Broadcast with Partial Knowledge

(Preliminary Version)

Baruch Awerbuch * Israel Cidon ${ }^{\dagger}$ Shay Kutten ${ }^{\ddagger}$ Yishay Mansour ${ }^{\S}$ David Peleg ${ }^{\top}$

Abstract

This work concerns the problem of broadcasting a large message efficiently when each processor has partial prior knowledge about the contents of the broadcast message. The partial information held by the processors might be out of date or otherwise erroneous, and consequently, different processors may hold conflicting information. Tight bounds are

[^0][^1]established for broadcast under such conditions, and applications of the broadcast protocol to other distributed computing problems are discussed.

1 Introduction

1.1 Motivation

Many tasks in distributed computing deal with concurrently maintaining the "view" of a common object in many separate sites of a distributed system. This object may be the topology of a communication network (in which case the view is a description of the underlying network graph), or certain resources held at the system sites (in which case the view is an inventory listing the resources held at each site), or even a general database. The objects considered here are dynamic in nature, and are subject to occasional changes (e.g., a link fails, a resource unit is consumed or released, a database record is modified). It is thus necessary to have an efficient mechanism for maintaining consistent and updated views of the object at the different sites.

One obvious algorithm for maintaining updated views of a distributed object is the Full Broadcast algorithm. This algorithm is based on initiating a broadcast of the entire view of the object whenever a change occurs. Due to the possibility of message pipelining, the time complexity of this algorithm is relatively
low. On the other hand, this algorithm might be very wasteful in communication, since the object may be rather large.

Consequently, it is clear that a successful consistency maintenance strategy should strive to utilize the fact that the processors already have a correct picture of "most" of the object, and need to be informed of relatively few changes. Viewed from this angle, the problem can be thought of as having to broadcast the entire view of the object, while taking advantage of prior partial knowledge available to the processors of the system.

On the other extreme there is the Incremental Update strategy, in which only "necessary" information is transmitted. This strategy is at the heart of the algorithms suggested for handling the topology update problem ([ACK90, MRR80, SG89, BGJ ${ }^{+85]}$). Unfortunately, there seems to be no possibility to employ information pipelining with this method, which makes the time complexity very high.

The purpose of this work is to study the problem of updating a distributed database, under minimal assumptions. That is, we do not assume any initial coordination and allow only small amount of space. Under such conditions, we look for efficient solutions to the problem with respect to communication and time overheads. In this setting, it turns out that the main bottleneck of the database update problem can be characterized as a fairly simple "communication complexity" problem, called Broadcast with Partial Knowledge.

1.2 The model and the problem

The Broadcast with Partial Knowledge problem can be formulated as follows. Consider an asynchronous communication network, consisting of $n+1$ processors, p_{0}, \ldots, p_{n}, with each processor p_{i} has an m-bit local input
w_{i}, and processor p_{0} is distinguished as the broadcaster. In a correct solution to the problem all the processors write in their local output the value of the broadcaster's input, $w=w_{0}$.

This formulation of the problem can be interpreted as follows. The input w_{i} is stored at processor p_{i} and describes the local representation of the object at processor p_{i}. The correct description of the object is $w=w_{0}$, held by the broadcaster. The local descriptions w_{i} may differ from the correct one as a result of changes in the object. In particular, every two processors may have different descriptions due to different messages they got from the broadcaster in the past, as a result of message losses, topology changes and the asynchronous nature of the network. Our goal is to inform all the processors throughout the network about the correct view of the object w, and to use the processor's local inputs given to each processor in order to minimize the time and communication complexities.

In this paper, we solve the strongest version of this problem, in which each processor only knows its own input, and has no information regarding inputs of other processors. However, it is worth mentioning the weaker version of the problem, which makes the "neighbor knowledge" assumption, namely that each processor knows (besides its own input) the inputs of its neighbors. This assumption is justified in [ACK90], where it is shown that neighbor-knowledge comes for free in context of database and topology update protocols. Even for this weaker problem, none of the previously known solutions are efficient both in communication and time.

1.3 The complexity measures

In order to quantify the possibility of exploiting local knowledge, we first introduce a new measure that captures the level of "informa-
tion" of the knowledge held by each processor. Let the discrepancy δ_{i} of the input w_{i} held by processor p_{i} be the number of bits in which w_{i}, the local description at p_{i}, differs from the broadcaster's input w, which is the correct description of the object. Define also the total discrepancy $\Delta=\sum_{i} \delta_{i}$, the average discrepancy $\bar{\delta}=\Delta / n$, and the maximum discrepancy $\delta_{\max }=\max _{i}\left\{\delta_{i}\right\}$.

Our goal is to study the relationships between these discrepancies and the complexity of broadcast algorithms, following the intuition that the complexity of broadcast protocols should be proportional to discrepancy of processors' inputs, i.e., if the views of most processors are "almost correct", then the overhead of the protocol should be small. We therefore express the communication and time complexity of our solution as a function of m, n and $\bar{\delta}$. The complexities are measured in the bit complexity model.

1.4 Basic solutions

The first obvious solution to the Broadcast with Partial Knowledge problem is the Full Broadcast protocol, which is wasteful in communication, i.e. require $\Omega(n m)$ bits. On the other hand it is rather fast, since the broadcast can be done in a pipelined fashion and thus can terminate in $O(n+m)$ time. Thus, one would like to improve on this algorithm with respect to communication complexity, aiming towards reducing this complexity to be close to the total discrepancy Δ, while maintaining near-optimal time complexity.

The Incremental Update strategy proposed in [ACK90] poses an alternative approach. The essence of this strategy is that a processor with "correct" view transmits to its neighbor a "correction" list, which contains all the positions where neighbor's input is erroneous. In this algorithm, a "correction wave" propagates through the network from the source, till all nodes are corrected. It
should be stressed that even under assumption of neighbor knowledge, there appears to be no possibility for efficient exploitation of pipelining in this algorithm and even in the simple case of a path network the protocol may require $\Omega(\bar{\delta} \cdot n)$ time.

1.5 Our results

In this paper, we provide an efficient randomized solution to the Broadcast with Partial Knowledge problem. It has success probability at least $1-\epsilon$, and uses $O\left(\Delta \log m+n \log \frac{n}{\epsilon}\right)$ communication and $O\left(n \log \bar{\delta}+m+\log \frac{1}{\epsilon}\right)$ time, where ϵ is a parameter to the algorithm. Assuming that Δ is known, our algorithm achieves a slightly better time bound of $O\left(n+m+\log \frac{1}{\epsilon}\right)$ and the same communication complexity. Note that in all cases, we allow the inputs stored at the various processors to differ in arbitrary ways, subject to the discrepancy constraints.

Our upper bounds are derived using linear codes. Such codes were used before in constructing distributed algorithms for solving various problems. Metzner [Met84] uses Reed-Solomon and random codes to achieve efficient retransmission protocols in a complete network. Ben-Or, Goldwasser and Wigderson [BOGW88] use BCH codes to guarantee privacy in a malicious environment. Rabin [Rab89] uses codes to achieve a reliable fault-tolerant routing with a low overhead.

Using simple arguments from information theory and communication complexity theory, we are able to show that our upper bounds are almost tight. We argue that when the average discrepancy is $\bar{\delta}$, the communication complexity is at least $\Omega\left(\Delta \log \left(\frac{m}{\delta}\right)\right)$ and the time complexity is at least $\Omega(n+$ $\left.\bar{\delta} \log \left(\frac{m}{\bar{\delta}}\right)\right)$. We also argue that in the case that no information is known about the discrepancies, any deterministic protocol would send $\Omega(n m)$ bits, even if there are no discrep-
ancies at all.
The comparison of our protocols and lower bounds is given in Figure 1.

1.6 Applications to topology update

One application of our work is to the classical network problem of Topology Update. This task is at the heart of many practical network protocols [MRR80, $\mathrm{BGJ}^{+} 85, \mathrm{ACG}^{+} 90$]. The problem can be formulated as follows. Initially, each processor is aware of the status of its adjacent links, i.e., whether each link is up or down, but is unaware of the status of other links. The purpose of the protocol is to supply each processor with this global link status information.

The topology update algorithm of [ACK90] is based on the Incremental Update strategy. The possibility of recurring network partitions and reconnections significantly complicates implementation of this strategy. Nevertheless, the resulting broadcast procedure is efficient in terms of communication (although not in time), and leads to essentially communication-optimal topology update protocols [ACK90].

A consequence of [ACK90] that is most significant for our purposes is the observation that it is possible to relate the complexities of the problem of Broadcasting with Partial Knowledge to those of Topology Update, effectively reducing the former problem to the latter. Namely, given any solution for the Broadcast with Partial Knowledge problem, one can construct a topology update protocol with lower or equal overheads in both communication and time.

It is worth pointing out that our complexity results are presented in the bit complexity model, whereas the results in [ACK90] are presented in the message complexity model which charges only one complexity units for a message of size $O(\log n)$ bits.

1.7 Organization of the paper

The rest of the paper is structured as follows. In section 2 we quote some necessary results for later use concerning universal hash functions and coding theory. In Section 3, we present our upper bound (algorithm Average). Finally, the lower bounds on the problem are established in Section 4.

2 Preliminaries

2.1 Universal hash functions

Universal hash functions have found many interesting applications since their introduction by Carter and Wegman [WC79]. A family of functions $\mathcal{F}=\{h: A \rightarrow B\}$ is called a universal hash function if for any $a_{1} \neq a_{2} \in A$ and $b_{1}, b_{2} \in B$ the following holds:

$$
\operatorname{Prob}\left[h\left(a_{1}\right)=b_{1} \text { and } h\left(a_{2}\right)=b_{2}\right]=\frac{1}{|B|^{2}}
$$

where the probability is taken over the possible choices of h, which is randomly and uniformly chosen from \mathcal{F}.

There are many families of simple universal hash functions. One example can be constructed as follows. Let p be a prime and let $B=Z_{p}$. (Note $|B|=p$.) Then

$$
H=\left\{h_{\alpha, \beta}(x)=(\alpha x+\beta) \bmod p \mid \alpha, \beta \in Z_{p}\right\}
$$

is a family of universal hash functions.
In the above example the encoding of a hash function requires only two elements from Z_{p}, and also p, therefore we can describe such a hash function using only $O(\log |B|)$ bits. (Note that the encoding of h does not depend on A.) Later, when using a universal hash function, it is assumed that it can be represented with $O(\log |B|)$ bits.

Another way to view the parameters is the following. We are interested is a family of

Algorithm	Communication	Time	Assumptions
Full broadcast (folklore)	$n m$	$n+m$	
Incr. Update [ACK90]	$n+\Delta \log m$	$n+\Delta \log m$	neighbor knowledge
Our algorithm	$\Delta \log m+n \log \left(\frac{n}{\epsilon}\right)$	$n \log \left(\frac{\Delta}{n}\right)+m+\log \frac{1}{\epsilon}$	
Our lower bound	$n+\Delta \log \left(\frac{n m}{\Delta}\right)$	$n+\Delta \log \left(\frac{n m}{\Delta}\right)$	

Figure 1: Comparison of protocols and lower bounds.
universal hash functions \mathcal{F}_{ϵ}, that has the following property: given any two distinct elements, the probability that a random hash function $h \in \mathcal{F}_{\epsilon}$ maps them to the same point, is bounded by ϵ. From the properties of the universal hash function this occurs with probability $1 /|B|$. Therefore, choosing $\epsilon=1 /|B|$, we conclude that there is a family of hash functions \mathcal{F}_{e} whose encoding size is $O\left(\log \frac{1}{\epsilon}\right)$.

2.2 Information theoretic background

The tools developed later on are based on some basic results from coding theory. A code $C_{m, d}:\{0,1\}^{m} \mapsto\{0,1\}^{m+r}$ is a mapping that transforms an input word $w \in\{0,1\}^{m}$ into a codeword $C_{m, d}(w)=\hat{w} \in\{0,1\}^{m+r}$. The codes considered in this paper are standard "check-bit" codes, namely, the resulting codeword \hat{w} is assumed to be of the form $\hat{w}=w \| \rho$, where $\rho \in\{0,1\}^{r}$ is a "trail" of r check bits. Denote the trail of check bits that the code $C_{m, d}$ attaches to a word w by by $C_{m, d}^{*}(w)$. The lengths of the entire codeword and the check bit trail are denoted in the sequel by $\left|C_{m, d}(w)\right|$ and $\left|C_{m, d}^{*}(w)\right|$, respectively.

A code $C_{m, d}$ is said to be d-correcting if the original word w can be correctly decoded from any word z that differs from the codeword $C_{m, d}(w)$ in no more than d places.

The following theorem states the properties possessed by the code necessary for our purposes.

Theorem 2.1 For any m and $d \leq m / 3$, there exists a check-bit code $C_{m, d}$ with the following properties:

1. The check bit trail is of length $\left|C_{m, d}^{*}(w)\right|=$ $O(d \log m)$.
2. The code $C_{m, d}$ is d-correcting.
3. The encoding and decoding operations ($C_{m, d}$ and $C_{m, d}^{-1}$, respectively) require time polynomial in m and d.

In order to show the theorem, we can slightly modify BCH codes, so they will have all the above properties. It is well known that the decoding and encoding of BCH codes can be accomplished in polynomial time and that the length of check bit trail is $O(d \log m)$. The only property that we need to comment about is the use of arbitrary m. The code words in BCH codes are of length $2^{k}-1$. We simply have to extend our input (e.g., by padding zeros) to the appropriate size. When encoding, we first extend the input $w \in\{0,1\}^{m}$ to $2^{k}-1-\left|C_{m, d}^{*}(w)\right|$ bits and then perform the encoding. After the decoding, the padding bits will be removed.

All codes $C_{m, d}$ referred to later on in the paper are meant to be check-bit codes that satisfy the properties in Theorem 2.1. The subscripts m, d are omitted whenever m and d are clear from the context.

3 Upper bounds

We develop our solution in a modular way through a number of steps. The first step is
a simple deterministic algorithm Maximum, presented in Subsection 3.1, in which it is assumed that the maximum discrepancy $\delta_{\max }$ is known to the broadcaster. Subsection 3.2, presents the algorithm Average, which assumes knowledge of the average discrepancy. Finally, in Subsection 3.3 it is shown that the assumptions about knowledge of the discrepancy can easily be eliminated.

3.1 Algorithm Maximum

This section handles broadcast in the case where the maximum discrepancy $\delta_{\max }$ is known, and presents a straightforward broadcasting algorithm Maximum, which assumes that the broadcaster "knows" $\delta_{\text {max }}$. The algorithm requires $O\left(n \delta_{\max } \log m\right)$ communication and $O\left(n+\delta_{\max } \log m\right)$ time.

We should note that this algorithm is not efficient, since the maximum discrepancy can be very far from the average discrepancy. This algorithm is presented, in order to be used in the next section as a subroutine.

For simplicity, it is assumed that the network is a simple path, namely, the $n+1$ processors p_{0}, \ldots, p_{n} are arranged on a line, with a bidirectional link connecting processor p_{i} to processor p_{i+1}, for every $0 \leq i<n$. Note that this does not restrict generality in any way, since the path is the worst topology for broadcast, and moreover, there exists an easy transformation from every other network to a path network by using a depth-first tour ([Eve79]).

Algorithm Maximum works as follows: The broadcaster encodes the broadcast message w using the code $C=C_{m, \delta_{\max }}$. (Note that this code C is fixed and known to all other processors.) The broadcaster broadcasts only the check bit trail $C^{*}(w)$. The broadcasting proceeds in full pipelining. I.e., each processor p_{i} for $i<n$ that receives the first bit of $C^{*}(w)$ immediately forwards it to processor p_{i+1}, without waiting for the entire
value of $C^{*}(w)$.
Once a processor p_{i} has received the complete message $\rho=C^{*}(w)$, it concatenates it to its own input w_{i}, thus obtaining a complete (but possibly corrupted) codeword $\hat{w}_{i}=$ $w_{i} \| \rho$ and decodes this codeword by computing $o_{i}=C^{-1}\left(\hat{w}_{i}\right)$, which is taken to be the output.

Lemma 3.1 If the input w_{i} of processor p_{i} is different from w in at most $\delta_{\text {max }}$ places, then $o_{i}=w$.
Proof: Consider the word o_{i} output by processor p_{i}. As $\delta_{i} \leq \delta_{\max }$, it follows that $\hat{w}_{i}=$ $w_{i} \| \rho$ differs from $\hat{w}=w \| \rho$ in at most $\delta_{\max }$ places. Since the code C is $\delta_{\text {max }}$-correcting, it follows that $o_{i}=C^{-1}\left(\hat{w}_{i}\right)=C^{-1}(\hat{w})=w$.

Lemma 3.2 The time Complexity of Algorithm Maximum is $n+O\left(\delta_{\max } \cdot \log m\right)$.
Proof: The algorithm broadcasts the message $\rho=C^{*}(w)$ in full pipelining. Hence the first bit of ρ reaches the last processor, p_{n}, by time n, and the entire message reaches p_{n} by time $n+\left|C^{*}(w)\right|$. The lemma follows since $\left|C^{*}(w)\right|=O\left(\delta_{\max } \cdot \log m\right)$.

Lemma 3.3 The communication complexity of Algorithm Maximum is $O\left(n \cdot \delta_{\max } \log m\right)$.
Proof: The message $C^{*}(w)$ traverses each edge exactly once. Therefore, the communication complexity is $n \cdot\left|C^{*}(w)\right|=n \cdot O\left(\delta_{\text {max }}\right.$. $\log m$).

We complete the description by noting that both the time and communication complexities can be improved for large $\delta_{\max }$. Specifically, if $\delta_{\max } \log m>m$, then a full broadcast of the information is more efficient (namely, send w to all the processors). Therefore we have

Theorem 3.4 Given the value of $\delta_{\max }$, there is a deterministic algorithm for performing broadcast with partial information, that requires $n+O\left(\min \left\{m, \delta_{\max } \cdot \log m\right\}\right)$
time and has communication complexity $O(n$. $\min \left\{m, \delta_{\text {max }} \cdot \log m\right\}$).

A similar result holds when the broadcaster knows only an upper bound d on the discrepancies, where the same complexities hold except with d replacing $\delta_{\max }$. When the upper bound is "accurate", namely $d=$ $O\left(\delta_{m a x}\right)$, the complexities remain the same.

3.2 Algorithm Average

In this section we replace the assumption of known $\delta_{\text {max }}$ with the assumption that only the average discrepancy $\bar{\delta}$ is known. Note that no assumptions are made about how the discrepancies are distributed. In particular, it may be that some processors have large discrepancies while others have the correct value. For the simplicity of the notation, we assume throughout the section that $\bar{\delta} \geq 1$.

The broadcast algorithm Average presented in this section is randomized, i.e., it guarantees the correctness of the output of each processor with high probability. The communication complexity of Algorithm Average depends linearly on the average discrepancy $\bar{\delta}$, while its time complexity is still linear in m. Both complexities apply to the worst case scenario.

We begin with a high level description of Algorithm Average. The algorithm works in phases, and invokes Algorithm Maximum of Section 3.1 at each phase. At every phase of the execution, each processor can be in one of two states, denoted \mathcal{K} and \mathcal{R}. Initially, only the broadcaster is in state \mathcal{K}, while the other processors are in state \mathcal{R}. Intuitively, a processor p_{i} switches from state \mathcal{R} to state \mathcal{K} when it concludes that his current guess for w is equal to the "real" broadcast word w.

The phases are designed to handle processors with increasingly larger discrepancies. More specifically, let us classify the processors into classes $C_{1}, \ldots, C_{q}, q=\left[\log \left(\frac{m}{\delta \log m}\right)\right]$, where the class C_{l} contains all processors
p_{i} whose discrepancy δ_{i} falls in the range $2^{l-1} \bar{\delta}<\delta_{i} \leq \min \left\{m, 2^{l} \bar{\delta}\right\}$ for $2 \leq l \leq q-1$, $\delta_{i} \leq 2 \bar{\delta}$ for $l=1$, and the rest in C_{q} (i.e., $\left.\delta_{i} \geq \frac{m}{\log m}\right)$. Then each phase $l \geq 0$ is responsible for informing the processors in class C_{l}. This is done by letting the processors in state \mathcal{K} broadcast to the other processors.

Note that the \mathcal{K} and \mathcal{R} states reflect, in a sense, only the processors' "state of mind", and not necessarily the true situation. It might happen that a processor switches prematurely to state \mathcal{K}, erroneously believing it holds the true value of the input w. Such an error might subsequently propagate to neighboring processors as well. Our analysis will show that this happens only with low probability.

By a simple counting argument, the fraction of processors whose discrepancy satisfies $\delta_{i} \geq k \bar{\delta}$ is bounded above by $\frac{1}{k}$, for every $k \geq 1$. The first phase attempts to correct the inputs of processors from C_{1}, while at the l-th attempt to correct the processors in C_{l}. By the previous argument, at least half of the processors are in C_{1}, and furthermore $\sum_{j=l}^{q}\left|C_{j}\right| \leq \frac{n}{2^{2}}$. Assuming that all the processor that shifted from \mathcal{R} to \mathcal{K} had the correct value, then after the l-th phase, at most $\frac{n}{2^{i}}$ processors are in state \mathcal{R}.

We describe the structure of a phase l in more detail. At the beginning of phase l, the current states of the processors induces a conceptual partition of the line network into consecutive intervals I_{1}, \ldots, I_{t}, with each interval $I=\left(p_{i}, p_{i+1}, \ldots\right)$ containing one or more processors, such that the first processor p_{i} is in state \mathcal{K}, and the rest of the processors (if any) are in state \mathcal{R}.

The algorithm maintains that each processor knows its state, as well as the state of its two neighbors, hence each processor knows its relative role in its interval, as either a "head" of the interval, an intermediate processor, or a "tail" (i.e., the last processor of the interval).

Suppose that processor p_{i} is in state \mathcal{K} at the beginning of phase $l<q$ and is the "head" of some interval I. If the processor p_{i+1} is also in state \mathcal{K}, then the interval I contains only p_{i}, and thus p_{i} has finished its part in the algorithm. Otherwise, interval I contains at least one processor in state \mathcal{R}. In this case, processor p_{i} is assigned the role of the broadcaster with respect to its interval in phase l. More specifically, it needs to inform its value to all processors of class C_{l} in its interval I. Hopefully, this results in the further partition of interval I into subintervals for the next phase.

Processor p_{i} performs this task by using Algorithm Maximum of Section 3.1, with parameter $d_{l}=2^{l} \bar{\delta}$. To be more specific, if p_{i} 's interval I contains other processors (i.e., processor p_{i+1} is in state \mathcal{R}) then p_{i} computes $C_{m, d_{l}}^{*}\left(o_{i}\right)$ and sends it to p_{i+1}. (In case $l=q$, processor p_{i} sends o_{i}.) As we shall see, with high probability $o_{i}=w$ for any processor i that is in state \mathcal{K}. Therefore, later in this informal description we substitute $C_{m, d_{l}}^{*}(w)$ for $C_{m, d_{l}}^{*}\left(o_{i}\right)$. Consider any intermediate processor p_{j} (in state \mathcal{R}) in interval I that receives a message simply forwards the message (using pipelining). The tail processor of the interval (i.e., the one whose successor is in state \mathcal{K}) does nothing.

It remains to explain when a processor decides to change its state from \mathcal{R} to \mathcal{K}. This task requires an initialization phase, in which the broadcaster chooses a random universal hash function $h \in \mathcal{F}_{\varepsilon / n q}$ and sends the description of h with the hashed value of the broadcast message, (i.e., the pair $\langle h, h(w)\rangle$), to all processors. Since the description of h requires $O\left(\log \frac{n q}{\epsilon}\right)$ bits, the size of the message is $O\left(\log \frac{n q}{\epsilon}\right)=O\left(\log \log m+\log \frac{n}{\epsilon}\right)$. The pair $\langle h, h(w)\rangle$ will later serve each processor to test whether its new computed value of w is correct.

Specifically, as said above, in phase $l<q$ each processor p_{j} in state \mathcal{R} receives $\rho_{l}=$
$C_{m, d_{l}}^{*}(w)$. It concatenates it to w_{j} and computes $C_{m, d_{l}}^{-1}\left(w_{j} C_{m, d_{l}}^{*}(w)\right)=g_{j}^{l}$, which is its "guess" for w. It then tests whether $h\left(g_{j}^{l}\right)=$ $h(w)$. In case of equality, it sets its output to be $o_{j}=g_{j}^{l}$, and changes its state from \mathcal{R} to \mathcal{K}. At the last phase, $l=q$, when a processor p_{j} receives value o_{i}, from some processor p_{i}, then p_{j} sets $o_{j}=o_{i}$. The algorithm ends after phase q.

Lemma 3.5 The probability that some processor produces an incorrect output is bounded above by ϵ.
Proof: We bound the probability that a processor p_{j} outputs an incorrect value at phase l, given that all the outputs at phases before phase l where correct. This event implies that $g_{j}^{l} \neq w$, but $h\left(g_{j}^{l}\right)=h(w)$. However, the hash function h was chosen so as to guarantee that this probability is at most $\frac{\epsilon}{n q}$. Summing over all possible bad events, this implies that the probability that some processor ends with an incorrect output is bounded by ϵ.

Another possible failure is that a processor stays in state \mathcal{R}. However, recall that in this case some other processor has to output an incorrect value before.

Now, we analyze the communication and time complexity of the protocol. We first show that if no node mistakenly outputs an incorrect value, then both time and communication complexities are small.

Lemma 3.6 Assuming that no processor outputs an incorrect value, the time complexity of Algorithm Average is $O\left(n+m+\log \frac{1}{\epsilon}\right)$.
Proof: The initialization phase involves sending a message containing the pair ($h, h(w)$), which is of size $O\left(\log \log m+\log \frac{n}{\epsilon}\right)$ bits, to all n processors. This phase therefore requires time $O\left(n+\log \log m+\log \frac{n}{\epsilon}\right)$. It remains to analyze the time required for the main phases.

Assuming that at the start of phase l all the processors in state \mathcal{K} have the correct value, the number of processors in state \mathcal{R}
at the end of the phase is at most $n / 2^{l}$. This follows from the fact that at phase l the algorithm corrects the input values of all processors whose discrepancy is at most $d_{l}=2^{l} \bar{\delta}$. Since the average discrepancy is $\bar{\delta}$, the number of processors with a larger discrepancy is at most $n / 2^{l}$.

The time required for completing a phase l is clearly bounded above by the number of processors in state \mathcal{R} plus the size of the message sent in this phase, i.e., $n / 2^{l}+$ $\min \left\{m, d_{l} \log m\right\}$. The first term is clearly bounded by n, and the second obtains its maximum at the last phase, and is therefore bounded by $O(m)$.

Hence the time complexity is $O(n+m+$ $\left.\log \frac{1}{\epsilon}\right)$.

Lemma 3.7 Assuming that no processor outputs an incorrect value, the communication complexity of Algorithm Average is $O(\bar{\delta}$. $n \log m+n \log \frac{n}{\epsilon}$).
Proof: Again, the initialization phase requires sending a message of $O(\log \log m+$ $\left.\log \frac{n}{\epsilon}\right)$ which contributes $O(n(\log \log m+$ $\log \frac{n}{\epsilon}$)) to the communication complexity.

Let us now concentrate on the main phases. Consider a processor p_{i} with discrepancy δ_{i}. We count the number of bits that p_{i} receives during the entire execution. After phase $q_{i}=\left[\log \left(\delta_{i} / \bar{\delta}\right)\right]$, assuming that all the processors in state \mathcal{K} have the correct value, p_{i} should already be in state \mathcal{K}, and from then on it never receives messages. At each phase l prior to phase q_{i}, processor p_{i} gets a message $C_{m, d_{l}}^{*}(w)$ of size $O\left(d_{l} \log m\right)$ bits. Therefore, the number of bits received by p_{i} throughout the execution is bounded by
$\sum_{l=1}^{q_{i}} O\left(d_{l} \log m\right)=O\left(2^{q_{i}} \bar{\delta} \log m\right)=O\left(\delta_{i} \log m\right)$.
Summing over all processors, the contribution of the main phases is bounded by

$$
\sum_{i=1}^{m} O\left(\delta_{i} \log m\right)=O(\bar{\delta} \cdot n \log m)
$$

Consequently, the communication complexity of the entire algorithm is $O(\bar{\delta}$ $n \log m+n \log \frac{m}{\epsilon}$).

Note that ϵ can always be chosen so as to make the failure probability polynomially small in m, without degrading the time or communication complexities of the algorithm. Consequently we have

Theorem 3.8 The algorithm Average, given $\bar{\delta}$, the average discrepancy, and $\epsilon, 0<$ $\epsilon<1$, with probability $1-\epsilon$ solves the broad. cast with partial knowledge correctly. In the case that the solution is correct the time complexity is $O\left(n+m+\log \frac{1}{\epsilon}\right)$ and the communication complexity is $O\left(\bar{\delta} \cdot n \cdot \log m+n \log \frac{n}{\epsilon}\right)$ bits.

In case the algorithm Average fails, and the output is incorrect, we can guarantee only trivial bounds on the time and communication complexities of the algorithm. These bounds are derived from bounding the number of phases by $\log m$, and the number of bits in a message by m. This gives a worst case bounds of $O((n+m) \log m)$ time and $O(n m)$ communication. However, ϵ can be selected so as to equate the expected complexity (over all executions) with the high probability complexity (i.e. over the executions that have a correct output) . Consequently we have

Corollary 3.9 The algorithm Average has an expected time complexity of $O(n+$ m) and expected communication complexity of $O(\bar{\delta} n \log m+n \log n m)$ bits.

3.3 Unknown discrepancy

In the case that $\bar{\delta}$ is not known in advance, we can solve the problem by initiating the algorithm with $\bar{\delta}=1$. In such a case, in the $\log \bar{\delta}$ first phases, it may happen that no processor changes to \mathcal{K}. The communication complexity essentially remain the same, since the additional $O(n)=O(\bar{\delta} \cdot n)$ are absorbed
in the previous bound. However, the time complexity does increase in this case by an additive factor of $O(n \log \bar{\delta})$.

Theorem 3.10
The algorithm Unknown, given $\epsilon, 0<\epsilon<1$, with probability $1-\epsilon$ solves the broadcast with partial knowledge correctly. In the case that the solution is correct the time complexity is $O\left(n \log \bar{\delta}+m+\log \frac{1}{\epsilon}\right)$ and the communication complexity is $O\left(\bar{\delta} \cdot n \cdot \log m+n \log \frac{n}{\epsilon}\right)$ bits.

In a similar way to before, we can bound the expected complexities by choosing ϵ appropriately.

Corollary 3.11 The algorithm UnKNOWN has an expected time complexity of $O(n \log \bar{\delta}+m)$ and expected communication complexity of $O(\bar{\delta} n \log m+n \log n m)$ bits.

4 Lower bounds

In this section we establish some simple lower bounds that show that our construction is not far from optimal. The first bound concerns the communication complexity of broadcast algorithms assuming maximum discrepancy $d=\delta_{\max }$. Assume that all processors but the broadcaster have as input the all-zero vector, while the broadcast message is a vector containing exactly d ones, that is chosen arbitrarily from among all $\binom{m}{d}$ possible vectors, with all choices being equally likely. This implies that the entropy of the source (the broadcaster) is $\log \binom{m}{d}$. The entropy is clearly a lower bound on the number of bits each processor has to receive. Therefore, we have the following bound.

Theorem 4.1 The communication complexity of any broadcast algorithm is at least

$$
n \log \binom{m}{\delta_{\max }}=\Omega\left(n \delta_{\max } \log \left(\frac{m}{\delta_{\max }}\right)\right)
$$

The bound on the time required for broadcast is derived by considering the last proces-
sor and noticing that it cannot receive any information before time n. Therefore, we have

Theorem 4.2 The time complexity of any broadcast algorithm is at least

$$
n+\log \binom{m}{\delta_{\max }}=\Omega\left(n+\delta_{\max } \log \left(\frac{m}{\delta_{\max }}\right)\right)
$$

The next theorem establishes the limitations of the derandomization of the algorithm when the average discrepancy is $\bar{\delta}$, and it is not known in advance. Consider a simpler task, in which every processor has to decide whether its input equals the broadcast message or not. This is a well studied problem in communication complexity theory, where lower bounds for the number of bit exchanges required of solving the equality problem are known. For the case of $n=2$, Yao showed a lower bound of $\Omega(m)$ for deterministic algorithms [Yao79], and Tiwari extended it to a line of processors and showed an $\Omega(n m)$ lower bound [Tiw84]. This bound holds in particular when all the inputs are equal, in which case $\bar{\delta}=0$. This implies the following lower bound:

Theorem 4.3 Any deterministic or randomized Las-Vegas type algorithm that has to work for an arbitrary $\bar{\delta}$, there is an input whose discrepancy is zero (i.e. $\bar{\delta}=0$), and the algorithm requires $\Omega(n m)$ communication complexity on this input.

Future work

An obvious open question suggested by this work is whether there exists an efficient deterministic solution in the neighbor knowledge model. Recently, this question has been answered affirmatively in [AS91] where a deterministic solution with $O((\Delta+n) \log m)$ communication and $O\left((n+m) \log ^{3} m\right)$ time has been found.

References

[$\mathrm{ACG}^{+} 90$] Baruch Awerbuch, Israel Cidon, Inder Gopal, Marc Kaplan, and Shay Kutten. Distributed control for paris. In Proc. 9th ACM Symp. on Principles of Distributed Computing, 1990.
[ACK90] Baruch Awerbuch, Israel Cidon, and Shay Kutten. Optimal maintenance of replicated information. In Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990.
[AS91] Baruch Awerbuch and Leonard Schulman. The maintenance of common data in a distributed system. Unpublished manuscript, April 1991.
[BGJ ${ }^{+85]}$ A. E. Baratz, J. P. Gray, P. E. Green Jr., J. M. Jaffe, and D.P. Pozefski. Sna networks of small systems. IEEE Journal on Selected Areas in Communications, SAC-3(3):416-426, May 1985.
[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorem for non-cryptographic fault tolerant distributed computing. In Proc. 20th ACM Symp. on Theory of Computing, May 1988.
[Eve79] Shimon Even. Graph Algorithms. Computer Science Press, 1979.
[Met84] J. J. Metzner. An improved broadcast retransmission protocol. IEEE Trans. on Communications, COM-32(6):679-683, June 1984.
[MRR80] John McQuillan, Ira Richer, and Eric Rosen. The new routing algorithm for the arpanet. IEEE Trans. on Commun., 28(5):711-719, May 1980.
[Rab89] M. Rabin. efficient dispersal of information for security, load balancing, and fault tolerance. J. of the ACM, 36(3):335-348, 1989.
[SG89] John M. Spinelli and Robert G. Gallager. Broadcasting topology information in computer networks. IEEE Trans. on Commun., May 1989.
[Tiw84] P. Tiwari. Lower bounds on communication complexity in distributed computer networks. In Proc. 25th IEEE Symp. on Foundations of Computer Science, pages 109-117, 1984.
[WC79] M.N. Wegman and J.L. Carter. Universal classes of hash functions. Journal of Computer and System Sciences, 18:143-154, 1979.
[Yao79] Andy Yao. Some complexity questions related to distributed computing. In Proc. 11th ACM Symp. on Theory of Computing, pages 209213. ACM SIGACT, ACM, April 1979.

[^0]: *Dept. of Mathematics and Lab. for Computer Science, M.I.T., Cambridge, MA 02139. Supported by Air Force Contract TNDGAFOSR-860078, ARO contract DAAL03-86-K-0171, NSF contract CCR8611442, and a special grant from IBM.
 ${ }^{\dagger}$ IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, and Faculty of Electrical Engineering, The Technion, Haifa 32000, Israel.
 ${ }^{\ddagger}$ IBM T.J. Watson Research Center P.O. Box 704, Yorktown Heights, NY 10598.
 §Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138. Partially supported by ONR N00014-85-K-0445.
 ${ }^{1}$ Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100, Israel. Supported in part by an Allon Fellowship, by a Walter and Elise Haas Career Development Award and by a Bantrell Fellowship.

[^1]: Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

