
RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN
PROTOCOLS

SHLOMI DOLEV∗, AMOS ISRAELI† , AND SHLOMO MORAN‡

Abstract. Self-stabilizing message driven protocols are defined and discussed. The class weak-
exclusion that contains many natural tasks such as `-exclusion and token-passing is defined, and it is
shown that in any execution of any self-stabilizing protocol for a task in this class, the configuration
size must grow at least in a logarithmic rate. This last lower bound is valid even if the system is
supported by a time-out mechanism that prevents communication deadlocks. Then we present three
self-stabilizing message driven protocols for token-passing. The rate of growth of configuration size
for all three protocols matches the aforementioned lower bound. Our protocols are presented for two
processor systems but can be easily adapted to rings of arbitrary size. Our results have an interesting
interpretation in terms of automata theory.

Key words. self-stabilization, message passing, token-passing, shared-memory

AMS subject classifications. 68M10, 68M15, 68Q10, 68Q20

1. Introduction. A distributed system is a set of state machines, called pro-
cessors, which communicate either by shared variables or by message-passing. In the
first case, the system is a shared memory system, in the second case the system is a
message-passing system. A distributed system is self-stabilizing if it can be started in
any possible global state. Once started, the system regains its consistency by itself,
without any kind of an outside intervention. The self-stabilization property is very
useful for systems in which processors may crash and then recover spontaneously in
an arbitrary state. When the intermediate period in between one recovery and the
next crash is long enough, the system-stabilizes. Self-stabilizing systems were defined
and discussed first in the fundamental paper of Dijkstra, [7]. The work of [7] as well
as most of the following work on self-stabilizing systems assume the communication
model of shared variables. Among these papers are [17], [22], [8], [20], [2], [6], [4], [14],
[15], [9] and [11].

In the study of fault tolerant message-passing systems, it is customarily assumed
that messages might be corrupted over links, hence, processors may enter arbitrary
states and link contents may be arbitrary. Self-stabilizing protocols treat these prob-
lems naturally, since they are designed to recover from inconsistent global-states.
Surprisingly, there are very few papers which address self-stabilizing, message-passing
systems. The earliest research in this model was done by Gouda and Multari in
[21, 13]. In that work, they have developed a self-stabilizing sliding window protocol
and two-way handshake that use unbounded counters. They proved that any self-
stabilizing message passing protocol must use time-outs and have infinite number of
safe states. Following [13], two additional works dealt with self-stabilizing protocols
in this model: The work of Katz and Perry, [16], presents a general tool for extending
an arbitrary message-passing protocol to a self-stabilizing protocol. The work of Afek
and Brown, [1], presents a self-stabilizing version of the well-known alternating-bit
protocol, (see e.g. [5]).

∗ Department of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva 84105,
Israel, dolev@cs.bgu.ac.il.

† Intel, Haifa 31015, Israel aisraeli@iil.intel.com. Partially supported by NWO through NFI
Project ALADDIN under Contract number NF 62-376.

‡ Department of Computer Science, Technion, Haifa 32000, Israel, moran@cs.technion.ac.il.

1

2 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

In this work we research complexity issues related to self-stabilizing, message-
passing systems; to do that we define a configuration of any message-passing system
as a list of the states of the processors and of the messages which are in transit on each
link. The size of a configuration of a message-passing system is the number of bits
required to encode the configuration entirely. A protocol for a message-passing system
is message-driven if any action of the processors is initiated by receiving a message.
In the work of Gouda and Multari, [13], it is proven that any message-driven protocol
has a possible configuration in which all processors are waiting for messages but
there are no messages on any link. This unwanted situation is called communication
deadlock. A self-stabilizing system should stabilize when started from any possible
initial configuration, including a configuration with communication deadlock. This
implies that a non-trivial, completely asynchronous, self-stabilizing system cannot be
message-driven. This problem can be dealt with in at least two methods: Gouda
and Multari, in [13], proposed the use of a time-out mechanism which preserves the
message driven structure of the protocol at the expense of compromising the complete
asynchronisity. On the other hand, Katz and Perry, in [16], have chosen to give up the
message-driven structure and present protocols for which at any configuration there
is at least one processor whose next operation is sending a message. Thus, there is
an execution in which in every atomic step a message is sent, and no message is ever
received. In this execution the size of the configurations grows linearly.

In this work we define and study the class of self-stabilizing, message-driven proto-
cols. By the argument of [13], there exists no self-stabilizing, message-driven protocol
which is completely asynchronous. Since we look for protocols whose configuration size
does not grow in linear rate we resort to slightly limited assumptions of asynchronous
behavior. For lower bounds we assume an abstract time-out device which detects com-
munication deadlocks and initiates the system upon their occurrence. Consequently,
the lower bounds we present take into account only executions in which no communi-
cation deadlock occurs. Our upper bounds assume that in every initial configuration
there is at least one message on some link. This assumption is much weaker than the
assumption on a general time-out mechanism.

A specific task which we study in details is token-passing. Informally, the token-
passing task is to pass a single token fairly among the system’s processors. Usually
it is assumed that in the system’s predefined initial configuration there exists a single
token. In self-stabilizing system in which there is no predefined initial configuration,
each execution should reach a configuration in which exactly one token is present in
the entire system. Token-passing is a very basic task in fault tolerant systems, among
other works it was studied in [12] for some fault tolerant message-passing systems and
in [14], for self-stabilizing, shared memory systems. The token-passing task can be
looked at as a special case of mutual-exclusion since possession of the single token can
be interpreted as a permission to enter the critical section.

In the first part of the presentation we prove a lower bound on the configuration
size for protocols for a large class of tasks called weak-exclusion. The weak-exclusion
class contains all non-trivial tasks which require continuous changes in the system’s
configuration; in particular this class includes both `-exclusion and token-passing.
We show that the configuration size of any self-stabilizing protocol which realizes any
weak-exclusion task is at least logarithmic in the number of steps executed by the
protocol. The lower bound holds for message-driven protocols for any week-exclusion
task, including protocols for systems equipped with time-out mechanism. This result
should be compared with a result of [13] where it is shown that any message-driven,

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 3

self-stabilizing protocol (not necessarily for week-exclusion task) must have infinitely
many safe system configurations, but not that each specific execution must contain
infinitely many distinct configurations, as implied by our results. Our lower bound
does not specify which part of the system grows, is it the size of the memory used by
the state machines, the size of messages stored on the links, the number of messages
stored on the links or all of these together?

We then present three self-stabilizing, message-driven protocols for token-passing.
The communication deadlock problem is avoided by the assumption that at least a
single message is present on some communication link. Using this assumption, we
present three token-passing protocols, for two processors each. The rate of growth of
configuration size for all three protocols matches the aforementioned lower bound. All
protocols are presented for systems with two processors but can be easily adapted to
work on rings of arbitrary size without increasing their asymptotic complexity. This
is done by considering the ring as a single virtual link.

In the first protocol both processors memory and messages size grow unboundedly
with time, this protocol uses ideas similar to the ideas of the sliding window protocol
of [13]. The second protocol is an improvement on the first protocol in which the
size of the memory of the processors grows (in logarithmic rate) while the size of the
link content is bounded. The second protocol is an improvement of the deterministic
alternating bit protocol of [1]. The third protocol is a self-stabilizing token-passing
protocol in which processors are deterministic finite state machines and messages are
of fixed size. The only growing part of the system is the number of messages on the
links; the rate of growth matches the lower bound mentioned above.

Our results can be described also in terms of automata theory, as follows: Let
Σ be an alphabet. Define a queue machine Q to be a finite state machine which is
equipped with a queue, which initially contains an arbitrary non empty word from
Σ+. Initially Q is in an arbitrary state, and in each step it performs the following:
(a) reads and deletes a letter from the head of the queue, (b) adds one or more letters
from Σ to the tail of the queue, and (c) moves to a new state. The computational
power of a queue machine is severely limited by the fact that its input alphabet and
its work alphabet are identical. In particular a queue machine cannot perform simple
tasks like computing the length of the input word, or even deciding whether the input
word contains a specific letter.

Assume that the alphabet contains a specified subset τ of token letters. A queue
machine is a token-controller if, starting with a nonempty queue of arbitrary content,
eventually the queue contains exactly one occurrence of a letter from τ forever. Our
lower bound result implies that if a token-controller exists, then in every computation
the size of the queue must grow at least logarithmic in the number of moves of the
machine. Our third protocol implies that a token-controller whose configuration size
growth matches the lower bound exists. In view of the fact that a queue machine
cannot compute any estimation of the number of occurrences of letters from τ in the
input word, this latter result appears to be somewhat counter intuitive.

2. Self-Stabilizing Message-Driven Systems.

2.1. Asynchronous Message-Driven Systems. An asynchronous, distributed,
message-passing system contains n processors where each processor is a state machine.
Processors communicate using message-passing along links. An edge e = (i, j) of G
stands for two directed links, one from Pi to Pj and the other from Pj to Pi. A
message sent from Pi to Pj can be delayed for an unbounded amount of time on the

4 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

connecting link. Messages which did not reach their destination yet, are stored on the
link and transferred in FIFO (First In First Out) order.

A processor is uniquely defined by the set of its atomic steps. Whenever a pro-
cessor is active it executes one of its atomic steps. In a message-driven protocol an
atomic step of any processor P begins with a receive operation in which P receives a
message from one of its incoming links. The atomic step ends with zero or more send
operations in which P sends messages along some of its outgoing links. An atomic
step a of Pi is defined by a = (i, si1 , (e,msg), (e1,msg1), (e2,msg2) · · · (e`,msg`), si2)
meaning that: Pi is in state si1 , e is the link through which Pi receives the message
msg, e1, e2, · · · , e` are the outgoing links along which Pi sends msg1, msg2, · · · ,msg`,
respectively and si2 is the state of Pi following the execution of this atomic step.

Let n and m be the number of processors and links respectively in the system.
For 1 ≤ i ≤ n denote by Si the set of states of Pi. A configuration of the system
is a vector of states of all processors together with m lists, a list for every link, of
messages stored on that link. A configuration is denoted by c=(s1 × s2 × · · · sn ×
Me1 × Me2 · · · × Mej ... × Mem) where si ∈ Si, 1 ≤ i ≤ n, and Mej is a list of the
messages stored on ej , for 1 ≤ j ≤ m. Let c be a configuration as above, and let
a = (i, si1 , (e, msg), (e1,msg1), (e2,msg2) · · · (e`, msg`), si2) be an atomic step. a is
applicable to (Pi in) c, if Pi is in state si1 in c and msg is the first message stored on
e in c.

Application of a to c yields the result configuration c′. We denote this fact by
c

a→ c′. A sequence of atomic steps, A = (a1, a2, · · ·), is applicable to configuration c0,
if the first atomic step in the sequence, a1, is applicable to c0, the second atomic step
is applicable to c1 where c0

a1→ c1, and so on. An execution, E = (c0, a1, c1, a2, · · ·) is
a (finite or infinite) sequence which starts with some arbitrary configuration c0 and
for every i > 0, ci−1

ai→ ci, that is: the sequence of atomic steps A = (a1, a2, · · ·) is
applicable to c0. Note: Since we deal with self-stabilizing systems we do not assume
any particular initial configuration, every configuration is a valid initial configuration.
Execution E is fair if every atomic step that is applicable infinitely often is executed
infinitely often.

Each execution E defines a partial order on the atomic steps of E by the relation
happened before of Lamport in [18]:

1. If ai and aj are atomic steps executed by the same processor in E and ai

appears before aj in E, then ai happened before aj .
2. If during ai the message msg is sent and during aj the same message msg is

received, then ai happened before aj .
3. If ai happened before aj and aj happened before ak then ai happened before

ak.
We also adopt the definition of concurrent atomic steps from [18]: atomic steps

a1 · · · ak are said to be concurrent in an execution E if for 1 ≤ i < j ≤ k, ai does not
happen before aj and aj does not happen before ai in E. The following proposition
gives a sufficient condition for a set of steps to be concurrent in some execution:

Proposition 2.1. Let Pi1 , · · · , Pik
be k distinct processors and let {a1, · · · , ak}

be a set of atomic steps where aj is applicable to Pij , 1 ≤ j ≤ k in some configuration
c. Then there exists an execution in which the atomic steps a1 · · · ak are concurrent.

Proof. Observe that once step a is applicable to processor P in configuration c,
step a remains applicable to P in all subsequent configurations. The execution E
is defined as the execution that starts from c, in which processors Pi1 , · · · , Pik

are
activated one after the other, and each processor Pij executes aj . The proof follows

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 5

since the processors are distinct and since in E, no message that was sent during aj ,
1 ≤ j ≤ k, is received before ak is executed. Note that the proposition holds for any
system in which once some step is applicable it remains applicable as long as it is not
executed.

An asynchronous protocol, PR, is defined by a set of n processors. By the above
definitions, an asynchronous protocol defines a set of executions that satisfy the fol-
lowing:

1. Let E = (c0, a1, c1, a2, · · ·) be an arbitrary execution of PR. Then every
prefix of E is also an execution of PR.

2. Let E = (c0, a1, c1, a2, · · · , ar, cr) be arbitrary finite execution of PR. Then
for every atomic step a and configuration c, satisfying cr

a→ c, PR has an
execution E ◦ (a, c)1.

2.2. Self-Stabilizing Message-Driven Protocols. A self-stabilizing system
demonstrates a legitimate behavior some time after it is started from an arbitrary
configuration. A natural way to specify a behavior in an abstract way is by a set
of sequences of configurations. We define tasks as sets of legitimate-sequences. The
semantics of any specific task is expressed by requirements on its sequences. Intuitively
each legitimate sequence can be thought of as an execution of a protocol but we do
not require it formally. For instance, the mutual-exclusion task is defined as the set
of sequences of configurations which satisfy: Each processor has a subset of its states
called critical section; in each configuration, at most one processor is in its critical
section, and every processor is in its critical section in infinitely many configurations.
To formally define a task T , one should specify for each possible system ST , a set
of legitimate sequences for ST . The task T is defined as the union of the legitimate
sequence set over all possible systems. A configuration c of a system is safe with
respect to a task T and a protocol PR if any fair execution of PR starting from c
belongs to T .

In proving lower bound results on self-stabilizing message-driven protocols, we
assume that the system can recover from a communication deadlock (called deadlock
from now on). In other words: When we prove our lower bounds, we assume only that
the protocol stabilizes in executions in which no deadlock occurs. For this purpose,
we distinguish between two types of deadlocks: global and local. A configuration
c is a global deadlock configuration if no atomic step is applicable to c. Our first
lower bound holds for asynchronous systems that can recover from global deadlocks
by applying a global time-out mechanism. This abstract mechanism initiates a system
in a global deadlock configuration to a default initial configuration, after which no
deadlock occurs. Below we bring the requirement for self-stabilizing systems equipped
with a global time-out mechanism. In this definition the system is required to reach
a safe configuration in every infinite fair execution. Note that by our definition an
infinite fair execution does not have a deadlock configuration.

[Self-Stabilization] - assuming global time-out mechanism
Let PR and LE be a message driven protocol and set of legitimate sequences,
respectively. Protocol PR is self-stabilizing relative to LE, if for every c, there
is an execution of PR that starts with c and every such infinite fair execution
reaches a safe configuration with respect to LE and PR.

Later on, we prove a lower bound that holds for systems immuned from a stronger
type of communication deadlock called local deadlock. Processor P is in a local

1 For sequences S1 and S2, S1 ◦ S2 denotes the concatenation of S1 and S2.

6 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

deadlock during execution E, if P is activated (i.e. executes an atomic step) only
finitely many times during E. The second lower bound holds for systems equipped
with an abstract local time-out mechanism which prevents such executions (e.g. by
enabling each processor which is idle for a sufficiently long time to initiate the system
to some default configuration after which no deadlock is possible). Note that a local
time-out mechanism is strictly stronger than a global time-out mechanism.

[Self-Stabilization] - assuming local time-out mechanism
Let PR and LE be a message driven protocol and set of legitimate sequences,
respectively. Protocol PR is sellf-stabilizing relative to LE, if for every c,
there is an execution of PR that starts with c, and every such infinite fair
execution, in which each processor is activated infinitely often, reaches a safe
configuration with respect to LE and PR.

3. Lower Bound. In this section we prove a lower bound on the rate in which
the configuration size grows along every execution of any protocol for a large class
of tasks called weak-exclusion. This class contains all non-trivial tasks which require
continuous changes in the system’s configuration; in particular this class includes both
`-exclusion and token-passing. For an execution E, denote by Ai(E) the set of distinct
atomic steps executed by Pi during E. A task belongs to the class weak-exclusion if
its set of legitimate sequences, LE, satisfies:
[WE]- For any E ∈ LE there exists a set of two or more atomic steps B = {ai1 , · · · ,
aik
}, k ≤ n, where aj ∈ Aij (E), such that the atomic steps in B are never concurrent

during E.
We first consider self-stabilizing protocols for systems equipped with a global time-

out mechanism. For these protocols we prove that in every execution (in which no
communication deadlock occurs) all configurations are distinct. From this we conclude
that the configuration size of every self-stabilizing protocol which realizes any weak-
exclusion task is at least logarithmic in the number of steps executed by the protocol.
Throughout the proof we assume that PR is a self-stabilizing, message-driven protocol
for an arbitrary weak-exclusion task, in a system with a global time-out mechanism.
At the end of this section, we present a slightly weaker lower bound for systems with
a local time-out mechanism.

For any configuration c and any link e, denote by M c
e the sequence of messages

present on e in c. For any execution E, denote by ME
e,s (ME

e,r) the sequence of messages
sent (received) along e during E.

Proposition 3.1. For every execution E = (c0, a1, · · · , ar, cr) and for every link
e, M c0

e ◦ME
e,s = ME

e,r ◦M cr
e .

Proof. The left hand side of the equation contains the messages present on e in
c0, concatenated with the messages sent during E, through e. The right hand side of
the equation contains the messages received during E through e, concatenated with
the messages left on e in cr. It is not hard to verify that both sides of the equation
represent the same sequence of messages.

An execution E = (c0, a1, · · · , c`−1, a`, c`) whose result configuration c` is equal
to its initial configuration c0 is called a circular execution. A link e is active in a
circular execution E if some messages are received (and hence, by the circularity of
E, some messages are sent) along e in E. Repeating a circular execution E forever
yields an infinite execution E∞ which is not necessarily fair — The original execution
may have an applicable step a which is never executed during E. The step a is
applicable throughout E∞ but it is never executed. To avoid this problem the original
circular execution is changed by removing all messages from links that are not active

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 7

throughout E. The result execution, which is still called E is still circular and its
infinite repetition E∞ is a fair infinite execution. Observe that an execution in which
a certain configuration appears more than once has a circular sub-execution, E =
(ci, ai+1, · · · , ai+`, ci+`) ≡ (c0, a1, · · · , a`, c`), where ci = ci+` = c0 = c`. Thus, to
show that in every execution of PR all the configurations are distinct, we assume
that PR has a circular sub-execution E and reach a contradiction by showing that
PR is not self-stabilizing.

Using E, we now construct an initial configuration cinit by changing the list of
messages in transit on the system’s links. For each link e, the list of messages in
transit on e, at cinit, is obtained by concatenating the list of messages in transit on e
at c0 with the list of all messages sent on e during E. Roughly speaking, the effect of
this change is creating an additional “layer” of messages that helps to decouple each
send from its counterpart receive and achieve an additional flexibility in the system
which enables the proof of the lower bound: Formally, cinit is obtained from c0 as
follows:

• The state of each processor in cinit is equal to its state in c0.
• For any active link in E, M cinit

e = M c0
e ◦ME

e,s and for any non-active link in
E, M cinit

e is empty.
Let A(i) be the sequence of atomic steps executed by Pi during E. Define

merge(A) to be the set of sequences obtained by all possible mergings of all se-
quences A(i), 1 ≤ i ≤ n, while keeping the internal order in each A(i). Note that all
the sequences in merge(A) have the same finite length and contain the same atomic
steps in different orders.

Lemma 3.2. Every A ∈ merge(A) is applicable to cinit, and the resulting execu-
tion, EA = (cinit) ◦A, is a circular execution of PR.

Proof. Let A be an arbitrary sequence in merge(A) and let Pi be an arbitrary
processor of the system. Then we have: (i) The initial state of Pi in cinit is equal to
its initial state in c0. (ii) In cinit all messages which Pi receives during E are stored
on Pi’s appropriate incoming links in the right order. (iii) The atomic steps of Pi

appear in A in the same order they appear in A(i). (i) - (iii) above imply that the
sequence A is applicable to cinit, and the application of A to cinit yields an execution,
EA, with result configuration, cres whose state vector is equal to the state vector of
cinit and in which for every active link MEA

e,s = ME
e,s and MEA

e,r = ME
e,r.

To prove that the obtained execution is circular it remains to be shown that the
content of every link in the result configuration, cres, is equal to its content in cinit

i.e. M cinit
e = M cres

e . For any arbitrary link e it holds that:
1. M cinit

e ◦ME
e,s = ME

e,r ◦M cres
e (by Proposition 3.1 and by the fact that MEA

e,s =

ME
e,s and MEA

e,r = ME
e,r).

2. M c0
e ◦ME

e,s = ME
e,r ◦M c0

e (by Proposition 3.1 and the circularity of E).
Replacing M cinit

e in equation 1 with its explicit contents yields:
3. M c0

e ◦ME
e,s ◦ME

e,s = ME
e,r ◦M cres

e .

Using equation 2 to replace M c0
e ◦ME

e,s by ME
e,r ◦M c0

e in equation 3 gives:

4. ME
e,r ◦M c0

e ◦ME
e,s = ME

e,r ◦M cres
e .

Dropping ME
e,r from the two sides of equation 4 yields the desired result: M cinit

e =

M c0
e ◦ME

e,s = M cres
e , which proves the lemma.

Define blowup(E) to be the set of executions whose initial sate is cinit and whose
sequence of atomic steps belongs to merge(A). Notice that, for every circular execu-

8 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

tion E and for every execution E ∈ blowup(E) it holds that Ai(E) = Ai(E).
Lemma 3.3. For any set of atomic steps B = {a1, · · · , ak}, k ≤ n, where aj ∈

Aij
(E), there is an execution E ∈ blowup(E) that contains a configuration for which

all the atomic steps in B are concurrent.
Proof. For notational simplicity, assume that k = n and that B = {a1, a2, · · · , an}.

Let A ∈ merge(A) be the sequence constructed as follows: first take all the steps in
A(1) that precede a1, then take all the steps in A(2) that precede a2,..., then take
all the steps in A(n) that precede an. Applying the sequence constructed so far to
cinit results in a configuration in which all the ai’s are applicable. This sequence is
completed to a sequence A in merge(A) by taking the remaining atomic steps in an
arbitrary order, which keeps the internal order of each Ai.

Lemma 3.4. Let PR be a self-stabilizing, message-driven protocol for an arbitrary
weak-exclusion task T , in a system with a global time-out mechanism. If PR has
a circular execution E then PR has an infinite fair execution E∞ none of whose
configuration is safe for T .

Proof. Let E be an arbitrary execution in blowup(E). Define E∞ to be the
infinite execution obtained by repeating E forever). By the definition of blowup(E),
E∞ is fair. So it remains to show that no configuration in E∞ is safe.

Assume by way of contradiction that some configuration c0 in E∞ is safe. Now, we
construct a finite circular execution E′ whose sequence of atomic steps A′ is obtained
by concatenating sequences from merge(A), that is Ai(E′) = Ai(E). Since PR is
a protocol for some weak-exclusion task, E′ should have some set of atomic steps
B = {a1, · · · , ak}, where aj ∈ Aij that are never applicable for a single configuration
c during E′. We reach a contradiction by refuting this statement for E′: For this
we choose some arbitrary enumeration B = B1, · · · , Bs, of all the sets containing n
atomic steps of n distinct processors. Execution E′ is constructed by first continuing
the computation from c0 as in E until configuration cinit is reached. Then apply
Lemma 3.3 to extend E′ by s consecutive executions E1, · · · , Es, where Ek, 1 ≤ k ≤ s
contains a configuration in which all the steps in Bk are applicable and that ends with
cinit. The proof follows. Note: Execution E′ can be repeated forever to obtain an
infinite execution which does not have any suffix in LE, thus, the protocol PR is not
even pseudo self-stabilizing (see [3]).
The proof for the lower bound is completed by the following theorem:

Theorem 3.5. Let PR be a self-stabilizing, message-driven protocol for an arbi-
trary weak-exclusion task, in a system with a global time-out mechanism. For every
execution E of PR, all the configurations of E are distinct. Hence, for every t > 0,
the size of at least one of the first t configurations in E is at least dlog2(t)e.

Proof. Assume by way of contradiction that there exists an execution E of PR in
which not all the configurations are distinct, then E contains a circular sub-execution,
E. By Lemma 3.4, there exists an infinite execution E′ of PR, which is obtained by
an infinite repetition of some execution from blowup(E), and which never reaches a
safe configuration, a contradiction.

For proving a similar lower bound to systems with a local time-out mechanism
the definition of a circular execution must be modified. Removing messages from
non active links to construct an infinite execution from E as in the proof of Theorem
3.5 may yield an infinite execution in which some processor is enabled only finitely
many times. In order to allow repetitions of finite executions to form an infinite fair
execution, in which every processor is active infinitely often, we require that each
such finite execution contains an atomic step of each processor in the system. For

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 9

this we need the concept of a round of an execution: Let E′ be a minimal prefix of
an execution E in which every processor receives a message; E′ is the first round of
E. Let E′′ be the suffix of E which satisfies E = E′ ◦ E′′. The second round of E is
the first round of E′′, and so on. Let Ei be the prefix that contains the first i atomic
steps of E. Let ti = R(Ei) be the number of rounds in Ei. The next theorem presents
a lower bound for systems equipped with a local time-out mechanism. The proof is
similar to the proof of Theorem 3.5.

Theorem 3.6. Let PR be a self-stabilizing, message-driven protocol for an ar-
bitrary weak-exclusion task, in a system with a local time-out mechanism. For every
execution E of PR, E does not contain a circular sub-execution which contains a
complete round. From this we conclude that in each execution of PR, E, the first
t rounds contain at least t distinct configurations. Hence, for every t > 0, the size
of at least one configuration in Ei, is at least dlog2(ti)e. In particular, in any fair
execution, the configuration size is unbounded.

4. Upper Bound. The token-passing task is defined informally as a set of ex-
ecutions in which a single token is present in the entire system and is passed fairly
among the system’s processors. Token-passing is a special case of mutual-exclusion
since possession of the single token can be interpreted as a permission to enter the
critical section. For this reason token-passing also satisfies the weak-exclusion prop-
erty, and hence the lower bound of section 3 holds for it. In particular, it means that
any self-stabilizing, message-driven protocol PR for token-passing must use some un-
bounded resource, since in any infinite execution the system size grows beyond any
bound. In this section we present three self-stabilizing, token-passing protocols for
systems of two processors. In each protocol the configuration size grows during every
execution at a rate that matches the lower bound. Each of these protocols can be
easily adapted to work on rings of arbitrary size without increasing its asymptotic
complexity, by considering the ring as a single virtual link. Similar ideas can be used
for adapting the protocols to arbitrary rooted tree systems.

By a standard symmetry argument there exists no self-stabilizing, deterministic,
token-passing protocol if the processors are identical. Hence, in this section we as-
sume that the system consists of two distinct processors, called sender and receiver,
connected by two links: The first link carries messages from the sender to the receiver
while the second link carries messages from the receiver back to the sender. The
receiver processor is identical in all three protocols and it is probably the simplest
possible finite-state machine. Its program is to copy each message it receives from
its incoming link to its outgoing link without any alteration. To the outside world,
the combined behavior of the receiver and the two links looks like the behavior of a
single queue whose head and tail are used by the receiver. In our analysis we ignore
the receiver and consider systems with a single processor, the sender, communicating
with itself using a single link on which messages are kept in FIFO order. In each
step the sender consumes a message from the head of the link and puts one (or more)
messages back at the tail of the link. Tokens are represented by a special symbol,
T , which is appended to some of the messages. Our protocols specify the messages
that carry a token, but they do not use explicitly the token symbol T , The protocol
should guarantee that eventually there is a unique message in the system to which T
is appended. All our protocols assume that initially there is at least one message on
the link (this assumption is weaker than both the global and the local versions of the
time-out mechanism). With this last assumption, the requirement that the link never
becomes empty is equivalent to the requirement that whenever a message is received,

10 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

at least one message is sent. Hence in every step of the protocol the sender receives
the message on the head of the (single) link and then puts one or more messages at
the link’s end. The three protocols we present are:

Protocol 1: In this protocol the sender is an infinite state machine, and in every
execution the link capacity is unbounded.

Protocol 2: In this protocol the sender is an infinite state machine, but in each
infinite execution the link capacity is bounded (the bound for each specific
execution depends on its initial configuration).

Protocol 3: In this protocol both processors are finite state machines.

1 do forever
2 receive(msg counter)
3 if msg counter ≥ counter then (* token arrives *)
4 begin (* send new token *)
5 counter := msg counter +1
6 send(counter, T)
7 end
8 else send(counter)
9 end

Fig. 1. protocol 1

protocol 1 (of the sender) appears in Figure 1. The sender uses a variable called
counter. Each message consists of the present value of counter, possibly with the token
symbol T . Whenever the sender receives a message whose counter value, msg counter,
is not smaller than counter, it sets counter := msg counter + 1 and sends this new
value of counter together with the token T ; otherwise the sender just sends the current
value of counter (without the token T). The token letter T is not used by the protocol
itself. The correctness of the protocol is based on the fact that eventually the value of
counter will be larger than all the values that appear in the messages present on the
link in the initial configuration. The asymptotic size of counter in each execution is
Ω(log t), where t is the number of messages sent. The details of the proof are omitted.

4.1. Aperiodic Sequences. Protocols 2 and 3 use the following method: each
message is associated with some ternary number which is called color. The protocol
considers any message whose color is different from the color of the previous message
as carrying a token. The sender has a local variable called token color. At any given
configuration the sender is sending a sequence of messages whose color is equal to
(the value of) token color; at the same time the sender waits for a message whose
color is equal to token color. As long as the sender receives messages of different
colors it sends messages whose color is equal to token color. Once the sender receives
a message whose color is equal to token color, it chooses a new token color, and
initiates a new sequence of messages whose color is the new token color by sending
the first message in this new sequence. This first message is carrying a (virtual)
token. Then the sender continues sending messages of the new token color (without
tokens), until it receives a message of the new token color, and so on. Our goal is
to reach a configuration after which the link always holds at most two consecutive
sequences of messages where the colors of all messages in each sequence are equal.
In every step the sender consumes a single message from the first sequence whose
color is the previous token color and produces one or more messages whose color is

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 11

equal to the present token color. After the last message whose color is the previous
token color is consumed the link contains a single sequence of messages whose color
is token color. In the next step the sender receives the (single) token carried by this
sequence and sends it once again by initiating a new sequence of messages whose
color is the new token color. In each of the described configurations there exists
a single token which is carried by the first message of the sequence whose color is
token color. The correctness of the protocols follows from the fact that the sequences
of token-colors sent by the receiver is aperiodic, as defined below.
Definition: A sequence A= (a1, a2, · · ·) is periodic if for some positive integer k and
for all i ≥ 1, ai = ai+k. The sequence A is eventually periodic if it has a suffix which
is periodic. A is aperiodic if it is not eventually periodic.

Aperiodic sequences over the integers {0, 1, 2} were used in [1] in order to obtain
self-stabilizing, data link protocols. Such sequences are created there either by a ran-
dom number generator or by an infinite state machine (in the first case the algorithm
is randomized). The elements of this sequence are used by the protocol of [1] whenever
it has to decide on the ternary number to be sent with a new message. In this paper
aperiodic sequences are generated by using a counter and the sequence xor defined
below:
Definition: For an integer i, xor(i) is the sum of the bits (mod 2) in the bi-
nary representation of i (e.g., xor(1) = xor(2) = 1, xor(3) = 0). The sequence
(xor(1), xor(2), · · ·) is denoted by xor.
As we show later, the sequence xor is aperiodic.

1 do forever
2 receive(color)
3 if color = token color then (* token arrives *)
4 begin (* send new token *)
5 token color := (color +xor(counter) + 1) (mod 3)
6 counter := counter +1
7 end
8 send(token color)
9 end

Fig. 2. protocol 2

Protocol 2 (of the sender) which appears in Figure 2, is an improvement of the
protocol that appears in [1] in the sense that it achieves the lower bound of the
previous section. the sense that it achieves the lower bound of the previous section.
(The amount of memory used for producing the aperiodic sequence is not addressed
nor specified in [1].) In protocol 2 the sender keeps a counter in its local memory;
whenever a message with a new color is sent the counter is incremented. The new color
∈ {0, 1, 2} is determined by the previous color and by applying xor to the counter.
Roughly speaking, the correctness of the protocol is implied by the fact that since xor
is aperiodic, the sequence of colors generated by the sender is aperiodic as well. The
nature of the variables and the correctness proof of protocol 2 are easily derived from
the description of protocol 3 and from its correctness proof, hence, they are omitted.

4.2. Informal Description of Protocol 3. We now present protocol 3, in
which both processors are finite state machines. It is easily observed that when an
aperiodic sequence is supplied by some external device, a finite state machine can use

12 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

this sequence to perform the protocol in [1]. Our construction uses the fact that the
finite state machine augmented with the previously described FIFO link can generate
an aperiodic sequence. The finite state machine uses the link both for message-passing
and for generating the aperiodic sequence, while its size is kept within the optimal
bound. Protocol 3 can be easily transformed to a self-stabilizing, data link protocol
in which both processors are finite state machines.

Protocol 3 appears in Figure 3. In this protocol each message is a pair (color, bit),
where color ∈ {0, 1, 2} and bit ∈ {0, 1}. The local variables color and token color
are ternary variables while the local variables counter bit, counter xor, carry, and
new counter bit are binary. The binary xor operation is denoted by ⊕. For a sequence
s = ((color1, bit1), ..., (colork, bitk)) of such messages, N(s) denotes the integer whose
binary representation is bitk, bitk−1, . . . , bit1 (bit1 is the least significant bit). A
maximal sequence of consecutive messages of the same color sent by the sender is
called a block. For each block b, N(b) denotes the integer described above and |b|
denotes the number of messages in b. The first message in each block is viewed as a
token. To show that the protocol is self-stabilizing, we have to prove that eventually
the link contains exactly one message which is the first message in a block. This goal
is achieved by making the sequence of the colors of the blocks aperiodic.

The sender uses a local variable called token color, which denotes the color of
the block it is now sending. It continues to send messages of this color as long as
the colors of the messages it receives are different from token color. Once the sender
receives a message whose color is equal to token color (which eventually means that
all messages on the link belong to the same block), it: (a) possibly sends one last
message of the current block, (b) changes the value of token color, and (c) sends the
first message of a new block, with this new color.

1 do forever
2 receive(color,counter bit)
3 if color = token color then (* token arrives *)
4 begin
5 if carry = 1 then send (color, 1)

(* new token *)
6 token color := (color + counter xor + 1) (mod 3)
7 counter xor := 0
8 carry := 1
9 end
10 counter xor := counter xor ⊕ counter bit
11 new counter bit := carry ⊕ counter bit
12 carry := carry ∧ counter bit
13 send (token color,new counter bit)
14 end

Fig. 3. protocol 3

In Lemma 4.1 we show that in every execution the sender initiates infinitely many
blocks. Let b1, b2 . . . be the sequence of blocks initiated by the sender, where the color
of bi is color(bi) and the integer it represents is N(bi), as defined above. The protocol
is designed so that the following properties are kept:

(p1) The sequence (color(b1), color(b2), · · ·) is aperiodic.

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 13

(p2) For every large enough i, N(bi+1) = N(bi) + 1, and the bit field in the
last message of bi is 1 (that is: N(bi) = i + const for some constant const,
and the representation of N(bi) by bi has no leading zeroes, implying that
|bi| = dlog2 N(bi)e.)

We will prove that (p1) above implies that eventually there is only one token in
the system, while (p2) guarantees that the size of the system is logarithmic in the
number of steps. We now show that the protocol indeed satisfies (p1) and (p2) above.
For this, we describe the two rules by which the sender computes the bits and the
colors it sends. We need the following definition:
Definition: Let k ≥ 1. Denote by sk the sequence of messages whose colors are
different from color(bk), which are received by the sender while it sends the block bk,
and by N(sk) the integer represented by sk. Note that sk consists of one or more
complete blocks.

Rule 1: (rule for computing counter bits): The counter bit sent with each mes-
sage is sent so that for each k, N(bk) = N(sk) + 1, and |bk| = max{|sk|,
dlog2(N(bk))e}. In other words: the counter bits sent in block bk are obtained
by adding 1 to the binary number represented by the messages received while
this block is sent.

Rule 2: (rule for computing token color): When receiving a message whose
color is equal to the value of token color, the new value of token color, which
is the color of the next block, bk+1, is determined as follows: color(bk+1) =
color(bk) + xor(N(sk)) + 1 (mod 3).

Note that Rule 1 can be implemented by a binary adder which is set to zero at the
initiation of each new block, and Rule 2 can be implemented by a counter (mod 2).
Thus, both rules are easily implemented by a finite state machine.

4.3. Correctness and Complexity Proofs of Protocol 3. Lemma 4.1. In
every fair execution, E, the sender initiates an infinite number of blocks.

Proof. The sender initiates a new block whenever it receives a message whose
color is equal to the current value of token color. In every atomic step in which the
sender receives a message whose color is not equal to token color, it sends a message,
say M ′, whose color is token color. Since the link carries messages in FIFO order, the
message M is eventually received by the sender and it initiates a new block not later
than upon receipt of M . The lemma follows.

A configuration in an execution is called a limit configuration if in the next step
of the sender a new token color is computed; that is, the color of the next arriving
message is equal to the present value of token color. Observe that at a limit config-
uration c, the link contains a finite (possibly zero) number of complete blocks, and
one possibly incomplete block at the tail of the link (this block may be incomplete
since upon receipt of the next message the sender may send one more message in this
block, by executing line 5 of the code). The first block has the same color as the last
(possibly incomplete) block. For an execution E, we denote by ik the index of the
k-th limit configuration in E. In other words, cik

is the limit configuration just before
bk is initiated.
Next we prove that the number of blocks in consecutive limit configurations does not
increase.

Lemma 4.2. Let `k be the number of blocks in the limit configuration cik
(includ-

ing the possibly incomplete block). Then `k ≥ `k+1, with equality only if sk is a single
block.

Proof. Let mk ≥ 1 be the number of blocks in sk. In the sub-execution starting

14 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

with cik
and ending with cik+1 one block is added to the link (namely, bk), and mk

blocks of sk are removed from it. Therefore `k+1 = `k + 1−mk ≤ `k.
Next we show that the number of blocks in the limit configurations must eventu-

ally get down to one. First we need a technical Lemma:
Lemma 4.3.

(a) The sequence xor is aperiodic.
(b) Let (a1, a2, · · ·) be an eventually periodic sequence, and let bi = ai+1 − ai.

Then the sequence B = (b1, b2, · · ·) is also eventually periodic.
(c) Let (a1, a2, · · ·) be an eventually periodic sequence. Then for each i, p > 0,

the sequence A(i, p)=(ai, ai+p, ai+2p, · · ·) is also eventually periodic.
Proof.
(a) Assume in contradiction that the sequence xor = (xor(1), xor(2), . . .) is

eventually periodic. Then there exist i and `, s.t. xor(j) = xor(j + `) for
every j ≥ i. Let q be a non-negative integer such that 2q ≤ ` < 2q+1 and let
d be an integer satisfying d ≥ q + 2 and 2d ≥ i. Consider the following cases:
• xor(`) = 1: By the definition of d it holds that xor(2d + `) = 0. Thus,

1 = xor(2d) 6= xor(2d + `) = 0.
• xor(`) = 0: Then xor(`) = xor(2q + `) = 0, and 2q + ` < 2d. Hence,

xor(2d + 2q + `) = 1. Thus, 0 = xor(2d + 2q) 6= xor(2d + 2q + `) = 1.
Thus, there exist a and b such that: (1) a > i and b > i, (2) a − b = ` and
(3) xor(a) 6= xor(b), a contradiction.

(b) This claim is trivial.
(c) Let j and ` be such that xor(k) = xor(k + `) for every k ≥ j. Then for

every p > 1 and k ≥ j it holds that ak = ak+`p. Thus, the sequence A(i, p) is
eventually periodic with period length ≤ `.

Lemma 4.4. In every fair execution E there exists a suffix in which the number
of blocks in the limit configurations is always one.

Proof. By Lemma 4.2 this number never increases, and hence it eventually remains
L for some constant L > 0 forever. We shall assume that L > 1 and derive a
contradiction.

Call a limit configuration cik
ultimate if `k, the number of blocks in cik

, is L. If
cik

is ultimate then `k+1 = `k and hence, by Lemma 4.2, sk is a single block, which
must be bk−L. Thus, the first block that follows sk is bk−L+1. By the protocol, bk is
terminated when the sender receives a message whose color is equal to the color of bk.
Therefore, we have that the color of (the messages in) the block bk−L+1 is equal to
the color of the messages in bk, i.e.: color(bk−L+1) = color(bk). Hence the sequence
COLORS = (color(b1), color(b2), · · ·) is eventually periodic with period length L−1 >
0. Let BXOR = (xor(N(b1)), xor(N(b2)), · · ·). By the way color(bk+1) is computed,
we have that for an ultimate configuration cik

, xor(N(bk − L)) = [color(bk+1) −
color(bk)] (mod 3) -1. Hence, by Lemma 4.3 (b), if COLORS is eventually periodic
so is BXOR. We shall derive a contradiction by showing that the sequence BXOR
is aperiodic.

Lemma 4.3 (c) implies that in order to show that BXOR is aperiodic, it is suffi-
cient to show that for some positive i and p, the sequence BXOR(i, p) = (xor(N(bi)),
xor(N(bi+p)), xor((N(bi+2p)), · · ·) is aperiodic. For this, observe that for an ultimate
configuration cik

, it must hold that N(bk) = N(sk)+1 = N(bk−L)+1. Hence, for any
integer i we have that BXOR(i, L) = (xor(N(bi)), xor(N(bi+L)), xor((N(bi+2L)), · · ·)
= (xor(N), xor(N + 1), xor(N + 2), · · ·), where N = N(bi). Thus, BXOR(i, L) is a

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 15

suffix of the sequence xor, which is aperiodic by Lemma 4.3 (a). Hence, BXOR(i, L)
is also aperiodic. This yields the desired contradiction.

Lemma 4.4 and its proof imply that properties (p1) and (p2) hold: Property (p1)
holds since the proof of Lemma 4.4 shows that the sequence COLORS is aperiodic.
Property (p2) is proved as follows: Let E′ be a suffix of E satisfying Lemma 4.4, and
let cik

be any limit configuration in E′. Then, by Rule 1, N(bk+1) = N(sk+1) + 1
= N(bk) + 1, which easily implies (p2).

We now show that the space complexity of protocol 3 indeed matches the lower
bound of the previous section. Since both the number of states of a processor and the
number of distinct messages in our protocol are constants, the size of a configuration
is proportional to the number of messages in it. Therefore to bound the size of a
configuration from above it is enough to bound the number of messages in it. In
the next lemma we show that for each execution E = (c0, a1, c1, · · ·) of the protocol,
the size of the i-th configuration of E, ci, is O(log2(i)). Let cik

denotes the k-th
limit configuration of E, and let bk be the corresponding block. We shall prove that
|bk| = O(log k).

Lemma 4.5. For every large enough k, the number of messages in the limit
configuration cik

is dlog2 N(bk−1)e.
Proof. By Lemma 4.4 there exists a suffix E′ of E such that every limit config-

uration in E′ contains one block. Clearly, it is suffices to prove the Lemma for E′.
As observed above, property (p2) eventually holds for every limit configuration in E′.
The lemma follows.

Corollary 4.6. The number of messages in c`, the ` − th configuration of E,
is O(log2(`)).

Proof. Let E′ be a suffix of E as in Lemma 4.5, and assume that ` is large
enough so that c` belongs to E′. Then the number of messages in c` is equal to the
number of messages in the next limit configuration, cik

, which is O(log2 k) (for some
k). The proof is completed by the observation that, since ij ≥ j for all j, and since
configuration cik−1 precedes c` in E, we have that ` ≥ ik−1 + 1 ≥ (k − 1) + 1 = k.

4.4. Larger Systems. Now, we describe how to use our protocols in directed
rings with more than two processors. The processors of the ring are denoted by
P1, · · · , Pn where P1 is a sender while P2, · · · , Pn are receivers. Whenever a processor
Pi, 1 < i < n, receives a message M from Pi−1, Pi sends M to Pi+1. Similarly, when-
ever Pn receives a message M from Pn−1, it sends M to P1. Thus, the ring behaves
like a virtual link from the sender, P1, to itself. It is not hard to see that the existence
of a single message on the entire ring prevents communication deadlocks, thus, we
assume that there is a time-out mechanism that guarantees this condition (this time-
out mechanism is invoked only once to recover from initial deadlock configuration).
It can be proved, in a way similar to previous proofs, that our protocols guarantee
that eventually there is exactly one token that encircles the ring from the sender to
itself. Actually, our protocols can be used in any connected system by hardwiring a
directed ring that spans the entire system.

4.5. Construction of a Token Controller. In this subsection we define queue
machines and token controllers and interpret our results in these terms.

A queue machine Q is a finite state machine which is equipped with a queue,
which initially contains a non-empty word from Σ+ for some (finite) alphabet Σ. In
each step of its computation Q performs the following: (a) reads and deletes a letter
from the head of the queue, (b) adds zero or more letters from Σ to the tail of the

16 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

queue, and (c) moves to a new state. The computation terminates when Q halts or
when its queue becomes empty, which prevents Q from performing any further steps.

The main difference between queue machines and various types of Turing Machine
is that the input alphabet and the work alphabet of a queue machine are identical.
For this reason, a queue machine cannot perform simple tasks like deciding the length
of the input word, or even deciding whether the input word contains a specific letter2.

We now define token controller, which is a special type of queue machine. Assume
that the alphabet Σ contains a specified subset τ of token letters. A queue machine is
a token controller if, starting with a nonempty queue of arbitrary content, eventually
the queue contains exactly one occurrence of a letter from τ forever.

A priori, it is not clear that a token controller exists. Observe that if a token
controller exists, then its queue never becomes empty (since once the queue is empty
it remains so forever). More importantly, a token controller (if exists) can never
halt, since it cannot guarantee that upon halting, the queue contains exactly one
occurrence of a token letter. The last two observations imply that a token controller
can be viewed as a special case of a token-passing system, in which Σ is the set of
messages sent by the protocol, and τ is the set of messages that carry the token. We
show below how to transform the sender from protocol 3 to a token controller.

Define the alphabet Σ to be a set of triplets (color, bit, t), where color and bit are
as in protocol 3, and t is either T — in case the message carries a token (i.e., it is the
first message of some block), or nil, in case it does not. The set τ is defined as the
set of all possible triplets whose third component is T . The two anti-parallel FIFO
links between the sender and the receiver are considered as a single queue. Receiving
a message is regarded as deleting a letter from the head of the queue, while sending
a message is regarded as appending a message to the end of the queue.

Since protocol 3 guarantees that eventually exactly one message in every config-
uration is carrying a token, the queue machine described above is a token controller.
Moreover, our lower bound results imply that this token-controller is optimal with
respect to the rate in which the size of the queue grows.

5. Self Stabilizing Simulation of Shared Memory. In this section we present
a method for simulating self-stabilizing, shared-memory protocols by self-stabilizing,
message-driven protocols. The simulated protocols are assumed to be in the shared-
memory model defined in [9]. In this model, communication between neighbors, Pi

and Pj , is carried out using a two-way link. The link is implemented by two shared
registers which support read and write atomic operations. Processor Pi reads from
one register and writes in the other while these functions are reversed for Pj . In
the implementing system, every link is simulated by two directed links: one from Pi

to Pj and the other from Pj to Pi. The heart of the simulation is a self-stabilizing
implementation of the read and write operations.

The proposed simulation implements these operations by using a self-stabilizing,
token-passing protocol. For any pair of neighbors, we run the protocol on the two links
connecting them. In order to implement our self-stabilizing, token-passing protocol
we need to define for each link which of the processors acts as the sender and which
of the processors acts as the receiver. We assume that the processors have distinct
identifiers. Every message sent by each of the processors carries the identifier of that
processor. Eventually each processor knows the identifier of all its neighbors. In

2 A variant of queue machine which can use arbitrary work alphabet is in fact an oblivious Turing
machine, which is as powerful as a standard Turing machine

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE DRIVEN PROTOCOLS 17

each link, the processor with the larger identifier acts as the sender while the other
processor acts as the receiver. Since each pair of neighbors uses a different instance of
the protocol, a separate time-out mechanism is needed for every such pair. In other
words: A correct operation of the simulation requires that for any pair of neighbors
there exists at least a single message on one of the two links connecting the neighbors.

We now describe the simulation of some arbitrary link e, connecting Pi and Pj :
In the shared memory model, e is implemented by a register Ri,j in which Pi writes
and from which Pj reads, and by a register Rj,i for which the roles are reversed. In
the simulating protocol, processor Pi (Pj) keeps a local variable called ri,j (rj,i),
which keeps the values of Ri,j (Rj,i respectively). Every token has an additional
field called VALUE. Every time Pi receives a token from Pj , Pi writes the current
value of ri,j in the VALUE field of that token. A write operation of Pi into Ri,j is
simply implemented by locally writing into ri,j . A read operation of Pi from Rj,i is
implemented by the following steps:

1. Pi receives a token from Pj and then
2. Pi receives another token from Pj . The value read is the VALUE attached to

the second token.
The correctness of the simulation is proved by showing that for every execution E

whose initial configuration contains at least one message on each link, it is possible to
linearize all the simulated read and write operations executed in E so that eventually
every simulated read operation from Ri,j returns the last value that was written to
it. (i.e., that the protocol simulates executions in the shared-memory model in which
the registers are eventually atomic, see [20]). Define the time of a simulated write
operation to Ri,j to be the time in which the local write operation to ri,j is executed.
Define the time of a simulated read operation of Pj from Ri,j to be the time in which
Pi sends the value of its local variable ri,j attached to the token that later reaches
Pj in step (2) of the simulated read. Once each link holds a single token, all the
operations to register ri,j are linearized, and every read operation from ri,j returns
the last value written to ri,j .

Acknowledgments. We thank Alan Fekete for helpful remarks.

REFERENCES

[1] Y. Afek and G.M. Brown, “Self-Stabilization of the Alternating-Bit Protocol”, Distributed Com-
puting, 7 (1993), pp. 27-34.

[2] G.M. Brown, M.G. Gouda, and C.L. Wu, “A Self-Stabilizing Token system”, IEEE Transactions
on Computers, 38 (1989), pp. 845-852.

[3] J. Burns, M.G. Gouda and R. E. Miller, “Stabilization and Pseudo stabilization”, Distributed
Computing, 7 (1993), pp. 35-42.

[4] J.E. Burns and J. Pachl, “Uniform Self-Stabilizing Rings”, ACM Transactions on Programing
Languages and Systems, 11 (1989), pp. 330-344.

[5] K.A. Bartlet, R.A. Scantlebury and P.T. Wilkinson, “A Note on Reliable Full-Duplex Transmis-
sion over Half-Duplex Links”, Communication of the ACM, 12 (1969), pp. 260-261.

[6] J.E. Burns, “Self-Stabilizing Rings without Demons”, Technical Report GIT-ICS-87/36, Georgia
Institute Of Technology.

[7] E.W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control”, Communications of
the ACM 17,11 (1974), pp. 643-644.

[8] E. W. Dijkstra, “self-stabilizing systems in spite of distributed control (EWD391)”, Reprinted
in Selected Writing on Computing: A Personal Perspective, Springer-Verlag, Berlin, 1982,
pp. 41-46.

[9] S. Dolev, A. Israeli and S. Moran, “Self Stabilization of Dynamic Systems Assuming Only
Read/Write Atomicity”, Distributed Computing, 7 (1993), pp. 3-16.

18 SHLOMI DOLEV, AMOS ISRAELI AND SHLOMO MORAN

[10] S. Dolev, A. Israeli and S. Moran, “Resource Bounds for Self Stabilization Message Driven Proto-
cols”, Proc. of the Tenth Annual ACM Symposium on Principles of Distributed Computing,
Montreal, August 1991, pp. 281-294.

[11] S. Dolev, A. Israeli and S. Moran, “Uniform Dynamic Self-Stabilizing Leader Election”, Pro-
ceedings of the Fifth International Workshop on Distributed Algorithms, Delphi Greece,
October 1991, pp. 167-179.

[12] D. Dolev and D. Koller, “Token Survival”, preprint.
[13] M.G. Gouda and N.J. Multari, “Stabilizing Communication Protocols”, IEEE Transactions on

Computers , Vol. 40 No. 4 (1991), pp. 448-458.
[14] A. Israeli and M. Jalfon, “Token Management Schemes and Random Walks Yield Self Stabilizing

Mutual Exclusion”, Proc. of the Ninth ACM symp. on Principles of Distributed Computing
(1990), pp. 119-131.

[15] A. Israeli and M. Jalfon, “Self-stabilizing Ring Orientation”, Proceedings of the Fourth Inter-
national Workshop on Distributed Algorithms, September 1990, pp. 1-14. Also to appear in
Information and Computation.

[16] S. Katz and K. J. Perry, “Self-stabilizing extensions for message-passing systems”, Distributed
Computing, 7 (1993), pp. 17-26.

[17] H.S.M. Kruijer, “Self-stabilization (in spite of distributed control) in tree-structured systems”,
Information Processing Letters 8,2 (1979), pp. 91-95.

[18] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System”, Comm. of
the ACM 21,7 , (1978), pp. 558-565.

[19] L. Lamport, “Solved problems, unsolved problems, and non-problems in concurrency”, Proc. of
the Third ACM symp. on Principles of Distributed Computing (1984), pp. 1-11.

[20] L. Lamport, “On Interprocess Communication. Part I: Basic Formalism”, Distributed Comput-
ing 1, 2 1986, 77-85.

[21] M. Multari, “Toward a Theory for Self-stabilizing Protocols,” Ph.D. dissertation, Dep. Comput.
Sci. Univ. of Texas at Austin, 1989.

[22] M.Tchuente, “Sur l’auto-stabilisation dans un réseau d’ordinateurs”, RAIRO Inf. Theor. 15
(1981), pp. 47-66.

