
Ada Letters, Spring 1991 Volume XI, Number 3

A Program Analysis Tool for Evaluating
the Ada Compiler Validation Suite *

Deborah Rennels
New York University

1 Introduction

The Ada Compiler Validation Capability (ACVC) is

used by the Department of Defense to test Ada com-

pilers for adherence to the language standard. The

maintenance of this test suite, which currently consists

of over 3700 tests (over 190,000 lines of Ada source) in

more than 4000 files, is a sizable software engineering

project. As ambiguities in the specification (the Ada

language definition) are resolved, the test suite must

be updated and modified. Such modification involves

identifying whether (and where) the language features

under consideration occur in the test suite, so that

such occurrences can be changed, deleted, or possibly

added. The effort involved in such tasks is expected

to increase as a result of the Ada9x project, which

is currently soliciting suggestions for changes to the

language definition 131.

Although the test suite is indexed by section

numbers of the Ada Reference Manual [2], identifying

where various features occur within the suite is not

st#ra.ightforward. First, the itsems of int,erest are often

feature combinations rather than solitary features, and

*This work was done under a subcontract from the Ada
Maintenance Organization (AMO), managed by SofI’ech. Inc.
Contract no. 3451-2-327

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM O-copyright notice and

the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish,

requires a fee and/or specific permission.

@ 1991 ACM 0-89791-398-1/91/0004/0137...$1.50

Edmond Schonberg
New York University

as such may be found in many different tests, even ones

which are indexed by a manual section not pertaining

to these features at all. Second, the features of interest

often involve issues of semantic contexts that may not

be identifiable from just a textual or syntactic analysis

of the test programs. Instead, a full semantic analysis

of the program may be required. Finally, the features

of interest are not pre-determined, and thus cannot be

hard-wired into a test maintenance tool. Successful

maintenance of the test suite depends on being able to

identify occurrences of any feature combinations that

come to be considered important.

This paper describes a program analysis tool, PAT,

which has been developed for the ACVC Maintenance

Organization (AMO) as an aid in the evaluation and

maintenance of the Ada compiler validation suite. The

purpose of the tool is to determine which of a set of spec-

ified Ada features are present in a given Ada pr0gra.m.

The relevant Ada language features are specified by

writing an Ada-like program fragment exhibiting these

features. This approach allows arbitrary combinations

of features to be easily expressed.

2 Compiler Testing and Valida-

tion

The ACVC is a large-scale example of specifica.tion-

ba,sed testing. The tests in the ACVC are constructed

following a careful but informa. analysis (described in

the Implementers’ Guide [l]) that lists semantic intera.c-

tions among features of the language, and proposes tests

for each of these interactions. (For example: test that

137

http://crossmark.crossref.org/dialog/?doi=10.1145%2F112630.112645&domain=pdf&date_stamp=1991-04-01

Ada Letters, Spring 1991 Volume XI, Number 3

lexicographic comparisons on arrays of boolean types

work correctly.) In spite off the care with which the IG

was drawn, it is still common for Ada users to find unex-

pected interactions among language features that cause

validated compilers to fail. Conversely, each ACVC

test contains combinations of features that are not

necessarily part of any stated test objective, but that

contribute to the general usefulness of the test suite.

These combinations of features cannot be described by

a context-free grammar, because they invariably involve

static and dynamic semantic properties of the program

such as types and subtypes. Furthermore, there is no

way to draw an a priori list of feature interactions: with

x 400 primary (syntactic) features in Ada, there are

G4 x 10” third-order interactions that are potentially

interesting. Finally, features interact when they stand

in specific syntactic relation to each other: generics

interact with a fixed-point-type if, for example, a generic

unit wit,h a private type is instantia.ted with a fixed-

point-type. (It is of no interest if the generic unit and

the fixed point type appear in different contexts in a

program). This indicates that the queries to ACVC

tests must be expressed as much as possible in Ada

itself. These considerations have led to the following

design.

3 Overview of the PAT Tool

The following is a typical query that PAT must be able

to answer: “Find all tests t,hat, use arrays of fixed-

point typ’es”. It is easy to see that conventional syntax

analysis is insufficient to answer such a query: the fixed

type T a.ppearing in the declaration: “type AF is

array(min..max) of T;” may itself be declared in

a separate compilation unit, so that textual, context-

free retrieval is unable to recognize instances of the

query. As a consequence, PAT operates not on source

text, but on the semantically analyzed intermediate

representation of the test program. Most useful queries

to PAT have the same form: they involve combina.tions

of statement forms and type classes (“... functions

returning, unconstrained records”, “. . generic lI&Cli-

ages with nested instances of generic functions”, “...

discriminated records containing two dynamic array

components”, etc.)

The an.alysis tool is built upon the NYU Ada/Ed

interpreter, which is written in SETL, a high-level lan-

guage based on set theory [4]. Ada/Ed was the first Ada

compiler validated by the ACVC (in April 1983) and

since then has served informally as an executable model

of the Ada language. Because it is written in SETL, and

it is an interpreter, the intermediate representation of

source programs is fairly easily extracted and modified.

When given both an Ada test program and a. I?AT

program (a “pattern”), the tool determines whether or

not the feature combinations specified by the pattern

occur within the test program, by the following sequence

of steps:

1. Both the PAT pattern and the Ada program a.re

compiled by a modified Ada/Ed into their inter-

mediate code forms. In the case of the legal Ada.

program, this intermediate form also includes the

program symbol table.

2. To answer the basic query as to feature occurrence,

a pattern matching routine is invoked on these

two intermediate representations. The comparison

is done by a set of backtra.cking tree matching

routines, which match the intermediate (tree) forms

of the pattern and the test program. These routines

access the program’s symbol table and thereby

allow for matching of sema.ntic features, not simply

syntactic ones. Both the patterns and the test

programs can of course be pre-compiled, resulting

in faster matching at the cost of greater storage

requirements for the intermediate forms.

The following is a short example PAT specification

to demonstrate the overall approach.

138

Ada Letters, Spring 1991 Volume XI, Number 3

Example 1:
procedure main is

type Ret (D : pat-integer-type := . . .) is
record

. . .
case D is

. . .
end case;

end record;
. . .

begin
. . .

end;

This pattern specifies a “procedure containing a record

type with a variant part, and a discriminant of some

integer type with a a default initialization”. (The

description illustrates the difficulty of specifying the

relationships among language features purely textually.)

We chose to keep the PAT input language flexible,

requiring no object or type declarations, for example,

so that the user (a member of the ACVC team, or a

compiler writer preparing for validation) could simply

write program “fragments” to specify the features of

interest. Whatever information is in the pattern is used

as a template for matching against programs, but in

most cases not enough information will be given to do a

full semantic analysis or type resolution on the patterns.

For this reason, we cannot produce a fully annotated

syntax tree from the patterns and match these against

comparably annotated Ada trees. For example, we

cannot distinguish between procedure calls and entry

ca.lls in patterns, since neither need be declared before

use. Instead, we translate any such ‘call’ node into a

tree form that will match either kind of ca.11 in a test

program. Other PAT constructs are translated into

various “wild-cards”: tree forms that either match a

number of different Ada subtrees, or that affect the

pattern matching process in some particular manner.

The example above demonstrates the three main

constructs of the PAT input language (in addition to

normal Ada syntax): PAT keywords, pattern variables,

and ellipses. Each of these is now briefly described.

4

b)

c)

The word patinteger-type is a PAT keyword -

it represents the entire class of legal Ada integer

types, and will match an occurrence of any such

type. This allows the user to specify this semantic

feature (integer type definition) without having to

overspecify it by giving a particular syntactic repre-

sentation. Thus INTEGER (the predefined type),

a subtype of integer, or any (sub) type derived from

INTEGER will match pa,t-integer-type.

Identifiers in the patterns are treated as pattern

variables during the matching process. That is,

once they are matched against a corresponding

identifier in the Ada test program being matched,

they are then bound to that identifier, and cannot

later match a different identifier. This allows the

user to specify relationships between individual fea

tures in the pattern. For example, the relationships

between features in the above pattern are indica.ted

by the identifiers connecting them. This results

in the natural semantics one would expect of the

patterns (based on usual Ada usage), with a few

minor differences.

Ellipses (“...“) indicate don’t-care situations, i.e.

they specify that this pattern should match a test

program even if that program has some additional

items, which are thus considered irrelevant with

respect to this pattern. In this example, there a.re

ellipses to indicate possible additional declarations,

statements, record components, and variant record

components. The ellipse is also used here to indi-

cate that the particular value of the discriminant

default initialization is irrelevant. These ellipses

are especially important in minimizing the amount

of detail that the PAT writer must, produce. It is

crucial to be able to describe the particular features

deemed important, and have the tool find instances

of these features within any test program. The

ellipses allow us to indicate this a.rbitrariness of the

wider context in a natural manner.

139

The PAT input language is described in more

detail in the next section. Section 5 describes a

database system that has been built around PAT. The

function of the database system interface, in addition

to storing and managing the information extracted by

the analysis tool, is to increase the efficiency of tool use

by identifying unmatchable program/pattern pairs at a

preprocessing stage.

4 The PAT Input Language

4.1 PAT Keywords

In most cases we are interested in finding an instance of

a class of features, rather than in any specific feature.

To specify this in a pattern program we use PAT

keywords. During the tree matching process, these

keywords are not matched lit,erally against test tree

items, but instead, each keyword triggers an associated

subroutine to determine whether or not the test tree

item is an instance of the class denoted by the keyword.

For example, the pattern tree item might be a PAT

keyword such as PAT-FLOATING-POINT-TYPE; the

corresponding subroutine will do a symbol table lookup

on the test tree item to see if it corresponds to some

floating type. In most cases, the keyword denotes a type

class, and the procedure simply checks in the symbol

table that the corresponding identifier in the test tree

does belong to a type in that class.

These type keywords are used as parts of dec-

larations in PAT patterns, for example, as a type

mark. Another group of keywords function as complete

declarative items, in order to specify occurrences of rep-

resentation clauses. The next two subsections describe

each of these kinds of keywords. All PAT keywords

begin with “@-“, in order to clearly identify them, and

avoid the inadvertent use of these keywords for regular

identifier names.

4.1.1 Type Keywords

The following group of identifiers are treated as

type keywords by the PAT system.

0 pat-any-type 0 pat-numeric-type

0 pat-integer-type 0 pat-real-type

0 pat-floating-point-type l pat-fixed-point-type

0 pat-access-type 0 pat-enumeration-type

0 pat-scalar-type l pat-discrete-type

l pat-record-type 0 pat-private-type

0 pat-array-type l pat-constrainedarray-type

l pat-unconstrained-array-type 0 pat-string-type

a pat-task-type

The type keyword PAT-ANY-TYPE is a don’t-care

keyword, it will match any type.

PAT Type keywords can be used in place of either

subtype indications, type definitions, or variable names.

We next describe each of these uses.

Subtype Indications: All of the type keywords can

be used as subtype indications. During parsing, they are

simply identifiers: it is only during the tree matching

process that their unique meanings take effect. For ex-

ample, they can be used as in the following decla.rations:

Obj : PAT-REAL-TYPE;

or:

subtype num-type is PAT-NUMERIC-TYPE;

Declarations that include such keywords may involve ex-

ternally defined types and names as well as those defined

locally. For exa.mple, in a. test progra.m that matched the

above PAT fragment, the keyword PAT-REAL-TYPE

might match against a type defined in another unit.

Type Definitions: These keywords can also be used

as type definitions. This allows us declare a certain bind

of type, without specifying the details of t,he type. For

example, to declare an unconstrained array type, we

could use:

type A is array (pat-any-type range <>)

of pat-any-type.

However, even this generalized declaration specifies the

number of indices. Instead, we can just use a type

keyword:

type A is pat-unconstrained-array-type.

Ada Letters, Spring 1991 Volume XI, Number 3

140

This will match a declaration of any kind of uncon-

strained array type.

Variable Names: We can also just use the type

keyword itself to constrain the matching in a particular

place, rather than declaring a variable or type name

using the keywords. In such cases, we can use PAT

type keywords in place of variable names. For example,

the pattern statement

“PAT-INTEGER-TYPE := . ..”

is constrained to only match a test program statement

in which the left hand side is of some integer type.

This is a short-cut to declaring a variable of type

PAT-INTEGER-TYPE, and then using this variable

na.me on the left hand side.

4.1.2 Representation Clause Keywords

Another group of keywords can be used to denote

representation clauses:

0 pat-rep-clause

l pat-length-clause

l pat-size-clause

0 pat-storage-clause

0 pat-access-storage-clause

l pat-task-storage-clause

0 pat-small-clause

0 pat-enum-clause

l pat-record-rep-clause

Each of these can be used as a complete declar-

ative item, and as such will match any representation

clause in the test program (of the corresponding class.)

Another way to specify representation clauses within

test programs is to use pattern variables and regular

representation clause syntax: as in: “for T’size use . ..“.

Or, to specify a representation clause involving a certain

class of type, one can use a type keyword in place of the

variable name, as in: “for pat-floating-point-type’size

use . ..“.

Ada Letters, Spring 1991 Volume XI, Number 3

4.2 Pattern Variables

Pattern variables allow the binding of several occur-

rences to the (name of) the same entity. An identifier

in the pattern program that is not a keyword is treated

as a pattern variable. This means that all occurrences

of such an item are taken to refer to exactly one item in

the test tree. During the pattern matching procedure,

the first occurrence of a pattern variable, say X, in the

features pattern will be bound to the na.me a.ppearing

at the matching position in the test tree. Subsequent

occurrences of X in the pattern will match successfully

only against occurrences of t,he same name. This allows

us to specify a relationship between different fra.gments

of a pattern program, such as compatibility between

the declaration and the subsequent use of a certain

construct. For example, given the previous pattern

declaration:

“type Arr is pat-unconstrained-array-type”,

we can use A in a later declaration of a procedure with

an unconstrained array parameter, as in the following

pattern:

Example 2:
procedure main is

. . .
type Arr is pat-unconstrained-a.rray-type;
procedure P (C : Arr);

begin
. . .

end;

Note that this example will only match a

program with an explicitly declared unconstrained

array type. Alternatively, the type keyword

pat-unconstrained-array-type itself could be used as

a formal parameter type mark (omitting the type

declaration): the parameter would then also match Ada.

predefined types such a.s STRING.

The following is an example where pattern variables

are necessary to specify the feature combination of

interest: a declaration of a recursive record type, with

a, component of type a,ccess to tha,t sa.me record type:

141

Ada Letters, Spring 1991 Volume XI, Number 3

Example 3:
procedure main is

type R;
type ptr is access R;
type R is

record
. . .
next : ptr;

end record;
. . .

begin
. . .

end;

Note that, in contrast to such pattern variables, when

keywords are matched to items in a test program, no

binding is made between the keyword and the item.

Thus we may have several occurrences of the same

keyword in one pattern, each of which may match to

a different item in the test program.

Multiple references to the same pattern variable

may occur in widely separated parts of the pattern

progra.ms. In fact, we can use these pattern variables

to express relationships between different compilation

units. For instance, one compilation unit may contain a

decla.ra.tion of a certain kind of data item, and another

compilation unit might then reference this item.

A special form involving pattern variables is used

to specify references to data objects. It is often useful

to know t’nat a particular data item is referenced

somewhere within a certain region. The declaration

of the it,em may occur in the same region as this

reference, or in an outer scope. In PAT, the particular

procedure reference-to (so,me-name) is used to specify

that the data-object some-name is mentioned in the

corresponding program fragment. When such a state-

ment is encountered during the match procedure, the

corresponding test tree is searched for any reference to

the na.me to which some-name is bound. If some-name

has no binding, then the match fails. Such a data

reference may occur in either a top-level or a nested

statement. The actual argument in the procedure ca.11

can be either a simple name or a selected component.

The matching works correctly when the selected com-

ponent is an object in a package named in a with clause,

since the bindings from one compilation unit are carried

along through matchings of subsequent units.

4.3 The Ellipse

The ellipse construct (“...“) can be used to denote

“don’t-care” items. It can be used in place of a.

declaration, a. statement, or several other syntactic con-

structs. Most of these constructs are ones that normally

occur in lists or sequences, such as basic declarations,

stat#ements, record components, et(c. Including a.n ellipse

in such a list is useful as otherwise we would have to

specify every single item in the list in order to match

a test program. Instead, we want to indicate only

certain relevant items, a.nd have the matcher ignore

any additional items in the test program. A “...” in

such a sequence indicates that the list should be viewed

as a sub-list to be matched against a list in the test

program. (Additional ellipses within the same sequence

are simply ignored.) This is particularly useful within

declarative parts and sequences of statements, where we

would rarely be looking for an exact item-by-item match

between a pattern and program. Thus a typica. pattern

for a compilation unit is of the form:

procedure foo is
some declarative items

. . .
begin

some statements

..,
end;

Other uses of the ellipse occur when Ada language

feature combinations are being specified. The ellipse can

also be used to indicate don’t-care items in more narrow

contexts than just declarative parts or sequences of

statements. The following is a list of all the grammatica.1

const,ructs which may be replaced by an ellipse.

l component-declaration (LRM 3.7)

l discriminant-specification (3.7.1)

142

Ada Letters, Spring 1991 Volume XI, Number 3

0 variant (3.7.3)

l basic-declarative-item (3.9)

0 name (4.1)

0 primary (4.4)

0 case-statement-alternative (5.4)

l simple-statement (6.1)

l entry-declaration (9.5)

0 select-alternative (9.7.1)

l exception-handler (11.2)

When an ellipse occurs within a list of any of these

items, such as a list of record components, it stands for

any number of missing items in the list, i.e., the list is

in general an “incomplete” list. The list is also taken

to be unordered, which is a useful assumption since it

is unlikely that users could specify the exact ordering

within a list of items that they want to find.

Some of the constructs above occur in contexts

where the list may be empty - for example, a

declarative section in a subprogram may contain no

declarative items at all. In such cases, an ellipse alone

is considered to specify “zero or more” such items. For

other constructs, such as discriminant specifications or

variants, the list cannot be empty, given the surrounding

context indicating that such a list occurs at all. For

exa.mple, given the following record description:

type Ret (. . .) is
record

. . .
end record;

a matching test program must have at least one record

discriminant, as otherwise the parentheses of the record

discriminant should have been omitted. This is also true

for case statement alternatives, since a case statement

cannot have an empty list of alternatives. In each

case, the context of a single ellipse should make it clear

whether it is specifying “zero or more” or “one or more”

items.

4.4 Matching within Nested Scopes

As described above, an ellipse in a list of items indicates

that this list pattern can match a test list with a.ddi-

tional don’t-care items. However, all the items specified

must occur in the same scope, that which is indicated

in the pattern. It is also possible to indicate that one or

more of the items in the list can match aga.inst items (in

the test program) that occur in a nested scope to tha.t

indicated in the pattern. This can be specified for a

declarative part, with inner scopes such as procedures,

packages, etc., or for a sequence of statemems, with

nested block statements. The matching process will

search recursively for the specified items within any such

nested scopes.

Such a group of items is specified by enclosing

them within curly brackets (“{ “ and “}“). Each item

within the curly brackets can match an item in a

difleren2 nested scope. An occurrence of this construct

is considered to be followed by an implicit occurrence of

an ellipse in the list as well.

This construct allows us to specify a.nd match

language features without knowing in advance whether

they will occur on the top level of the test program,

or within some nested subprogram, package, or block

statement. It is particularly useful within sta.tement

sequences, since many statements in ACVC tests occur

in nested block statements within the main statement

section. The following example illustrates the use of the

nested scope construct:

Example 4:
procedure foo is

E : pat-enumeration-type;
int : pat-integer-type;
. . .

begin
{ E:=...;

int :=

1
end;

This specifies a procedure with a declaration of two

variables: one of an enumeration type, the other an

143

Ada Letters, Spring 1991. Volume XI, Number 3

integer type. And somewhere in the statement section,

an assignment to each of these variables. However,

enclosing the statement section of the procedure within

brackets indicates that these assignment statements

may occur nested anywhere within the statement sec-

tion, perhaps in a block statement. Without the

bracketing, the assignment statement would have to

occur on the top level of the statements section. This

pattern will match either of the following two Ada

programs (among others):

Example 5:
procedure foo is

type A-Type is array(l..lO) of float;

Arr : A-Type;
type small-enum is (a, b, c, d, e);
small-var : small-enum;
I : integer;

begin
Arr(3) := 1.0;
small-va.r := a;
I := 1;

end;

Example 6:
procedure foo is

type A-Type is array(l..lO) of float;
.Arr : A-Type;
.type small-enum is (a, b, c, d, e);
small-var : small-enum;
If : integer;

begin

begin
begin

small-var := a;
end;
I := 1;

end;
end;

In the first program, both of the assignment state-

ments occur in the main sequence of statements in the

procedure. In the second program, the assignment

statements each occur in two different nested scopes

within the sequence of statements. This illustrates that

the items enclosed in brackets can each match test items

found in different inner scopes.

4.4.1 Bracketed Compilation Units

The above use of the bracketing construct allows

for the specification of undetermined scoping ‘1~‘iUGn a

unit, but the outermost scope is still clearly specified.

However, in :many cases we may not care at all about

the outer context within which a particular construct

is located. In such cases, we can simply specify a

library unit entirely enclosed within curly bra.ckets.

This indicates that this library unit may be matched

in the test program by a program unit found at a.7~~

scope level, either at the top level, or nested.

As an ex.ample, this pattern will match any corre-

sponding Ada procedure, nested at any level within a.

program:

Example 7~
{ procedure foo is

A : pat-integer-type;
B : pat-integer-type;

. . .
begin

A :=

end ;

II

4.5 The PAT Block Construct

The above new constructs allow for the designation

of complete library units (and a few other declarative

items) without specifying the outer scope. But ‘we

also may want to specify just a list of declara.tions,

or a list of statements, without specifying even what

kind of unit they may occur in. For this reason, we

have added a new production to the Ada grammar, a

pat-block. Syntactically, this construct is simi1a.r to a

block statement enclosed in brackets:

144

[DECLARE
declarative-part]

BEGIN
sequence-ofstatements
[EXCEPTION

exception-handler
END {exception-handler}]

,

The semantics of this construct are such that

we can specify a list of declarations, or statements,

independently of any surrounding context. Or, we can

specify a pairing of declarations and statements, as

within a regular block statement. Specifically, the rules

are:

1. If the statements section consists of only a “...“,

then we search only for items occurring in the

declarations section.

2. If the declarations section consists of only a ‘I...”

(or is entirely empty), then we search only for items

occurring in the statements section.

3. If both sections contain anything other than “...“,

then we search for a scope with this combina.tion

of declarations and statements, for example, in a

procedure, package body, or block statement.

When there are non-ellipse items in either the declara-

tions or statements sections, we assume an implicit “...”

in each section as well.

5 The Ada Features Identifica-
t ion System

The Program Analysis tool has been developed as part

of an Ada Features Identification System (AFIS) that

also includes facilities for identifying, recording, and

retrieving information about the individual language

features found in each ACVC test. A set of 295 primary

features has been defined: a modified Ada/Ed front-end

reports which of these features are present in any given

Ada program or PAT pattern. A database system is

Ada Letters, Spring 1991 Volume XI, Number 3

under development to manage the storage and retrieva.1

of this data.

The main purpose of identifying primary langua.ge

features is to pare down, or “filter” the set of candi-

date Ada programs that might match a given pa.ttern,

and thus make most efficient use of the PAT pattern

matching tool. For example, the pattern in exa.mple 1

contains the following primary features:

l component-declaration

l default-expression:discriminant

l discriminant-specification

0 name

l procedure-specification

l record-type-definition

l subprogram-body

l type-declaration:full

0 variant-part

We would not attempt to match this pattern against

any Ada programs that do not contain at least all

of these features (For example, a program that has

no discriminant specification.) By first querying the

primary features database we can avoid attempting such

futile matches.

Note that the primary features occurring in a

pr0gra.m or pattern are identified as a se-t of features, in

no particular order or context within the unit. Referring

back to the example described in the text at the end

of section 2, the database entry would contain the

information that the given program contains a generic

unit as well as a fixed point type; the full PAT tool

must be used to determine whether these two occur in

the specific syntactic relation of interest.

The list of primary features was derived primarily

from terms used in the Ada LRM, pa.rticularly the

index and syntax summary (appendix E) of the LRM.

In most cases, the features a.re eit,her nonterminals

of the syntax summary, or major terms of the index

(those printed in boldface), or both. In some ca.ses,

one feature is a general or basic term, a.nd a. few

other features are special cases of that general fea-

145

Ada Letters, Spring 1991 Volume XI, Number 3

ture. For example, the fizature “generic-formal-type”

has the subcases “generic-formal-type:discrete-type” ,

“generic-formal-type:integer-type”, etc. Essentially, we

have taken some very sim.ple combinations of features

and considered them as atomic primary features, for

the purpose of improving the efficiency of the filtering

process. Clearly, the distinction between primary fea-

tures and feature combinat,ions is a matter of definition.

However, the goal of the primary features identification

system was to allow identification of features as a simple

by-product of (instrumented) parsing and static seman-

tic analysis, so that a database of feature occurrences

could be built for the entire ACVC suite by a process

no more difficult than a validation run. We have

therefore included primary features that are detailed

enough to provide effective filtering, but that are easily

identifiab1.e from local, mostly syntactic information.

More complicated combinations of features require the

use of the PAT tool.

Figure 1 illustrates the various components of

AFIS: the Features Coverage Facility, the database of

primary features (PRIM) and its interface, the PAT tool

itself, and the dat,abase MAPS, which holds information

a.s to previous pattern/ACVC tests matches. The

a,rrows in the figure indicate the actions taken when

a new feature combination needs to matched against

the ACVC suite. First, the PRIM database is queried

for potentially matching tests, based on the primary

features extracted from the pattern. The resulting

subset of ACVC tests is then matched against the

pattern, using PAT. If any matches are found, that

test-name/pattern-name pair is stored in MAPS.

In addition to its use as a filter, the primary

features information also provides a much more fine-

grained indexing into the suite than that afforded by

the ACVC naming conventions. The primary features

database interface can easily answer such queries as:

“list all the ACVC tests that contain generic formal

objects with default expressions”, or “allocators with

qualified expressions”.

Acknowledgements. We would like to thank Steve

Wilson, AVF/AMO Technica. Director, for many useful

discussions about the AFIS project, particularly with

respect to t.he design of the Program i\nalysis Tool.

References

PI

PI

[31

141

United States Department of Defense. IlTlplC-

menters’ Guide - Draft, Version Gl. United States

Department of Defense, 1982.

United States Department of Defense. Refer-

ence Manual for the Ada Programmang Language.

Springer-Verlag, 1983.

Department of Defense Langua.ge Control Fa.cility.

Ada language revision initiated. Language Covtrol

Facility Ada-Jovial Newsletter, 10(4), 19&S.

J.T. Schwartz, R.B.K. Dewa.r, E. Dubinsky, and E.

Schonberg. Programming With Sets: A71. Introduc-

tion to SETL. Springer-Verlag, 1986.

Finding matching tests

Figure 1

146

