 
constraints may carry a stronger weight because their 
attendance is more important or they are less likely to 
rearrange their calendar to accommodate a new 
meeting. Finally, just keeping track of all the constraints 
and the status of different negotiations can be taxing 
for the meeting organizer, particularly when numerous 
meetings are being scheduled concurrently. Intelligent 
agent research is trying to solve some of these 
problems [5], but people will still need to specify and 
understand all the constraints. 

The Availability Bar 
We developed the “availability bar” visualization to 
address many of the problems with calendar 
applications described above. An availability bar shows 
how a user’s preference for new meetings varies over 
the course of a day. Each region of time in the 
availability bar is assigned a preference level drawn 
from a continuum of values ranging between “required” 
and “unacceptable.” The “required” level indicates that 
only the specified time is allowed, which is only 
meaningful in response to a specific request for a 
meeting. The “unacceptable” level indicates that the 
specified time is not allowed. 

Graphically, the continuum is represented by a gradient 
of a single hue as seen in Figure 1.1. The “required” 
extreme is assigned a very saturated value of the hue, 
which should draw attention to it. The “unacceptable” 



 

extreme is assigned white (completely unsaturated). 
For the intermediate values, the saturation decreases 
proportionally with the decreasing preferability level. 
Figure 1.2 shows an earlier design for the preference 
level visualization, which used a multi-hue gradient: 
green (“required”) to gray (“neutral”) to red 
(“unacceptable”). When a user is looking for good times 
to schedule a meeting, red draws attention to the 

unacceptable times. Instead red is used to indicate 
when either a required or unacceptable constraint is 
violated. The single hue gradient also works better in 
black-and-white. 

8:00 

9:00 

10:00 

11:00 

12:00 

1:00 

2:00 

3:00 

4:00 

5:00 

Tuesday 

Ashley 

lunch 

Nicholas 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

a

(3)

8:00 

9:00 

10:00 

11:00 

12:00 

1:00 

2:00 

3:00 

4:00 

5:00 

Tuesday 

Ashley 

lunch 

Nicholas 

(4)

m

n

o 

l

8:00 

9:00 

10:00 

11:00 

12:00 

1:00 

2:00 

3:00 

4:00 

5:00 

Tuesday 

Ashley 

lunch 

Nicholas 

(5)

Ash

lun

Nic

h 

p q r 

8:00 

9:00 

10:00 

11:00 

12:00 

1:00 

2:00 

3:00 

4:00 

5:00 

Tuesday 

Ashley 

lunch 

Nicholas 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

a

(3)

8:00 

9:00 

10:00 

11:00 

12:00 

1:00 

2:00 

3:00 

4:00 

5:00 

Tuesday 

Ashley 

lunch 

Nicholas 

(4)

m

n

o 

l

8:00 

9:00 

10:00 

11:00 

12:00 

1:00 

2:00 

3:00 

4:00 

5:00 

Tuesday 

Ashley 

lunch 

Nicholas 

(5)

Ash

lun

Nic

h 

p q r 

Figure 1.3 shows a user’s calendar with an availability 
bar on the right (a). The less saturated (“less 
preferable”) regions before 9:30 (b) and after 5:00 (k) 
represent the user’s preference to not have meetings 
early in the morning or late in the afternoon. The 
unscheduled regions between 9:30 and 3:30 (c, e, g, 
and i), represent “more preferable” times for scheduling 
meetings. The meeting with Nicholas is important and 
cannot be easily rescheduled so the availability bar has 
the “unacceptable” preference level (d). The meeting 
with Ashley can be rescheduled if necessary, so the 
availability bar has the “less preferable” preference 
level (h). Lunch time is assigned the “neutral” 
preference level indicating that the user could meet 
during that time if necessary (f). Regions may also 
have a non-constant preference level. The preference 
level for the region from 3:30 to 5:00 decreases 
continuously from “more preferable” to “less 
preferable,” indicating a decreasing preference for 
meetings during that range of time (j). 

(1) 

required

more preferable

preferable

neutral

less preferable

unacceptable

required

more preferable

preferable

neutral

less preferable

unacceptable
(2)

Figure 1. (1): A gradient of a single hue for encoding the preference level continuum. (2): An earlier 
design with a multi-hue gradient. (3): The availability bar (a) shows a user’s availability over the course 
of a day (b–k). (4): In a single gesture (m→n→o) the user can designate a region and apply a possibly 
time-varying availability preference level to it. (5): The original availability preference region (p) and 
two system-generated alternatives (q and r). When necessary, the user can manually create, resize, 

and delete regions of the availability bar, and change 
the preference level for each region. We envision 
several mechanisms for setting the availability bar that 
would relieve the user of the need to do so for each 
day. The user may specify default availability 
preferences on a daily, weekly, or monthly basis that 
are automatically applied to each day. An intelligent 
agent could also learn the user’s general time of day 
preference, which it would set as the daily default [6]. 



 

The calendaring system could use rules to update the 
availability bar as meetings are added, moved or 
deleted. For example, a rule might set the availability 
during meetings with one’s boss to “unavailable.” An 
intelligent agent might create rules based upon learned 
knowledge of the extent to which an existing meeting 
can be rescheduled [5]. 

In some situations a user needs to specify availability 
preferences without modifying the availability bar: for 
example when responding to an email containing a 
meeting request or when answering an agent’s 
question. Accordingly, we developed the “painting 
availability” technique (see Figure 1.4 and 1.5). A user 
enters the “painting availability” mode by selecting a 
paint availability tool or by issuing a command. A 
horizontal availability preference level bar appears at 
the current mouse position with dots corresponding to 
each preference level, decreasing from left to right (l). 
The user initiates painting a region by clicking on the 
availability preference level bar, which selects the 
preference level at the start of the region (m). 
Dragging the mouse allows the user to specify their 
preference level over time; the dashed line shows the 
path of the mouse. While dragging the mouse, the user 
can change the preference level by moving horizontally 
and clicking the mouse (n). The preference level is 
linearly interpolated between mouse clicks. To stop 
painting the region, the user double clicks the mouse 
(o). The mouse stays in “availability paint” mode 
allowing the user to immediately paint another region. 
The user can edit these regions: changing start and end 
times, editing the availability preference levels, deleting 
them, and copying them across days. Once the user 
exits the “painting availability” mode, the display in 
Figure 1.5 appears with three availability options each 

drawn as a set of translucent bars with drop shadows 
(p, q, and r). The left option (p) is exactly what the 
user dragged out, ignoring the availability bar for that 
day. The calendar application may also suggest 
alterative options (q and r). The middle option (q) is 
created by removing any scheduled meetings from (p). 
By offering this option, the user can quickly drag out a 
region, knowing that scheduled meetings can be easily 
excluded. The rightmost option (r) further excludes 
times that are unscheduled, but not available, such as 
lunch. The user can edit the options and if necessary 
choose one to complete their response. If the user is 
responding to an email, the response would be copied 
to the clipboard for pasting into a reply email. 

Making Scheduling Decisions 
We extended the availability bar technique to help a 
meeting organizer find a time and a place for a group 
meeting. An availability bar for each invitee is displayed 
side-by-side allowing a quick visual inspection to find 
promising times for the meeting to be scheduled. 

In the following scenario, Owen Harris, the meeting 
organizer, wants to schedule a lab meeting sometime 
during the next three days with nine other people. 
Figure 2 shows Owen’s display after all of the invitee’s 
availability constraints have been collected. To the right 
of each day appear two sets of availability bars: the 
availability preference of each invitee (a and b: green 
hue) and the availability of conference rooms capable of 
holding ten people (c and d: blue hue). Note that 
people can have different availability preference levels, 
hence the different shades of green, whereas rooms are 
either available or unavailable: blue or white, 
respectively. 



 

Displaying the availability bars for all ten people might 
require too much space, so the design displays 
availability bars for the three most important people (a) 
and a histogram summarizing the availability of the 
other seven people (b). The histogram shows the 
distribution of availability levels and offers more 

information than simply showing an availability bar with 
an average or maximum value. The user can directly 
manipulate how many availability bars are visible. The 
user can change the order of availability bars, where 
the ordering corresponds to each bar’s priority. The 
user can group availability bars into priority classes. For 
example, it might be important that all invited faculty 
attend the meeting, but less important that their 
students attend. In such a case, the faculty would be in 
a group with a higher priority than that of the student 
group. The priorities might be reversed when dealing 
with students who cannot reschedule their classes. 

R
SH

 3
50

1 
R

SH
 1

50
7 

R
SH

 1
30

5 

O
th

er
s (

12
) 

R
SH

 3
50

1 
R

SH
 1

50
7 

R
SH

 1
30

5 

O
th

er
s (

12
) 

R
SH

 3
50

1 
R

SH
 1

50
7 

R
SH

 1
30

5 

O
th

er
s (

12
) 

O
w

en
 H

ar
ris

 
Li

nd
a 

W
ils

on
 

C
ar

l P
er

ez
 

O
th

er
s (

7)
 

O
w

en
 H

ar
ris

 
Li

nd
a 

W
ils

on
 

C
ar

l P
er

ez
 

O
th

er
s (

7)
 

O
w

en
 H

ar
ris

 
Li

nd
a 

W
ils

on
 

C
ar

l P
er

ez
 

O
th

er
s (

7)
 

8:00 

9:00 

10:00 

11:00 

12:00 

1:00 

2:00 

3:00 

4:00 

5:00 

Kevin 

lunch 

Monday 

Ashley 

lunch 

Nicholas 

Tuesday 

Jason 

Lauren 

lunch 

Kim 

Wednesday 

Lab Meeting

Lab Meeting

Lab Meeting

a b
(green) 

c d
(blue) 

e

f

g

h
(red) 

i
(green) 

j

Figure 2 shows three possible times for a “Lab Meeting” 
(e, f, and g). These times were chosen for illustrative 
purposes; an optimizing algorithm might propose better 
times. Each meeting appears in the foreground layer 
with a drop shadow to designate that it is proposed or 
tentative. The histogram at the bottom of each meeting 
(i) shows the number of people in each preference 
level. For the “unacceptable” level, the histogram uses 
a red bar (h) instead of a white bar to draw attention to 
the fact that some invitees cannot attend the meeting. 
Highlighting one of the meetings also highlights the 
other options for that meeting. The arrows at the 
bottom of each meeting (j) allow the user to move the 
focus to the chronologically previous or next option of 
the same meeting and also show the user if there are 
options beyond the range of the current display. 

Figure 2. The display shows availability constraints of all invitees and the availability of conference 
rooms for a lab meeting. Three possible meeting times are shown (e, f, and g). At the bottom of each 
meeting, a histogram (i) shows the number of invitees per availability preference level. The red bar 
(h) draws attention to meeting options for which at least one invitee is unavailable. 

Related Work 
Related work falls into two categories: collaborative 
human-agent optimization and calendar visualizations. 
The human-guided simple search (HuGSS) framework 
explores how a human can guide an optimization 
algorithm by suggesting paths that look the most 



 

promising [1]. Our system focuses on collecting, 
visualizing and prioritizing complex constraints, 
whereas with HuGSS the user is not involved in defining 
the constraints. Another system, VEIL, asks the user to 
choose among alternative outcomes rather than 
explicitly describe their constraints [3]. The system’s 
incremental utility elicitation (IUE) algorithm selects 
alternatives that should offer the most information. 

The Visual Scheduler [2] and Time Lattice [4] systems 
visualize common free and busy times across multiple 
people’s calendars. Both systems only support binary 
free-busy availability constraints, unlike our design’s 
continuum of availability preference levels. Similar 
shortcomings occur in commercial shared calendar 
systems such as the Microsoft Exchange Server. 

Conclusions and Future Work 
We showed how to embed constraint specification and 
visualization within direct-manipulation style calendar 
applications. This novel approach contrasts with 
traditional AI techniques that use natural language 
dialogue interfaces for eliciting constraints. Additionally, 
our visualization techniques should also be useful even 
without an optimization algorithm. 

We are presently working on designs to allow the user 
to specify the relative priority among constraints and to 
support scheduling recurring meetings. We will test our 
designs in lab studies to evaluate how well people can 
use them and to quantify performance improvements 
for common tasks. Then, we plan to build a calendar 
system incorporating our designs and deploy it within 
our organization to learn how the designs work in the 
real world, gathering information not available in lab 
usability studies. Finally, we also plan to apply our 

techniques to other domains such as arranging travel 
and making purchasing decisions. 

Acknowledgements 
The authors thank Agata Adamowicz, Justin Cinicolo, 
Andrew Ko, Adam Lovrovich, Jean Oh, Yeming Shi, 
Stephen Smith, and John Zimmerman. This material is 
based upon work supported by the Defense Advanced 
Research Projects Agency (DARPA) under Contract No. 
NBCHD030010. 

References 
[1] Anderson, D., Anderson, E., Lesh, N., Marks, J., 
Mirtich, B., Ratajczak, D. and Ryall, K. Human-Guided 
Simple Search. Proc. AAAI 2000, AAAI Press (2000), 
209–216. 

[2] Beard, D., Palaniappan, M., Humm, A., Banks, D., 
Nair, A. and Shan, Y.-P. A Visual Calendar for 
Scheduling Group Meetings. Proc. CSCW 1990, ACM 
Press (1990), 279–290. 

[3] Blythe, J. Visual Exploration and Incremental Utility 
Elicitation. Proc. AAAI 2002, AAAI Press (2002), 526–
532. 

[4] Mackinlay, J.D., Robertson, G.G. and DeLine, R. 
Developing Calendar Visualizers for the Information 
Visualizer. Proc. UIST 1994, ACM Press (1994), 109–
118. 

[5] Modi, P.J., Veloso, M., Smith, S. and Oh, J. 
CMRadar: A Personal Assistant Agent for Calendar 
Management. In Agent-Oriented Information Systems 
II, Springer-Verlag, 2005. 169–181. 

[6] Oh, J. and Smith, S.F. Learning User Preferences in 
Distributed Calendar Scheduling. Proc. PATAT 2004, 
35–50. 

[7] Palen, L. Social, Individual and Technological 
Issues for Groupware Calendar Systems. Proc. CHI 
1999, ACM Press (1999), 17–24. 


	Abstract
	Keywords
	ACM Classification Keywords
	Introduction
	The Availability Bar
	Making Scheduling Decisions
	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

