
Broadcast with Partial Knowledge

(Preliminary Version)

Baruch Awerbuch * Israel Cidon t Shay Kutten $ Yishay Mansour ~

David Peleg ~

Abstract

This work concerns the problem of broadcast-

ing a large message efficiently when each pro-

cessor has partial prior knowledge about the

contents of the broadcast message. The par-

tial information held by the processors might

be out of date or otherwise erroneous, and

consequently, different processors may hold

conflict ing information. Tight bounds are

“Dept. of Mathematics and Lab. for Com-
puter Science, M. I. T., Cambridge, MA 02139. Sup-

ported by Air Force Contract TNDGAFOSR-86-

0078, ARO contract DAAL03-86-K-0171, NSF con-

tract CCR861 1442, and a special grant from IBM.
tIBM T*J. Watson Research center, p-o. Box

704, Yorktown Heights, NY 10598, and Faculty of

Electrical Engineering, The Technion, Haifa 32000,

Israel.
fIBM T.J. Watson Research center p,o. Box 704,

Yorktown Heights, NY 10598.

~Aiken Computation Laboratory, Harvard Uni-

versity, Cambridge, MA 02138. Partially supported

by ONR NOO014-85-K-0445.

WDepartment of Applied Mathematics and Com-

puter Science, The Weizmann Institute, Rehovot

76100, Israel. Supported in part by an Allen Fellow-

ship, by a Walter and Elise Haaa Career Development

Award and by a Bantrell Fellowship.

Permission to copy without fee all or part of this material k granted
provided that the copiesare not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

01991 ACM 0-89791-439-2/91/0007/0153 $1.50

established for broadcast under such condi-

tions, and applications of the broadcast pro-

tocol to other distributed computing prob-

lems are discussed.

1 Introduction

1.1 Motivation

Many tasks in distributed computing deal

with concurrently maintaining the “view” of

a common object in many separate sites of

a distributed system. This object may be

the topology of a communication network (in

which case the view is a description of the un-

derlying network graph), or certain resources

held at the system sites (in which case the

view is an inventory listing the resources held

at each site), or even a general database. The

objects considered here are dynamic in na-

ture, and are subject to occasional changes

(e.g., a link fails, a resource unit is consumed

or released, a database record is modified). It

is thus necessary to have an efficient mecha-

nism for maintaining consistent and updated

views of the object at the different sites.

One obvious algorithm for maintaining up-

dated views of a distributed object is the Full

Broadcast algorithm. This algorithm is based

on initiating a broadcast of the entire view of

the object whenever a change occurs. Due

to the possibility of message pipelining, the

time complexity of this algorithm is relatively

153

http://crossmark.crossref.org/dialog/?doi=10.1145%2F112600.112614&domain=pdf&date_stamp=1991-07-01

low. Ontheother hand, thisalgorithm might

be very wasteful in communication, since the

object may be rather large.

Consequently, it is clear that a success-

ful consistency maintenance strategy should

strive to utilize the fact that the processors

already have a correct picture of “most” of

the object, and need to be informed of rela-

tively few changes. Viewed from this angle,

the problem can be thought of as having to

broadcast the entire view of the object, while

taking advantage of prior partial knowledge

available to the processors of the system.

On the other extreme there is the incre-

mental Update strategy, in which only “nec-

essary” information is transmitted. This

strategy is at the heart of the algorithms

suggested for handling the topology update

problem ([ACK90, MRR80, SG89, BGJ+85]).

Unfortunately, there seems to be no possi-

bility to employ information pipelining with

this method, which makes the time complex-

ity very high.

The purpose of this work is to study the

problem of updating a distributed database,

under minimal assumptions. That is, we

do not assume any initial coordination and

allow only small amount of space. Under

such conditions, we look for efficient solu-

tions to the problem with respect to com-

munication and time overheads. In this set-

ting, it turns out that the main bottleneck

of the database update problem can be char-

acterized as a fairly simple “communication

complexit y“ problem, called Broadcast with

Partial Knowledge.

1.2 The model and the prob-

lem

The Broadcast with Partial Knowledge prob-

lem can be formulated as follows. Consider

an asynchronous communicant ion network,

consisting of n+ 1 processors, po, pn, with

each processor pi has an m-bit local input

T.oi, and processor p. is distinguished as the

broadcaster. In a correct solution to the prob-

lem all the processors write in their local

output the value of the broadcaster’s input,

w= Wo.

This formulation of the problem can be in-

terpreted as follows. The input Wi is stored

at processor pi and describes the local repre-

sentation of the object at processor pi. The

correct description of the object is w = Wo,

held by the broadcaster. The local descrip-

tions Wi may differ from the correct one as a

result of changes in the object. In particu-

lar, every two processors may have different

descriptions due to different messages they

got from the broadcaster in the past, as a re-

sult of message losses, topology changes and

the asynchronous nature of the network. Our

goal is to inform all the processors through-

out the network about the correct view of

the object w, and to use the processor’s lo-

cal inputs given to each processor in order to

minimize the time and communication com-

plexities.

In this paper, we solve the strongest ver-

sion of this problem, in which each processor

only knows its own input, and has no infor-

mation regarding inputs of other processors.

However, it is worth mentioning the weaker

version of the problem, which makes the

“neighbor knowledge” assumption, namely

that each processor knows (besides its own

input) the inputs of its neighbors. This as-

sumption is justified in [ACK90], where it

is shown that neighbor-knowledge comes for

free in context of database and topology uP-

date protocols. Even for this weaker prob-

lem, none of the previously known solutions

are efficient both in communication and time.

1.3 The complexity measures

In order to quantify the possibility of exploit-

ing local knowledge, we first introduce a new

measure that captures the level of “informa-

154

tion” of the knowledge held by each proces-

sor. Let the discrepancy 6i of the input Wi

held by processor pi be the number of bits in

which ~i, the local description at pi, differs

from the broadcaster’s input w, which is the

correct description of the object. Define also

the total discrepancy A = ~i bi, the average

discrepancy 8 = A/n, and the maximum dis-

crepancy &~= = rnZLX; {6’i}.

Our goal is to study the relationships be-

tween these discrepancies and the complexity

of broadcast algorithms, following the intu-

ition that the complexity of broadcast pro-

tocols should be proportional to discrepancy

of processors’ inputs, i.e., if the views of

most processors are “almost correct”, then

the overhead of the protocol should be small.

We therefore express the communication and

time complexity of our solution as a function

of m, n and ~. The complexities are mea-

sured in the bit complexity model.

1.4 Basic solutions

The first obvious solution to the Broadcast

with Partial Knowledge problem is the Full

Broadcast protocol, which is wasteful in com-

munication, i.e. require fl(nm) bits. On the

other hand it is rather fast, since the broad-

cast can be done in a pipelined fashion and

thus can terminate in O(n + m) time. Thus,

one would like to improve on this algorithm

with respect to communication complexity,

aiming towards reducing this complexity to

be close to the total discrepancy A, while

maintaining near-optimal time complexity.

The Incremental Update strategy proposed

in [ACK90] poses an alternative approach.

The essence of this strategy is that a pro-

cessor with “correct” view transmits to its

neighbor a “correction” list, which cent ains

all the positions where neighbor’s input is

erroneous. In this algorithm, a “correction

wave” propagates through the network from

the source, till all nodes are corrected. It

should be stressed that even under assump-

tion of neighbor knowledge, there appears to

be no possibility for efficient exploitation of

pipelining in this algorithm and even in the

simple case of a path network the protocol

may require Q(J . n) time.

1.5 Our results

In this paper, we provide an efficient random-

ized solution to the Broadcast with Partial

Knowledge problem. It has success probabil-

ity at least l–c, and uses O(A log m+n log ~)

communication and O(n log $ + m + log ~)

time, where c is a parameter to the algo-

rithm. Assuming that A is known, our algo-

rithm achieves a slightly better time bound

of O(n + m + log ~) and the same communi-

cation complexity. Note that in all cases, we

allow the inputs stored at the various proces-

sors to differ in arbitrary ways, subject to the

discrepancy constraints.

Our upper bounds are derived using lin-

ear codes. Such codes were used before in

constructing distributed algorithms for so’lv-

ing various problems. Metzner [Met84] uses

Reed-Solomon and random codes to achieve

efficient retransmission protocols in a colm-

plete network. Ben-Or, Goldwasser and

Wigderson [BOGW88] use BCH codes to

guarantee privacy in a malicious envircm-

ment. Rabin [Rab89] uses codes to achieve

a reliable fault-tolerant routing with a low

overhead.

Using simple arguments from information

theory and communication complexity the-

ory, we are able to show that our upper

bounds are almost tight. We argue that when

the average discrepancy is ~, the commu-

nication complexity is at least Q(A log(~))

and the time complexity is at least fl(n +

~ log(~)). We also argue that in the cabse

that no information is known about the dis-

crepancies, any deterministic protocol would

send ft(nrn) bits, even if there are no discrep-

155

ancies at all.

The comparison of our protocols and lower

bounds is given in Figure 1.

1.6 Applications to topology

update

One application of our work is to the classical

network problem of Topology Update. This

task is at the heart of many practical network

protocols [MRR80, BGJ+85, ACG+90]. The

problem can be formulated as follows. Ini-

tially, each processor is aware of the status

of its adjacent links, i.e., whether each link

is up or down, but is unaware of the status

of other links. The purpose of the protocol is

to supply each processor with this global link

status information.

The topology update algorithm of [ACK90]

is based on the Incremental Update strategy.

The possibility of recurring network parti-

tions and reconnection significantly compli-

cates implementation of this strategy. Nev-

ert heless, the resulting broadcast procedure

is efficient in terms of communication (al-

though not in time), and leads to essen-

tially communication-optimal topology up-

date protocols [ACK90].

A consequence of [ACK90] that is most sig-

nificant for our purposes is the observation

that it is possible to relate the complexities

of the problem of Broadcasting with Partial

Knowledge to those of Topology Update, ef-

fectively reducing the former problem to the

latter. Namely, given any solution for the

Broadcast with Partial Knowledge problem,

one can construct a topology update protocol

with lower or equal overheads in both corn=

munication and time.

It is worth pointing out that our complex-

ity results are presented in the bit complexity

model, whereas the results in [ACK90] are

presented in the message complexity model

which charges only one complexity units for

a message of size O(log n) bits.

1.7 Organization of the paper

The rest of the paper is structured as fol-

lows. In section 2 we quote some neces-

sary results for later use concerning universal

hash functions and coding theory. In Section

3, we present our upper bound (algorithm

AVERAGE). Finally, the lower bounds on the

problem are established in Section 4.

2 Preliminaries

2.1 Universal hash functions

Universal hash functions have found many

interesting applications since their introduc-

tion by Carter and Wegman [WC79]. A fam-

ily of functions X = {h : A ~ B} is called a

universal hash function if for any al # a2 c A

and bl, b2 c 13 the following holds:

1
Prob[h(al) = 61 and h(a2) = 62] = —

[B[2

where the probability is taken over the possi-

ble choices of h, which is randomly and uni-

formly chosen from ~.

There are many families of simple univer-

sal hash functions. One example can be con-

structed as follows. Let p be a prime and let

B = 2P. (Note IBI = p.) Then

is a family of universal hash functions.

In the above example the encoding of a

hash function requires only two elements

from 2P, and also p, therefore we can describe

such a hash function using only O(log IB 1)

bits. (Note that the encoding of h does not

depend on A.) Later, when using a universal

hash function, it is assumed that it can be

represented with O(log IBI) bits.

Another way to view the parameters is the

following. We are interested is a family of

156

Algorithm Communication

—

Time Assumptions 1
Full broadcast (folklore) nm n+m

Incr. Update [ACK90] n+ Alogm n+ Alogm

1

neighbor knowledge

Our algorithm Alogm + nlog(~) nlog(Q)+m+log~

Our lower bound n + A log(~) n + A log(~)
—

Figure 1: Comparison of protocols and lower bounds.

universal hash functions XC, that has the fol-

lowing property: given any two distinct ele-

ments, the probability that a random hash

function h c %, maps them to the same

point, is bounded by c. From the proper-

ties of the universal hash function this occurs

with probability y 1/[13\. Therefore, choosing

e = l/[131, we conclude that there is a family

of hash functions YE whose encoding size is

2.2

EJ”

Information theoretic back-

ground

The tools developed later on are based on

some basic results from coding theory. A

code Cm,d : {O, 1}~ s {O, l}~+r is a mapping

that transforms an input word w ~ {O, 1}~

into a codeword c~,d(w) = O G {O, l}~+r.

The codes considered in this paper are stan-

dard “check-bit” codes, namely, the result-

ing codeword ti is assumed to be of the form

O = wl[p, where p c {O, 1}’ is a “trail” of r

check bits. Denote the trail of check bits that

the code c~,d attaches to a word w by by

c~,d(~). The lengths of the entire codeword

and the check bit trail are denoted in the se-

qUt31 by lC@(~) I and lc~,d(~) [, U33PeCtiVelY.

A code Cm,d is said to be d-correcting if

the original word w can be correctly decoded

from any word z that differs from the code-

word Cm,d(w) in no more than d places.

The following theorem states the proper-

ties possessed by the code necessary for our

purposes.

Theorem 2.1 For any m and d < m/3,

there exists a check-bit code Cm,d with the 1o1-

Iowing properties:

1. The check bit trail is of length le~,d(~)l =

O(dlogm).

2. The code 6’m,d is d-correcting.

3. The encoding and decoding operations

(Cm,d and e~’d$ respectively) require time

polynomial in ‘m and d.

In order to show the theorem, we can

slightly modify BCH codes, so they will have

all the above properties. It is well known that

the decoding and encoding of BCH codes can

be accomplished in polynomial time and that

the length of check bit trail is O(d log 7rL).

The only property that we need to comment

about is the use of arbitrary m. The cc)de

words in BCH codes are of length 2~ – 1.

We simply have to extend our input (e.g.,

by padding zeros) to the appropriate size.

When encoding, we first extend the input

w ~ {O, l}m to 2~ – 1 – [C~,d(w)] bits and

then perform the encoding. After the decod-

ing, the padding bits will be removed.

All codes Cm,d referred to later on in the

paper are meant to be check-bit codes that

satisfy the properties in Theorem 2.1. The

subscripts m, d are omitted whenever m amd

d are clear from the context.

3 Upper bounds

We develop our solution in

through a number of steps.

a modular way

The first step is

157

a simple deterministic algorithm MAXIMUM, value of C*(w).

presented in Subsection 3.1, in which it is as-

sumed that the maximum discrepancy 6~~Z

is known to the broadcaster. Subsection 3.2,

presents the algorithm AVERAGE, which as-

sumes knowledge of the average discrepancy.

Finally, in Subsection 3.3 it is shown that the

assumptions about knowledge of the discrep-

ancy can easily be eliminated.

3.1 Algorithm MAXIMUM

This section handles broadcast in the case

where the maximum discrepancy 6n~= is

known, and presents a straightforward broad-

casting algorithm MAXIMUM, which assumes

that the broadcaster “knows” 6~.Z. The al-

gorithm requires 0(m5~.Z log m) communica-

tion and O(n + ~~.= log m) time.

We should note that this algorithm is not

efficient, since the maximum discrepancy can

be very far from the average discrepancy.

This algorithm is presented, in order to be

used in the next section as a subroutine.

For simplicity, it is assumed that the net-

work is a simple path, namely, the n + 1 pro-

cessors pO, . . . , pn are arranged on a line, with

a bidirectional link connecting processor pi

to processor pi+l, for every O < i < n. Note

that this does not restrict generality in any

way, since the path is the worst topology for

broadcast, and moreover, there exists an easy

transformation from every other network to

a path network by using a depth-first tour

([Eve79]).

Algorithm MAXIMUM works as follows:

The broadcaster encodes the broadcast mes-

sage w using the code C = C~,6~.=. (Note

that this code C is fixed and known to all

other processors.) The broadcaster broad-

casts only the check bit trail C’*(W). The

broadcasting proceeds in full pipelining. I.e.,

each processor pi for i < n that receives the

first bit of C*(W) immediately forwards it to

processor pi+l, without waiting for the entire

Once a processor pi has received the com-

plete message p = C*(w), it concatenates it

to its own input Wi, thus obtaining a comp-

lete (but possibly corrupted) codeword tii =

Wi [[p and decodes this codeword by comput-

ing O; = C-l(tii), which is taken to be the

output.

Lemma 3.1 If the input Wi of processor p;

is different from w in at most 6maz places, then

O; = W.

Proofi Consider the word oi output by pro-

cessor pi. AS 6i < Am.., it follows that tii =

wi [[p differs from ti = w [[p in at most 6~aZ

places. Since the code C is &az-correcting,

it follows that oi = C-l(tii) = C-l(0) = ~.

•1

Lemma 3.2 The time Complexity of Algo-

rithm MAXIMUM is n + 0(6~.z “ logm).

Proofi The algorithm broadcasts the mes-

sage p = C“(w) in full pipelining. Hence the

first bit of p reaches the last processor, pn, by

time n, and the entire message reaches pn by

time n + \C*(w)]. The lemma follows since

Ic”(w)l = o(6ma.. logm). •1

Lemma 3.3 The communi-

cation complexity of Algorithm MAXIMUM is

O(n “ d~.z logrn).

Proof: The message C*(W) traverses each

edge exactly once. Therefore, the communi-

cation complexity is n olC*(w) I = n” 0(6~.X o

log m). c1

We complete the description by noting that

both the time and communication complexi-

ties can be improved for large 6~az. Specifi-

cally, if ~~.. log m > m, then a full broadcast

of the information is more efficient (namely,

send w to all the processors). Therefore we

have

Theorem 3.4 Given the value of dn.m,

there is a deterministic algorithm for per-

forming broadcast with partial information,

that requires n + O(min{m, b~~~ “ log m})

158

time and has communication complexity O(n .

min{m, 6~.= . logm}).

A similar result holds when the broad-

caster knows only an upper bound d on the

discrepancies, where the same complexities

hold except with d replacing 6~az. When

the upper bound is “accurate”, namely d =

0(6~.z), the complexities remain the same.

3.2 Algorithm AVERAGE

In this section we replace the assumption of

known &~oZ with the assumption that only

the average discrepancy ; is known. Note

that no assumptions are made about how the

discrepancies are distributed. In particular,

it may be that some processors have large

discrepancies while others have the correct

value. For the simplicity of the notation, we

assume throughout the section that ; ~ 1.

The broadcast algorithm AVERAGE pre-

sented in this section is randomized, i.e.,

it guarantees the correctness of the out-

put of each processor with high probability.

The communication complexity of Algorithm

AVERAGE depends linearly on the average

discrepancy ~, while its time complexity is

still linear in m. Both complexities apply to

the worst case scenario.

We begin with a high level description of

Algorithm AVERAGE. The algorithm works

in phases, and invokes Algorithm MAXIMUM

of Section 3.1 at each phase. At every phase

of the execution, each processor can be in one

of two states, denoted K and 7?. Initially,

only the broadcaster is in state K, while the

other processors are in state 7?. Intuitively, a

processor pi switches from state 7? to state K

when it concludes that his current guess for

w is equal to the “real” broadcast word w.

The phases are designed to handle proces-

sors wit h increasing y larger discrepancies.

More specifically, let us classify the proces-

sors into classes Cl, Cq, q = [log(=)]?

where the class C’l contains all processors

p; whose discrepancy 6i falls in the range

21–1$ <_6; < min{m,2~$} for 2 < 1 ~ q — 1,

& < 26 for 1 = 1, and the rest in C’g (i.e.,

& ~ ~). Then each phase 1 P O is respon-

sible for informing the processors in class Cl.

This is done by letting the processors in state

K broadcast to the other processors.

Note that the K and 7? states reflect, in a

sense, only the processors’ “state of mind”,

and not necessarily the true situation. It

might happen that a processor switches pre-

maturely to state K, erroneously believing it

holds the true value of the input w. Such an

error might subsequently propagate to neigh-

boring processors as well. Our analysis will

show that this happens only with low proba-

bility.

By a simple counting argument, the frac-

tion of processors whose discrepancy satisfies

6i ~ k~ is bounded above by ~, for every

k ~ 1. The first phase attempts to correct

the inputs of processors from Cl, while at

the l-th attempt to correct the processors in

Cl. By the previous argument, at least half

of the processors are in Cl, and furthermore

E;=l Icj I s ; “ Assumingthat all the Proces-
sor that shifted from 7? to K had the correct

value, then after the l-th phase, at most ~

processors are in state ‘R.

We describe the structure of a phase 1 in

more detail. At the beginning of phase 1, the

current states of the processors induces a ccm-

ceptual partition of the line network into ccm-

secutive intervals 11, ..., It, with each inter-

val 1 = (pi>p;+l, . . .) containing one or more

processors, such that the first processor pi is

in state K, and the rest of the processors (if

any) are in state l?.

The algorithm maintains that each proces-

sor knows its state, as well as the state of its

two neighbors, hence each processor knows

its relative role in its interval, as either a

“head” of the interval, an intermediate pro-

cessor, or a “tail” (i.e., the last processor of

the interval).

159

Suppose that processor pi is in state K

at the beginning of phase Z < q and is the

“head” of some interval 1. If the processor

pi+l is also in state K, then the interval 1

contains only pi, and thus pi has finished its

part in the algorithm. Otherwise, interval 1

contains at least one processor in state l?. In

this case, processor pi is assigned the role of

the broadcaster with respect to its interval in

phase 1. More specifically, it needs to inform

its value to all processors of class C1 in its

interval 1. Hopefully, this results in the fur-

ther partition of interval 1 into subintervals

for the next phase.

Processor pi performs this task by using

Algorithm MAXIMUM of Section 3.1, with pa-

rameter dl = 2{~. To be more specific, if pi’s

interval 1 contains other processors (i.e., pro-

cessor pi+l is in state 7?) then pi computes

c;,~, (oi) and sends it to pi+l. (In case 1 = q,

processor pi sends o~.) As we shall see, with

high probability oi = w for any processor i

that is in state K. Therefore, later in this in-

formal description we substitute C’~,~l (w) for

C~,~l (oi). Consider any intermediate proces-

sor Pj (k state 7?) in interval 1 that receives a

message simply forwards the message (using

pipelining). The tail processor of the interval

(i.e., the one whose successor is in state K)

does nothing.

It remains to explain when a processor de-

cides to change its state from %?,to K. This

task requires an initialization phase, in which

the broadcaster chooses a random universal

hash function h 6 .7Ci.g and sends the de-

scription of h with the hashed value of the

broadcast message, (i.e., the pair (h, h(w))),

to all processors. Since the description of h

requires O(log ~) bits, the size of the mes-

sage is O(log ~) = O(log log m + log ~). The

pair (h, h(w)) will later serve each processor

to test whether its new computed value of w

is correct.

Specifically, as said above, in phase Z < q

each processor pj in state 7? receives pl =

C~,~, (w). It concatenates it to Wj and com-

()) = 9$> which is itsputes c~~~l (~&’l,~l w

“guess” for w. It then tests whether h(g$) =

h(w). In case of equality, it sets its output to

be oj = g;, and changes its state from I? to

K. At the last phase, 1 = q, when a proces-

sor Pj receives value Oi, from some processor

pi, then Pj sets oj = oi. The algorithm ends

after phase q.

Lemma 3.5 The probability that some pro-

cessor produces an incorrect output is bounded

ahove by c.

Proofi We bound the probability that a pro-

cessor pj outputs an incorrect value at phase

1, given that all the outputs at phases be-

fore phase 1 where correct. This event implies

that g: # w, but h(g~) = h(w). However, the

hash function h was chosen so as to guarantee

that this probability is at most ~. Summing

over all possible bad events, this implies that

the probability that some processor ends with

an incorrect output is bounded by c.

Another possible failure is that a processor

stays in state 1?. However, recall that in this

case some other processor has to output an

incorrect value before. •1

Now, we analyze the communication and

time complexity of the protocol. We first

show that if no node mistakenly outputs an

incorrect value, then both time and commu-

nication complexities are small.

Lemma 3.6 Assuming that no processor

outputs an incorrect value, the time complexity

of Algorithm AVERAGE is O(n + m + log ~).

Proofi The initialization phase involves

sending a message containing the pair

(h, h(w)), which is of size O(log log m+log ~)

bits, to all n processors. This phase therefore

requires time O(n + log log m + log ~). It re-

mains to analyze the time required for the

main phases.

Assuming that at the start of phase i all

the processors in state X have the correct

value, the number of processors in state 7?

160

at the end of the phase is at most n/2’. This

follows from the fact that at phase 1 the algo-

rithm corrects the input values of all proces-

sors whose discrepancy is at most dl = 21~.

Since the average discrepancy is ~, the num-

ber of processors with a larger discrepancy is

at most n/2’.

The time required for completing a phase

1 is clearly bounded above by the number

of processors in state 7? plus the size of

the message sent in this phase, i.e., n/2’ +

min{m, dl log m}. The first term is clearly

bounded by n, and the second obtains its

maximum at the last phase, and is therefore

bounded by O(m).

Hence the time complexity is O(rz + m +

log:). ❑

Lemma 3.7 Assuming that no processor

outputs an incorrect value, the communication

complexity of Algorithm AVERAGE is O(F .

nlogm+nlog ~).

Proofi Again, the initialization phase re-

quires sending a message of O(log log m +

log ~) which contributes O(n(log log m +

log ~)) to the communication complexity.

Let us now concentrate on the main

phases. Consider a processor pi with discrep-

ancy 6i. We count the number of bits that

pi receives during the entire execution. After

phase qi = [10/j(~i/~)] , assuming that all the

processors in state X have the correct value,

pi should already be in state K, and from

then on it never receives messages. At each

phase 1 prior to phase qi, processor pi gets

a message C~,al (w) of size O(dJ log m) bits.

Therefore, the number of bits received by pi

throughout the execution is bounded by

f O(d,logrrz) = 0(2qi~ 10g m) = 0(6i 10g m).
1=1

Summing over all processors, the contribu-

tion of the main phases is bounded by

~ 0(6’i 10gm) = O(3 - nlOg m).

Consequently, the communication com-

plexity of the entire algorithm is 0($

nlogm + nlog~). c1

Note that e can always be chosen so as

to make the failure probability polynomi-

ally small in m, without degrading the time

or communication complexities of the algo-

rithm. Consequently we have

Theorem 3.8 The algorithm AVERAGE,

given ~, the average discrepancy, and c, O <:

c < 1, with probability 1 – ~ solves the broad-

cast with partial knowledge correctly. In the

case that the solution is correct the time com-

plexity is O(n + m + log ~) and the communi-

cation complexity is 0(6 “ n “ log m + n log ~)

bits.

In case the algorithm AVERAGE fails, andl

the output is incorrect, we can guarantee only

trivial bounds on the time and communica-

tion complexities of the algorithm. These

bounds are derived from bounding the num-

ber of phases by log m, and the number of

bits in a message by m. This gives a worst

case bounds of O((n + m) log m) time and

O(nm) communication. However, ~ can be

selected so as to equate the expected com-

plexity (over all executions) with the high

probability complexity (i.e. over the execu-

tions that have a correct output) . Conse-

quently we have

Corollary 3.9 The algorithm AVERAGE

has an expected time complexity of O(n +

m) and expected communication complexity of

O(&z log m + n log nm) bits.

3.3 Unknown discrepancy

In the case that ~ is not known in advance,

we can solve the problem by initiating the

algorithm with ; = 1. In such a case, in

the log ~ first phases, it may happen that no

processor changes to K. The communication

complexity essentially remain the same, since

the additional O(n) = O(3 . n) are absorbed

161

in the previous bound. However, the time sor and noticing that it cannot receive any in-

complexity does increase in this case by an

additive factor of O(n log $).

Theorem 3.10

The algorithm UNKNOWN, given c, O < e <1,

with probability 1 – e solves the broadcast with

partial knowledge correctly. In the case that

the solution is correct the time complexity is

O(nlog 6 + m + log ~) and the communication

complexity is 0($” n “ log m + n log ~) bits.

In a similar way to before, we can bound

the expected complexities by choosing e ap-

propriately.

Corollary 3.11 The algorithm

UNKNOWN has an expected time complexity

of O(n log ~+m) and expected communication

complexity of O(&t log m + n log nm) bits.

4 Lower bounds

In this section we establish some simple

lower bounds that show that our construc-

tion is not far from optimal. The first

bound concerns the communication complex-

ity of broadcast algorithms assuming maxi-

mum discrepancy d = c$~.$. Assume that

all processors but the broadcaster have as

input the all-zero vector, while the broad-

cast message is a vector cent aining exactly

d ones, that is chosen arbitrarily from among

)

all (~ possible vectors, with all choices being

equal y likely. This implies that the entro y

7
of the source (the broadcaster) is log & .

The entropy is clearly a lower bound on the

number of bits each processor has to receive.

Therefore, we have the following bound.

Theorem 4.1 The communication com-

plexity of any broadcast algorithm is at least-

()mn log = fl(n6~az @(&)).
bm ax

The bound on the time required for broad-

cast is derived by considering the last proces-

formation before time n. Therefore, we have

Theorem 4.2 The time complexity of any

broadcast algorithm is at least

()mn + log
J

= Q(n + 6m.Zlog(&)).
max max

The next theorem establishes the limita-

tions of the derandomization of the algorithm

when the average discrepancy is ;, and it is

not known in advance. Consider a simpler

task, in which every processor has to decide

whether its input equals the broadcast mes-

sage or not. This is a well studied problem

in communication complexity theory, where

lower bounds for the number of bit exchanges

required of solving the equality problem are

known. For the case of n = 2, Yao showed a

lower bound of Q(m) for deterministic algo-

rithms [Yao79], and Tiwari extended it to a

line of processors and showed an fl(nm) lower

bound [Tiw84]. This bound holds in partic-

ular when all the inputs are equal, in which

case ~ = O. This implies the following lower

bound:

Theorem 4.3 Any deterministic or ran-

domized Las-Vegas type algorithm that has to

work for an arbitrary ~, there is an input whose

discrepancy is zero (i.e. ~ = O), and the al-

gorithm requires fl(nm) communication com-

plexity on this input.

Future work

An obvious open question suggested by this

work is whether there exists an efficient de-

terministic solution in the neighbor knowl-

edge model. Recently, this question has been

answered affirmatively in [AS91] where a de-

terministic solution with O((A + n) log m)

communication and 0((n + m) log3 m) time

has been found.

162

References

[ACG+90]

[ACK90]

[AS91]

[BGJ+85]

[BOGW88]

[Eve79]

[Met84]

[MRR80]

Baruch Awerbuch, Israel Cidon, In-

der Gopal, Marc Kaplan, and Shay

Kutten. Distributed control for

paris. In Prac. 9th ACM Symp. on

Principles of Distributed Comput-

ing, 1990.

Baruch Awerbuch, Israel Cidon,

and Shay Kutten. Optimal mainte-

nance of replicated information. In

Pvvc. 31st IEEE Symp. on Founda-

tions of Computer Science, 1990.

Baruch Awerbuch and Leonard

Schulman. The maintenance of

common data in a distributed sys-

tem. Unpublished manuscript,

April 1991.

A. E. Baratz, J. P.

Gray, P. E. Green Jr., J. M. Jaffe,

and D.P. Pozefski. Sna networks

of small systems. IEEE Journal on

Selected Areas in Communications,

SAC-3(3):416-426, May 1985.

Michael Ben-Or, Shafi Goldwasser,

and Avi Wigderson. Completeness

theorem for non-cryptographic fault

tolerant distributed computing. In

Proc. 20th ACM Symp. on Theory

of Computing, May 1988.

Shimon Even. Graph Algorithms.

Computer Science Press, 1979.

J. J. Metzner. An improved broad-

cast retransmission protocol. IEEE

Tmns. on Communications, COM-

32(6):679-683, June 1984.

John McQuillan, Ira Richer, and
Eric Rosen. The new routing algo-

rithm for the arpanet. IEEE Trans.

on Cornmun., 28(5):711-719, May

1980.

[Rab89]

[SG89]

[Tiw84]

[WC79]

[Yao79]

M. Rabin. efficient dispersal of in-

formation for security, load balanc-

ing, and fault tolerance. J. of the

ACM, 36(3):335-348, 1989.

John M. Spinelli and Robert G.

Gallager. Broadcasting topology

information in computer networks.

IEEE Trans. on Commun., Ma~y

1989.

P. Tiwari. Lower bounds on commu-

nication complexity in distributed

computer networks. In Proc. 25th

IEEE Symp. on Foundations of

Computer Science, pages 109-117,

1984.

M.N. Wegman and J.L. Carter.

Universal classes of hash functions.

Journal of Computer and System

Sciences, 18:143-154, 1979.

Andy Yao. Some complexity ques-

tions related to distributed comput-

ing. In Proc. 1 lth ACM Symp. on

Theory of Computing, pages 209-

213. ACM SIGACT, ACM, April

1979.

163

