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Abstract

In distributed systems it is often important to be able to
determine the temporal relationships between events gener-

ated by different processes. An algorithm to determiue such
relationships is presented in [3] and [5]. This algorithm has

many favorable attributes such as it allows for any kind of
interprocess communication, and it requires no extra syn-
chronization messages, additional communication links or

cent ral t imestamping authority. The algorithm, however,

requires O(n) space for each process (where n is the num-
ber of processes). i.e., it requires an overall space of 0(n2 ).

This can be a large overhead especially when there are a
very large number of processes.

By cutting down on this generality, we can significantly
decrease the amount of space required to determine tempo-
ral relationships. In this paper, we show how one may reduce
the space requirements by assuming that the communica-

tion links between processes is static and known ahead oj
time; and also that one is interested only in determining the
temporal ordering between messages arriving at the same

process. We argue that these assumptions are reasonable to

make for a large class of problems.

1 Introduction

There are two general activities that take place in a dis-

t ributed system: local activities that are performed indepen-
dently by each process and synchronization activities during
which two or more processes interact with each other and

possibly exchange information. These two activities are col-

lectively referred to as events. Lamport [4] shows that the

temporal ordering of events in a distributed system execu-

tion is a partiaf order. It is sometimes impossible to say that
one of two events occurred first, hence in general this order-

ing cannot be a total order. Lamport also goes on to define
a “happened before” relation which describes this partial

order. In this definition, the only synchronization activities
assumed are the sending and receiving of messages. The
“happened before” relation is defined by the following three
rules:
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1. If a and b are events in the same process and a comes
before b, then a “happened before” b.

2. If a is the sending of a message by one process and b
is the receipt of the same message by another process,

then a “happened before” b.

3. If a “happened before” b and b “happened before” c,

then a “happened before” c.

We use the term potential causalitg [5] to denote the

“happened before” relation — i.e., a potentially causes b
is equivalent to a “happened before” b for the purposes of

this paper.

Lamport provides an algorithm to determine a total or-
dering of events that is a consistent extention of the “hap-
pened before” relation. Subsequently, Fidge [3] and Mat-

tern [5] developed similar algorithms to determine potential

causality relationships between events. These algorithms
mark each event performed with timestamp information;
and potential causality between two events can be deter-
mined by comparing their respective timestamps. These id-

gorithms have many favorable attributes such as that they

require no extra synchronization messages, no additional

communication links and no centraf timestamping authority.

The algorithms require O(n) space for each process (where

n is the number of processes). This is because the algo-
rithms require each process to maintain some information

about each of the other processes. Hence the overall space
requirement is 0( nz ). This amount of space may seem ex-
cessive, but Charron-Best [2] has shown that this space is

necessary. Since these algorithms are very similar, we shall

refer to them collectively as Algorithm FM.
In many applications, it is not necessary to be able to

determiue potential causality relationships between any two
arbitrary events. During our work on prototyping language

design [I], we realized the need to determine potential causal-

ity information only between messages that were sent to the

same process< Furthermore, the communication paths be-
tween processes are static and known ahead of time. In this
paper, we present a modification of Algorithm FM which
takes advantage of these properties and requirements. For
a large class of architectures, our algorithm results in sub-
stantial savings in space and thus bandwidth (the amount
of extra information to be tagged onto each message) — this
savings is especially significant when the number of processes

is large. In the worst case, our algorithm requires no more
space than does Algorithm FM.

There are many situations where our algorithm can be
used quite effectively. We shall illustrate the potential for

231

http://crossmark.crossref.org/dialog/?doi=10.1145%2F112600.112620&domain=pdf&date_stamp=1991-07-01


Mom Dad
‘lfeesiclC

Y7’

“Ifeelfine” “Momfeelssick”

Bob

(a)

Mom Dad Bob

K

\;

(b)

Figure 1: Messages from home

saving space using the following example of the world’s postal
system. In this system, the processes are the world’s popu-
lation and these processes communicate to each other only
be sending letters. Assume that Bob receives a letter from

his Mom saying “If eelfine” and a letter from his Dad saY-
ing “Momf eelssick”. By determining the potential causal-
ity relationship between these two letters, Bob can deter-

mine which letter contains a more upto-date status on his

mother’s health. Figure 1 illustrates this example — Fig-

ure l(a) shows the letters that were sent. Figure l(b) and

l(c) show the two different cases that Bob has to consider.

We are assuming that the only means of synchronization is

the sending of messages. There is no global clock that is
visible to Mom, Dad, and Bob.

If Bob used Algorithm FM, he would need to keep track

of information on every person in the world — an impossible
task. It seems obvious that this amount ofinformation is not

really necessary. The reason why Algorithm FM requires
this information is that it assumes any kind of communica-

tion is possible — for example, Mom may have communi-
cated to Dad that she feels sick by forwarding the message
through the entire world’s population! The algorithms we

present in this paper use our knowledge of the actual com-

munication paths to reduce the space required to determine

potential causality information.
We describe our algorithm for use on an asynchronous

message passing system — though extending it to other dis-

tributed system architectures is quite simple. We there-
fore assume that there are events of only the following three
kinds: (1) events corresponding to local activity on a pro-
cess, (2) events corresponding to the sending of a message
from one process to another, and (3) events corresponding
to the receiving of a message by one process from another.

In Section 2, we give an overview of Algorithm FM. We
refine this algorithm in Sections 3 and 4. In Section 3 we
show how the special nature of our problem can be used to

reduce the amount of information necessary to determine
potential causfllty. Section 4 uses the results of Section 3
to reduce the space requirements of Algorithm FM while

still retaining enough information to determine potential
causaMy between messages arriving at the same node. A
series of algorithms are presented, each one improving on

the previous algorithm. Section 5 illustrates the application
of our algorithms on some common communication topolo-
gies. Section 6 summaries other work in the area. Section 7

Mom Dad Bob

Vvv
(c)

concludes this paper.

2 Algorithm FM

In this algorithm, every process maintains a natural number

to represent their local times. These numbers are referred
to as local clocks. Each process initiahzes its local clock to O

and increments it at least once before performing each event.
When processes synchronize (in our case by the sending and

receiving of messages), they pass on whatever local clock
information they have to each other. In this manner, each

process is updated on the local times of each of the other

processes.
Hence each process maintains its own local clock informa-

tion, and also whatever local clock information of the other

processes it can obtain during synchronization. We find it
convenient to represent the information maintained by each

process as a mapping from processes to natural numbers.
We refer to these mappings as clocks (as opposed to ‘local
clock” ). We refer to the clock maintained by process p as

FMP . Hence, FMP(q) (the value FMP maps q to) is the

most upto-date information that process p has of the local

clock of q.

A particular value of a clock is referred to as a tirnestamp.

Every event is “timestamped” with the current value of the
clock of the process performing this event. Also, every mes-

sage is timestamped with the current value of the clock of
the process sending the message. We refer to the timestamps
of events e and messages m as FM. and FM n respectively.

For two events el and ez, their potential causality rela-

tionship is determined by comparing FM=, and FM.Z. We
use el < ez to denote that el occurs earlier than ez in the
potential causality partial order (el potentially caused e2);

and we use el II ez to denote that neither el < e2 nor e2 < el
(events ., and .2 happened concurrently).

Algorithm FM is now described in detail. The algorithm

is divided into two parts — Propagation Algorithm 1, which
maintains the clock information, and Determination Algo-

rithm 1, which determines potential causality information
based on this information.

Propagation Algorithm 1:

Initialization: For all processes p, set FMP(g) to O for all
processes q.
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Incrementing the local clock: Each process p increments its

local clock bejore it performs each event. i.e., FMP :=

FMpfp - FMP(p) + 1].

When process p sends a message m: The current value of

p’s clock is attached to m, i.e., FM~ := FMP.
When a message m arrives at process q from jrocess p: If m

contains more recent clock information than q does of any

process, q updates its clock with this information. How-
ever, FM~ (p), which corresponds to the local clock value of
p when it sent m, is incremented by 1 before q updates its
clock. This is meant to take into account the message trans-
mission delay and allows for a faster determination algo-
rithm (see Determination Algorithm 1). We define the clock
Sup(cl, c2), where c1 and C2 are themselves clocks as follows:

For each process p, sup(cl, c2)(p) = maz(cl (p), C2(p)). This
step of the algorithm can then be represented as FMq :=

sup(FMq, FMmb - F’kfm(P) + 1]).

Determination Algorithm 1:

If el and e2 are two events performed by processes pl and

p2 respectively, then:

if FM~l (pi) < FM~2(pl) then
el < e2

elsif FMe2 (P2 ) < FM~l (P2) then

e2 < el
else

el II e2

end if;

Theorem 1 If the clocks are maintained using Propagation
Algorithm 1, then the potential causality information derived
b~ Determination Algorithm 1 is correct.

For a proof, please refer to [3].

3 Exploiting Graph Connectivity Information

Algorithm FM requires 0((1 + eP) x n) space for each pro-
cess p, where eP is the number of events whose timestamps

p needs to keep track of. The algorithm also requires a
bandwidth of O(n) per message for propagating clock infor-

mation. This can amount to a substantial overhead in space
and bandwidth as the example in Section 1 illustrates.

However, we are only interested in comparing the poten-
tial causality relationship between messages that are sent to

the same process, We also assume that the communication
paths between processes are static and known ahead of time.
These assumptions permit us to optimize Algorithm FM by

decreasinrz the amount of clock information maintained bv.
each process. As an illustration, in the example of Section 1,

if Bob never received messages from Bush or Gorbachev (di-

rectly or indirectly), it would be unnecessary for Bob to keep
track of the local clocks of Bush and Gorbachev. Note how-
ever, that these optimizations limit the amount of potential
causality information that can be determined. For example,
our algorithm will not permit us to determine the potential
causality relationship between the sending of the letter from

Mom to Bob and (say) the receiving of a letter by Gorbachev
from Bush.

We model the communication path information as a di-
rected graph, the nodes corresponding to the processes and

the edges corresponding to the direct communication links.

pl + p2 denotes the existence of an edge from pl to pz, ~

denotes the transitive closure of +.

As we develop our algorithms, we shall assume that the

messages we are comparing are ml and mz. We shall also as-

sume that the senders of these messages are pl and pz respec-

tively, and the recepient of these messages is pR. The algo-

rithms being developed will determine the potential causal-

ity relationship with respect to the sending of these mes-
sages.

We now present a refinement of Determination Algo-
rithm 1, which makes use of the communication path in-
formation. This refinement is based on the following obser-
vations:

Lemma 2 For two distinct processes pl, pz, if there is no

path from pl to p2, then Algorithm FM will never change

FMP2 (P1 ) from its initial value of O. Hence FM~2 (P1 ) will

always be O in this situation.

Justification. Consider the set of all processes p for which
FMP(pl ) is non-zero. We shall refer to this set as S. We

shall show (by induction) that at any time, for every member
p of S, there is a path from pl to p.

Initial case: S is empty. Hence the property holds triv-
ially.

When a new element is added to S, it is either p] itself

(since the algorithm can increment FMP1 (P1 ) in which case,

the property still holds; or it can be a process p which re-
ceives a message m from process q such that FM~(pI ) is

non-zero. This means that q is already in S, and by the
induction hypothesis, there is a path from pl to q. Hence

there is a path from pl to p also. ❑

Lemma 3 The values of FM~, (pI) and FM~2(p2) are a2-
ways greater than O.

Justification. Obvious from the algorithm definition. ❑

These observations tell us that if there is no path from PI to

P2, F~m2 (Pl ) cannot k greater than FMml (PI), and hence
this comparison need not be made in Algorithm FM.

Determination Algorithm 2:

if pl = pz then

order the messages by their sending sequence

elsif pl L p2 and thenl

FM~, (Pi) < FM~2 (p]) then

ml + m2

elsif p2 ~ pl and then

FM~2(p2) < FM~, (P2) then

m2 + ml
else

ml II m2
end if;

Although Determination Algorithm 2 may appear more com-
plex than Determination Algorithm 1, it reduces the amount
of clock information required to determine potential causal-

ity information. It does this by first checking for the exis-
tence of paths. The clock information is used only if these

paths exist in the graph. Furthermore, Determination Algo-
rithm 2 can be optimized if the path information is known

1and then is the short-circuit and operator
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ahead of time. For example, if it is known that there is no
path between yrl and p2 in either direction, Determination
Algorithm 2 can be optimized to determine that rnl Ii rnz
without checking any timestamp values.

Determination Algorithm 2 (and the other determination
algorithms that follow) handles pl = pz as a special case.
The amount of clock information that needs to be main-
tained can be reduced by doing this. This case is handled
by somehow determining the sending sequence of messages

from the same sender. For example, if the communication

paths are all FIFO, we can determine the sending sequence
by observing the arrival sequence of the messages.

The four cases handled by Determination Algorithm 2

are illustrated in Figure 2. The straight arrows represent
edges while the curved arrows represent paths.

4 Reducing the Space Requirements

4.1 Using Communication Path Information

Determination Algorithm 2 used the communication path
information to reduce the amount of clock information re-

quired to determine potential causality. This in turn can
reduce the amount of clock information that each process
needs to maintain while still retaining enough information

for Determination Algorithm 2. In this section, we shall de-
velop algorithms for the purpose of reducing the amount of
clock information to be maintained.

We shall extend our notion of clocks and timestamps to
include partial mappings from processes to natural numbers.

We shall refer to clocks and timestamps that are total map-

pings as full clocks and full timestamps respectively. In the

algorithms we develop, each process p maintains a clock CP,
every event e is timest amped with T., and every message

m is timestamped with Tm. When the CP’S, T~ ‘s, and Tm’s
are full clocks and timestamps, our algorithms will reduce

to Algorithm FM. We define ClockSetP to be the set of
processes whose local clocks p needs to keep track of (i. e.,
dom(CP) = ClockSetP).

We extend the definition of the clock sup(cl, CZ) for par-
tial mappings aa follows: The domain of Sup(cl, C2) is the
same as that of c1. For each process p in dorn(cl ) n dom(cz),
Sup(cl, c2)(p) = maz(cl (p), c2(p)). For all other process p’s,

sup(cl, c2)(p) = c1 (p). Intuitively, this can be thought of
as updating the clock information in c1 based on informa-

tion available in cz. Note that this definition makes sup
non-commutative.

We now present Propagation Algorithm 2. In this algo-
rithm, the method of choosing the ClockSetP’s is not dis-

cussed. We shall return to this shortly.

Propagation Algorithm 2:
Initialization: For all processes p, set CP(q) to O for all pro-

cesses q in ClockSetP.
Incrementing the local clock: Each process p increments its
local clock before itperforms each event. i. e., CP := CP

$’-CP(p) + 1]. This step is performed only if p E dom(CP) .

When process p sends a message m: ‘I’he -current value of

p’s clock is attached to m. i.e., T~ := CP.
When a message m arrives at process q from process p: If
m contains more recent clock information than q does of

21f ~ g ~om(cp) then ow algorithms will also ensure that P f?
dom(Cq ) for any q,

any process, q updates its clock with this information. i.e.,
Cq := sup(C,, T~~ - T~(p) + 1])3.

Lemma 4 If for every p, ClockSetp is the set of all pro-
cesses, then Propagation Algorithm 2 is identical to Algo-

rithm FM.

Justification. If for every p, ClockSetP is the set of all
processes then p c dom (CP) is always the case so the In-
crementing the local clock steps of the two algorithms are

equivalent. This being the only substantive difference be-

tween the two algorithms, means they become equivrdent.
❑

We now present the first of several clock allocation algo-

rithms, which are used to determine the ClockSet’s. This

algorithm is motivated by Determination Algorithm 2. It
attempts to reduce the size of the clock domains as much as

possible while at the same time not impeding the function-
ality of Determination Algorithm 2.

Allocation Algorithm 1:

1. Initialize ClockSetP to the empty set for rdl processes

P.

2. Then for each set of distinct processes pl, p2, and pR
such that pl * pR and pz ~ pR, add PI to ClockSetP
for every p that is in a path from pl to pz.

Lemma 5 For each set of distinct processes pl, P2 and pi?,
where pl * pR andpz * pR, there is a path from pl to pz if

and only if Allocation Algorithm 1 includes pl in ClockSetP2

Justification. Obvious. ❑

Based on this observation, we can rephrase Determination
Algorithm 2 as follows:

Determination Algorithm 3:

if p] = pz then
order the messages by their sending sequence

elsif pl c ClockSetP2 and then

Tm~ (PI) < T-2 (P1 ) then
ml + mz

elsif pz E ClockSetP, and then

Trnz (P2) < Tml (P2) then
m2 + ml

else

ml II m2
end if;

The correctness of Determination Algorithm 3 follows di-

rectly from the correctness of Determination Algorithm 2
and Lemma 5 and Theorem 6.

Theorem 6 If Propagation Algorithm 1 and Propagation
Algorithm 2 (with Allocation Algorithm 1) were both running

simultaneously, then for each process p, FMP(q) will be equal

to Cp(q) after each corresponding update of these clocks for
every g in ClockSetP.

31f p g dom(Tm) then Cq := sup(Cq, Tm)
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Justification. The validity of Theorem 6 can be shown in-
formally as follows: FMP(q) is the most recent information
process p has of the local clock of q. The only way in which

process p can get information on process g is via some path
from g top. Clock information is piggy-backed on messages
along this path starting at q until it reaches p. If Allocation
Algorithm 1 included g in ClockSetP, then it will alSO ensure

that all processes in paths from q to p also include q in their

ClockSet’s. i.e., any path from g top (where g 6 ClockSetP)
that Propagation Algorithm 1 can use to transmit clock in-

formation is also available for Propagation Algorithm 2 to

transmit clock information. ❑

The paths that transmit clock information are called update
paths. This is defined more precisely below.

We define an update sequence for process p] at process

pk+l to a ualue c as a sequence of messages ml from pI to

p2, m2 from P2 to P3, . . . . m~ from pk to pk+l where the
arrival of message rni causes an increase in Flfpi+, (P1 ) to

cfori= l,..., k. Such a path (pI -+ P2 + . . . + pk+l)is
called an update path.

Lemma 7 All update paths are acyclic.

Justification. Obvious since the definition of an update

path requires each message mi’s arrival at process pi+ I to

cause an increase in FMPi+l (P1 ) to a particular C. A partic-

ular FMpi+l (PI) can only be increased to c once, thus the

paths are acyclic. ❑

4.2 Using Acyclic Communication Path Information

Lemma 7 allows us to further reduce on the amount of space
while still ret aining the validity of Theorem 6. Since all

update paths are acyclic, we need only consider acyclic paths
in our clock allocation algorithms:

Allocation Algorithm 2:

1. Initialize ClockSetP to the empty set for all processes

P.

2. Then for each set of distinct processes PI, P2, and PR

such that pl + pR and PZ - pR, add PI to ClockSetp

for every p that is in a acyclic path from pl to PP.

Figure 3 illustrates the results of the two clock allocation
algorithms presented so far for a particular communication

net work.

4.3 Reducing the Message Bandwidth

The next two algorithms — Allocation Algorithm 3 and

Propagation Algorithm 3 address optimizating the band-
width required to transmit messages. Consider why we need

to tag clock information to messages:

● When a message m arrives at a process p, itupdates

its clock using the information in T~. But we do not
require all of T~. Only that portion of the domain of

T~ that is also part of the domain of Cp is of interest

for this purpose.

● To determine potential causality information between

messages, portions of timestamps are compared with

each other.

The previous algorithms tag messages with more clock in-

formation than required for the above two operations. The
following algorithms will reduce the amount of tagged in-
formation. We first define an observation set of processes

ObsSetp for each process p. This set .ontains the processes

whose clock information p needs to know about to perform
the above operations, The following clock allocation algo-

rithm extends Allocation Algorithm 2 to define the observa-
tion sets:

Allocation Algorithm 3:

1. Calculate the ClockSet’s as in Allocation Algorithm 2.

2. Initialize ObsSetP to be the same as ClockSetP for all

processes p.

3. Then for each set of distinct processes pi, P2, and PR

such that PI + pR, P2 + pR and P1 ~ P2~ add PI to

ObsSetP~.

We can now reduce the size of the timestamp a process needs
to associate with an outgoing message:

Propagation Algorithm 3:
Initialization: As in Propagation Algorithm 2.
Incrementing the local clock: As in Propagation Algorithm 2.
When process p sends a message m to process q: The current

value of p’s clock is attached to m, but reduced to only the

clock components of interest to q: T~ := Cp (( ClockSetP n
0bsSetq)4.

When a message m arrives at process q from process p: As

in Propagation Algorithm 2.

4 The ~YmbO\ r ,e~tricts the mapping on its left to the domain ‘n

its right.
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Figure 3: Clock allocations of (a) Allocation Algorithm 1 and (b) Allocation Algorithm 2

4.4 The Gateway Heuristic

Upto now, the algorithms that have been developed attempt

to reduce the space requirements for each process and the

bandwidth requirements for each communication path. In
the worst case, these space requirements will remain the

same as for Algorithm FM.

We now present a set of algorithms that modify the ear-
lier algorithms based on gateways in the communication

graph. Although the space and bandwidth requirements
usually decrease by applying these algorithms when these
algorithms are applied, there are sit uations where it can in-

crease. We therefore call the method used in the following
algorithms the gateway heuristic, We present an algorithm

at the end of this section that can be used to determine
when this heuristic should be applied to improve the space
and bandwidth requirements.

Consider Figure 4(a). The labels on this graph illustrate
the ClockSet’s calculated by Allocation Algorithm 3. In this
figure, E is required to maintain the local clock information

of A, B, and C. This is to retain the ability to compare
messages from E thatarrive at D with messages from A,

B, and C that arrive at D. In a communication network
such as shown in Figure 4 the potential causality links that

we need to test for are the sending of a message from A, B,

or C to D, followed by a message from D to E, which in

turn is followed by a message from E to D, In this case,
then the message from E happens after the message from

A, B, or C as the case might be. The idea behind the
optimization presented in this section is that if we maintain
the arrival times of the messages from A, B, and C at D,

we can still determine the potential causahty relationships

between messages arriving at D. By doing this, we can avoid
having to maintain the local clock information of A, B, and

C at D and E. The algorithms presented in this section will
modify the C/ockSet’s to what is shown in Figure 4(b).

If E represents a large number of processes, then D is in
effect a gateway between such a “subnet” and another part
of the network. Since communication between the two sides
of the gateway are serialized at the gateway, processes on
one side of the gateway do not have to maintain local clock
information of processes on the other side of the gateway.

This kind of connectivity can be expected in sparse nets
organized hierarchically. In our prototyping language, the
block structure and visibility rules promotes these kinds of
structures, and hence this is of particular interest to us.

We formally define gateway as a process pG such that

there is a loop5 in the graph that contains pG, and that

there is at least one process p not in this loop such that
p + p~.

The following clock allocation algorithm extends Alloca-
tion Algorithm 3 to consider gateways in the graph:

Allocation Algorithm 4:

1.

2.

3.

4.

Initialize ClockSetP to the empty set for all processes

P.

Then for each set of distinct processes PI, P2, and pR

such that p] * pR and ps ~ pR, add p] to ClockSetP

for every p that is in a acyclic path from pl to p2 and
which does not include pR.

Now, for each loop L and process p @ L such that

P ~ PG for some PG ● L (pG is a gateway) such that
there is at least one process in L whose C’/ockSet does

not include p, add pG to the ClockSet’s of every process

in L.

The ObsSet’s are calculated just aa in Allocation Al-

gorithm 3, except that the ClockSet’s determined by

~his algorithm ii used.

Allocation Algorithm 4 will give us the allocation of Fig-

ure 4(b) as opposed to that in Figure 4(a). This algo-

rithm will also improve on the clock allocation shown in
Figure 3(b).

As we mentioued earlier, we are able to perform the op-
timization of Allocation Algorithm 4 at the cost of having

to maintain arrival times of messages at each gateways. If
message m arrives at a gateway, then A rr~ is its arrival

time based on the local clock of the gateway. We modify

Propagation Algorithm 3 to maintain the arrival times as

shown below:

Propagation Algorithm 4:
Everything is exactly the same as Propagation Algorithm 3

except for the following extra step:

5For the purposes of this paper, we assume that loops are closed

paths such that no part of this path (other than the complete path

itself) is closed

6 Arrival times of messages can be used to determine the order of
messages sent by the same process if communications channels are

assumed to be FIFO (Section 3). In this csse, maintaining arrival
times is not an added cost,
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Figure 4: A gateway and subnet

When a message m arrives at process q from process p: If q

is a gateway, then the arrival time of m at q is tagged onto
m. i.e., Arr~ := Cq(q).

Lemma 5 is not valid with respect to Allocation Algorithm 4.
Instead we have:

Lemma 8 For each set of distinct proces.$e$ PI, P2 and PR,

where pI - pR and p2 ~ pR, there is a path from PI to pz
not passing through pR if and only if Allocation Algorithm ~

includes pl in ClockSetPz

Justification. Obvious. ❑

Lemma 9 If two messages ml and mt arrive at a gate-
way pG from processes PI and P2 respectively, where pG C

ClockSet~, and T~2(pG) > Arr~,, then ml + mz.

Justification. Obvious from the fact that at the time of
message ml’s arrival Arr~l = CPG (pG), and the akorithm

for increasing CP~ (PG) and CP, (pG). ❑

Based on the above observations,
nation Algorithm 3 as follows:

Determination Algorithm 4:

if pl = pZ then

order the messages by

elsif pR 6 ClockSetPz and

we I1OW modify Determi-

their sending seguence
then

Arr~l < T~, (PR) then
rm < m2

elsif pR e ClockSetPl and then

Arr~z < T~l (PR) then

mz + ml
elsif pi ● ClockSetPz and then

Tm~ (P1 ) < Tm, (PI) then
ml 4 mz

elsif p2 c ClockSetPl and then

Tm~ (PZ) < Tml (P2) then
mz + ml

else

ml II mz
end if;

In Determination Algorithm 4, the first two elsif clauses
handle the case where pR is a gateway. If the condition being
tested (pR c ClockSetpi ) is true, then PR is iw-nteed to
be a gateway and we can assume that all messages arriving
at pR have been tagged with arrival times.

As we mentioned earlier, Allocation Algorithm 4 may

increase the space requirements in some cases. The final
algorithm in this paper is one of many possible approaches

to address this problem. The idea here is to first perform
Steps I and 2 of Allocation Algorithm 4. We then consider

each gateway in the graph one by one and weigh the costs
of applying Allocation Algorithm 4 with respect to applying
Allocation Algorithm 3. We choose the cheaper option in

each case.

Allocation Algorithm 5:

1.

2.

3.

4.

Initialize ClockSetP to the empty set for all processes

P.

Then for each set of distinct processes PI, P2, and PR

such that PI ~ pR and P2 ~ pR, add p] to ClockSetp
for every p that is in a acyclic path from pl to p2 and
which does not include p+?.

Now visit each gateway process in some order. For

each gateway process pG, compare the costs of ap

plying each of the following steps, and perform the

cheaper of the two steps:

● For each loop L that contains pG and process p @

L such that p ~ pG and such that there is at least

one process in L whose ClockSet does not include

p, add pG to the ClockSet’s of every process in L.

A reasonable cost estimate for this step maybe the
sum of the increases in the sizes of the ClockSet’s
in L plus the amount of extra space required to
store the arrival time of each message of interest

at pG (S.%footnote 6.

● For each pair of distinct processes PI, P2 such that

P1 -+ PG and P2 * pG, add P1 to ClockSetp for
every p that is in a acyclic path from pl to p2

which includes pG.

A reasonable cost estimate for this step maybe the
sum of the increases in the sizes of the ClockSet ‘s.

The ObsSet’s are calculated just aa in Allocation Al-

gorithm 3, except that the ClockSet’s determined by
this algorithm is used.

Propagation Algorithm 4 and Determination Algorithm 4

need to be modified to take into account that all gateways
have not been handled in the same manner by Allocation
Algorithm 5. In Propagation Algorithm 4, arrival times of

messages need only be maintained at gateways handled by
the first option of step 3 of Allocation Algorithm 5. Also,
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the tests (pR c ClockSetp, ) in Determination Algorithm 4
should be replaced by a test to check that pi is a gateway and
has been handled by the first option of step 3 of Allocation
Algorithm 5.

Further Lemma 8 is not valid with respect to Allocation
Algorithm 5 but could be reexpressed by taking into account

the cost metric used in Allocation Algorithm 5.

5 Some Example Topologies

We shall now apply our algorithms to some common connec-

tion networks. First, we analyze a star network where there
is a central process p and n satellite processes PI, ..., pn.

The satellite processes can communicate in both directions
with the central process. Using Allocation Algorithm 5, we

get the central process p to be a gateway, and the counter
and observation sets for sJ1 processes is {p}. In this situa-
tion, our algorithm reduces both space and bandwidth by a

factor of (n + 1).
The second network is what we call the hierarchical tri-

angle. Our prototyping language has exactly this kind of

connection network. Figure 5 illustrates this network. Each
triangle depicts a declarative region, the process at the apex
corresponding to the declarative region itself and the pro-
cesses on the base corresponding to the entities (which may
be nested declarative regions) declared within this declar-
ative region. Within a triangle, all processes can commu-

nicate in both directions with all other processes. Using

Allocation Algorithm 5, the counter set and observation set

of a process p are the set of all processes in the triangles it is
part of. Each process can be part of at most two triangles.

For example, in Figure 5, the counter set and observation set
of pol includes PO, PO1~. . . ~po~ and all processes in the tri-
angle below pol. Every inner process (processes other than
the root and the leaves) is a gateway between the two trian-
gles it is part of and therefore maintains arrival times of all
messages coming to it. The space and bandwidth require-

ments for our algorithms can be as little as O(n) (where
n is the number of processes), a factor of n savings over

Algorithm FM.
A third kind of network is a ring network. In this case,

our algorithm does not save either space or bandwidth as

compared to Algorithm FM. Each process has to maintain

a counter set that includes all processes in the network.

6 Related Work

Other work has been done to improve the efficiency of keep-

ing track of potential causality. [3] and [5] have shown that
in the case of a fixed number of processes, the FM mapping

may be replaced by an array of counters where each process
has a fixed index in the array.

[6] have given an algorithm whereby each process keeps
track of the clock information it has sent to other processes
by maintaining two additional vectors. A message from jr to

g then need only carry clock information which has changed
at p since the last message from p to g. This can result
in substantial savings in bandwidth and does not require

a static communications architecture. However, it comes at
the cost of losing the ability to determine the causal relation-
ship between two messages arriving at a particular receiver
based on the clock information the messages carry and the

state of the receiver upon their arrival.

7 Conclusions

The algorithms presented in this article has all the nice

attributes of Algorithm FM, namely they require no ex-
tra synchronization messages, no additional communication
links and no central timestamping authority. By restricting

the problem domain — the communication network is static

and known ahead of time and that we are only interested

in comparing messages that arrive at the same node, we are

however able to save on the amount of space required for
certain kinds of connectivity networks. Consider the hierar-
chical triangle network. If each triangle has no more than
m processes, then each process needs to maintain at most

2m local clock values, and each message needs to be tagged
with at most m amount of local clock information. This is

a considerable decrease in the space and also the bandwidth
requirements as compared to Algorithm FM.

During our work on prototyping languages, we have de-
veloped small examples in which there may be as many as

100 processes, each communicating with around 10 others in
a hierarchical triangle network. Our algorithms can there-

fore save us space of around 80 units per process and a
bandwidth of around 90 units per message even for these
small examples. On larger sized examples, the amount of

savings will be even more considerable.

Although our problem domain requires the comparison
of only messages that arrive at the same process pR, our al-

gorithms allow us to compare any two events generated by

pl and pZ (the processes sending the messages) for potential
causahty relationships. Note that it is not important that

there is a process pR to which both PI and pZ are connected.
We could apply all our algorithms equally well by consider-

ing any two arbitrary processes pi and pz whose events we
wish to compare.

Our algorithms will be useful in many distributed system

applications where the communication network is static and
reasonably sparse. Our algorithms begin to approximate

Algorithm FM more closely as the communication network
becomes more dense.

Possible uses for our algorithms are in the scheduling of
resources and jobs in a distributed operating system, cache

coherency algorithms, and in distributed databases. Fur-

thermore, our algorithms may also be used to determine

relationships other than temporal orderings. For example,

tools to reason about any kind of partial order can make use

of our algorithms.
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