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1 Introduction 

The Ada Compiler Validation Capability (ACVC) is 

used by the Department of Defense to test Ada com- 

pilers for adherence to the language standard. The 

maintenance of this test suite, which currently consists 

of over 3700 tests (over 190,000 lines of Ada source) in 

more than 4000 files, is a sizable software engineering 

project. As ambiguities in the specification (the Ada 

language definition) are resolved, the test suite must 

be updated and modified. Such modification involves 

identifying whether (and where) the language features 

under consideration occur in the test suite, so that 

such occurrences can be changed, deleted, or possibly 

added. The effort involved in such tasks is expected 

to increase as a result of the Ada9x project, which 

is currently soliciting suggestions for changes to the 

language definition 131. 

Although the test suite is indexed by section 

numbers of the Ada Reference Manual [2], identifying 

where various features occur within the suite is not 

st#ra.ightforward. First, the itsems of int,erest are often 

feature combinations rather than solitary features, and 
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as such may be found in many different tests, even ones 

which are indexed by a manual section not pertaining 

to these features at all. Second, the features of interest 

often involve issues of semantic contexts that may not 

be identifiable from just a textual or syntactic analysis 

of the test programs. Instead, a full semantic analysis 

of the program may be required. Finally, the features 

of interest are not pre-determined, and thus cannot be 

hard-wired into a test maintenance tool. Successful 

maintenance of the test suite depends on being able to 

identify occurrences of any feature combinations that 

come to be considered important. 

This paper describes a program analysis tool, PAT, 

which has been developed for the ACVC Maintenance 

Organization (AMO) as an aid in the evaluation and 

maintenance of the Ada compiler validation suite. The 

purpose of the tool is to determine which of a set of spec- 

ified Ada features are present in a given Ada pr0gra.m. 

The relevant Ada language features are specified by 

writing an Ada-like program fragment exhibiting these 

features. This approach allows arbitrary combinations 

of features to be easily expressed. 

2 Compiler Testing and Valida- 

tion 

The ACVC is a large-scale example of specifica.tion- 

ba,sed testing. The tests in the ACVC are constructed 

following a careful but informa. analysis (described in 

the Implementers’ Guide [l]) that lists semantic intera.c- 

tions among features of the language, and proposes tests 

for each of these interactions. (For example: test that 
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lexicographic comparisons on arrays of boolean types 

work correctly.) In spite off the care with which the IG 

was drawn, it is still common for Ada users to find unex- 

pected interactions among language features that cause 

validated compilers to fail. Conversely, each ACVC 

test contains combinations of features that are not 

necessarily part of any stated test objective, but that 

contribute to the general usefulness of the test suite. 

These combinations of features cannot be described by 

a context-free grammar, because they invariably involve 

static and dynamic semantic properties of the program 

such as types and subtypes. Furthermore, there is no 

way to draw an a priori list of feature interactions: with 

x 400 primary (syntactic) features in Ada, there are 

G4 x 10” third-order interactions that are potentially 

interesting. Finally, features interact when they stand 

in specific syntactic relation to each other: generics 

interact with a fixed-point-type if, for example, a generic 

unit wit,h a private type is instantia.ted with a fixed- 

point-type. (It is of no interest if the generic unit and 

the fixed point type appear in different contexts in a 

program). This indicates that the queries to ACVC 

tests must be expressed as much as possible in Ada 

itself. These considerations have led to the following 

design. 

3 Overview of the PAT Tool 

The following is a typical query that PAT must be able 

to answer: “Find all tests t,hat, use arrays of fixed- 

point typ’es”. It is easy to see that conventional syntax 

analysis is insufficient to answer such a query: the fixed 

type T a.ppearing in the declaration: “type AF is 

array(min..max) of T;” may itself be declared in 

a separate compilation unit, so that textual, context- 

free retrieval is unable to recognize instances of the 

query. As a consequence, PAT operates not on source 

text, but on the semantically analyzed intermediate 

representation of the test program. Most useful queries 

to PAT have the same form: they involve combina.tions 

of statement forms and type classes (“... functions 

returning, unconstrained records”, “. . generic lI&Cli- 

ages with nested instances of generic functions”, “... 

discriminated records containing two dynamic array 

components”, etc.) 

The an.alysis tool is built upon the NYU Ada/Ed 

interpreter, which is written in SETL, a high-level lan- 

guage based on set theory [4]. Ada/Ed was the first Ada 

compiler validated by the ACVC (in April 1983) and 

since then has served informally as an executable model 

of the Ada language. Because it is written in SETL, and 

it is an interpreter, the intermediate representation of 

source programs is fairly easily extracted and modified. 

When given both an Ada test program and a. I?AT 

program (a “pattern”), the tool determines whether or 

not the feature combinations specified by the pattern 

occur within the test program, by the following sequence 

of steps: 

1. Both the PAT pattern and the Ada program a.re 

compiled by a modified Ada/Ed into their inter- 

mediate code forms. In the case of the legal Ada. 

program, this intermediate form also includes the 

program symbol table. 

2. To answer the basic query as to feature occurrence, 

a pattern matching routine is invoked on these 

two intermediate representations. The comparison 

is done by a set of backtra.cking tree matching 

routines, which match the intermediate (tree) forms 

of the pattern and the test program. These routines 

access the program’s symbol table and thereby 

allow for matching of sema.ntic features, not simply 

syntactic ones. Both the patterns and the test 

programs can of course be pre-compiled, resulting 

in faster matching at the cost of greater storage 

requirements for the intermediate forms. 

The following is a short example PAT specification 

to demonstrate the overall approach. 
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Example 1: 
procedure main is 

type Ret ( D : pat-integer-type := . . .) is 
record 

. . . 
case D is 

. . . 
end case; 

end record; 
. . . 

begin 
. . . 

end; 

This pattern specifies a “procedure containing a record 

type with a variant part, and a discriminant of some 

integer type with a a default initialization”. (The 

description illustrates the difficulty of specifying the 

relationships among language features purely textually.) 

We chose to keep the PAT input language flexible, 

requiring no object or type declarations, for example, 

so that the user (a member of the ACVC team, or a 

compiler writer preparing for validation) could simply 

write program “fragments” to specify the features of 

interest. Whatever information is in the pattern is used 

as a template for matching against programs, but in 

most cases not enough information will be given to do a 

full semantic analysis or type resolution on the patterns. 

For this reason, we cannot produce a fully annotated 

syntax tree from the patterns and match these against 

comparably annotated Ada trees. For example, we 

cannot distinguish between procedure calls and entry 

ca.lls in patterns, since neither need be declared before 

use. Instead, we translate any such ‘call’ node into a 

tree form that will match either kind of ca.11 in a test 

program. Other PAT constructs are translated into 

various “wild-cards”: tree forms that either match a 

number of different Ada subtrees, or that affect the 

pattern matching process in some particular manner. 

The example above demonstrates the three main 

constructs of the PAT input language (in addition to 

normal Ada syntax): PAT keywords, pattern variables, 

and ellipses. Each of these is now briefly described. 

4 

b) 

c) 

The word patinteger-type is a PAT keyword - 

it represents the entire class of legal Ada integer 

types, and will match an occurrence of any such 

type. This allows the user to specify this semantic 

feature (integer type definition) without having to 

overspecify it by giving a particular syntactic repre- 

sentation. Thus INTEGER (the predefined type), 

a subtype of integer, or any (sub) type derived from 

INTEGER will match pa,t-integer-type. 

Identifiers in the patterns are treated as pattern 

variables during the matching process. That is, 

once they are matched against a corresponding 

identifier in the Ada test program being matched, 

they are then bound to that identifier, and cannot 

later match a different identifier. This allows the 

user to specify relationships between individual fea 

tures in the pattern. For example, the relationships 

between features in the above pattern are indica.ted 

by the identifiers connecting them. This results 

in the natural semantics one would expect of the 

patterns (based on usual Ada usage), with a few 

minor differences. 

Ellipses (“...“) indicate don’t-care situations, i.e. 

they specify that this pattern should match a test 

program even if that program has some additional 

items, which are thus considered irrelevant with 

respect to this pattern. In this example, there a.re 

ellipses to indicate possible additional declarations, 

statements, record components, and variant record 

components. The ellipse is also used here to indi- 

cate that the particular value of the discriminant 

default initialization is irrelevant. These ellipses 

are especially important in minimizing the amount 

of detail that the PAT writer must, produce. It is 

crucial to be able to describe the particular features 

deemed important, and have the tool find instances 

of these features within any test program. The 

ellipses allow us to indicate this a.rbitrariness of the 

wider context in a natural manner. 
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The PAT input language is described in more 

detail in the next section. Section 5 describes a 

database system that has been built around PAT. The 

function of the database system interface, in addition 

to storing and managing the information extracted by 

the analysis tool, is to increase the efficiency of tool use 

by identifying unmatchable program/pattern pairs at a 

preprocessing stage. 

4 The PAT Input Language 

4.1 PAT Keywords 

In most cases we are interested in finding an instance of 

a class of features, rather than in any specific feature. 

To specify this in a pattern program we use PAT 

keywords. During the tree matching process, these 

keywords are not matched lit,erally against test tree 

items, but instead, each keyword triggers an associated 

subroutine to determine whether or not the test tree 

item is an instance of the class denoted by the keyword. 

For example, the pattern tree item might be a PAT 

keyword such as PAT-FLOATING-POINT-TYPE; the 

corresponding subroutine will do a symbol table lookup 

on the test tree item to see if it corresponds to some 

floating type. In most cases, the keyword denotes a type 

class, and the procedure simply checks in the symbol 

table that the corresponding identifier in the test tree 

does belong to a type in that class. 

These type keywords are used as parts of dec- 

larations in PAT patterns, for example, as a type 

mark. Another group of keywords function as complete 

declarative items, in order to specify occurrences of rep- 

resentation clauses. The next two subsections describe 

each of these kinds of keywords. All PAT keywords 

begin with “@-“, in order to clearly identify them, and 

avoid the inadvertent use of these keywords for regular 

identifier names. 

4.1.1 Type Keywords 

The following group of identifiers are treated as 

type keywords by the PAT system. 

0 pat-any-type 0 pat-numeric-type 

0 pat-integer-type 0 pat-real-type 

0 pat-floating-point-type l pat-fixed-point-type 

0 pat-access-type 0 pat-enumeration-type 

0 pat-scalar-type l pat-discrete-type 

l pat-record-type 0 pat-private-type 

0 pat-array-type l pat-constrainedarray-type 

l pat-unconstrained-array-type 0 pat-string-type 

a pat-task-type 

The type keyword PAT-ANY-TYPE is a don’t-care 

keyword, it will match any type. 

PAT Type keywords can be used in place of either 

subtype indications, type definitions, or variable names. 

We next describe each of these uses. 

Subtype Indications: All of the type keywords can 

be used as subtype indications. During parsing, they are 

simply identifiers: it is only during the tree matching 

process that their unique meanings take effect. For ex- 

ample, they can be used as in the following decla.rations: 

Obj : PAT-REAL-TYPE; 

or: 

subtype num-type is PAT-NUMERIC-TYPE; 

Declarations that include such keywords may involve ex- 

ternally defined types and names as well as those defined 

locally. For exa.mple, in a. test progra.m that matched the 

above PAT fragment, the keyword PAT-REAL-TYPE 

might match against a type defined in another unit. 

Type Definitions: These keywords can also be used 

as type definitions. This allows us declare a certain bind 

of type, without specifying the details of t,he type. For 

example, to declare an unconstrained array type, we 

could use: 

type A is array (pat-any-type range <>) 

of pat-any-type. 

However, even this generalized declaration specifies the 

number of indices. Instead, we can just use a type 

keyword: 

type A is pat-unconstrained-array-type. 
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This will match a declaration of any kind of uncon- 

strained array type. 

Variable Names: We can also just use the type 

keyword itself to constrain the matching in a particular 

place, rather than declaring a variable or type name 

using the keywords. In such cases, we can use PAT 

type keywords in place of variable names. For example, 

the pattern statement 

“PAT-INTEGER-TYPE := . ..” 

is constrained to only match a test program statement 

in which the left hand side is of some integer type. 

This is a short-cut to declaring a variable of type 

PAT-INTEGER-TYPE, and then using this variable 

na.me on the left hand side. 

4.1.2 Representation Clause Keywords 

Another group of keywords can be used to denote 

representation clauses: 

0 pat-rep-clause 

l pat-length-clause 

l pat-size-clause 

0 pat-storage-clause 

0 pat-access-storage-clause 

l pat-task-storage-clause 

0 pat-small-clause 

0 pat-enum-clause 

l pat-record-rep-clause 

Each of these can be used as a complete declar- 

ative item, and as such will match any representation 

clause in the test program (of the corresponding class.) 

Another way to specify representation clauses within 

test programs is to use pattern variables and regular 

representation clause syntax: as in: “for T’size use . ..“. 

Or, to specify a representation clause involving a certain 

class of type, one can use a type keyword in place of the 

variable name, as in: “for pat-floating-point-type’size 

use . ..“. 
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4.2 Pattern Variables 

Pattern variables allow the binding of several occur- 

rences to the (name of) the same entity. An identifier 

in the pattern program that is not a keyword is treated 

as a pattern variable. This means that all occurrences 

of such an item are taken to refer to exactly one item in 

the test tree. During the pattern matching procedure, 

the first occurrence of a pattern variable, say X, in the 

features pattern will be bound to the na.me a.ppearing 

at the matching position in the test tree. Subsequent 

occurrences of X in the pattern will match successfully 

only against occurrences of t,he same name. This allows 

us to specify a relationship between different fra.gments 

of a pattern program, such as compatibility between 

the declaration and the subsequent use of a certain 

construct. For example, given the previous pattern 

declaration: 

“type Arr is pat-unconstrained-array-type”, 

we can use A in a later declaration of a procedure with 

an unconstrained array parameter, as in the following 

pattern: 

Example 2: 
procedure main is 

. . . 
type Arr is pat-unconstrained-a.rray-type; 
procedure P ( C : Arr ); 

begin 
. . . 

end; 

Note that this example will only match a 

program with an explicitly declared unconstrained 

array type. Alternatively, the type keyword 

pat-unconstrained-array-type itself could be used as 

a formal parameter type mark (omitting the type 

declaration): the parameter would then also match Ada. 

predefined types such a.s STRING. 

The following is an example where pattern variables 

are necessary to specify the feature combination of 

interest: a declaration of a recursive record type, with 

a, component of type a,ccess to tha,t sa.me record type: 
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Example 3: 
procedure main is 

type R; 
type ptr is access R; 
type R is 

record 
. . . 
next : ptr; 

end record; 
. . . 

begin 
. . . 

end; 

Note that, in contrast to such pattern variables, when 

keywords are matched to items in a test program, no 

binding is made between the keyword and the item. 

Thus we may have several occurrences of the same 

keyword in one pattern, each of which may match to 

a different item in the test program. 

Multiple references to the same pattern variable 

may occur in widely separated parts of the pattern 

progra.ms. In fact, we can use these pattern variables 

to express relationships between different compilation 

units. For instance, one compilation unit may contain a 

decla.ra.tion of a certain kind of data item, and another 

compilation unit might then reference this item. 

A special form involving pattern variables is used 

to specify references to data objects. It is often useful 

to know t’nat a particular data item is referenced 

somewhere within a certain region. The declaration 

of the it,em may occur in the same region as this 

reference, or in an outer scope. In PAT, the particular 

procedure reference-to (so,me-name) is used to specify 

that the data-object some-name is mentioned in the 

corresponding program fragment. When such a state- 

ment is encountered during the match procedure, the 

corresponding test tree is searched for any reference to 

the na.me to which some-name is bound. If some-name 

has no binding, then the match fails. Such a data 

reference may occur in either a top-level or a nested 

statement. The actual argument in the procedure ca.11 

can be either a simple name or a selected component. 

The matching works correctly when the selected com- 

ponent is an object in a package named in a with clause, 

since the bindings from one compilation unit are carried 

along through matchings of subsequent units. 

4.3 The Ellipse 

The ellipse construct (“...“) can be used to denote 

“don’t-care” items. It can be used in place of a. 

declaration, a. statement, or several other syntactic con- 

structs. Most of these constructs are ones that normally 

occur in lists or sequences, such as basic declarations, 

stat#ements, record components, et(c. Including a.n ellipse 

in such a list is useful as otherwise we would have to 

specify every single item in the list in order to match 

a test program. Instead, we want to indicate only 

certain relevant items, a.nd have the matcher ignore 

any additional items in the test program. A “...” in 

such a sequence indicates that the list should be viewed 

as a sub-list to be matched against a list in the test 

program. (Additional ellipses within the same sequence 

are simply ignored.) This is particularly useful within 

declarative parts and sequences of statements, where we 

would rarely be looking for an exact item-by-item match 

between a pattern and program. Thus a typica. pattern 

for a compilation unit is of the form: 

procedure foo is 
some declarative items 

. . . 
begin 

some statements 

.., 
end; 

Other uses of the ellipse occur when Ada language 

feature combinations are being specified. The ellipse can 

also be used to indicate don’t-care items in more narrow 

contexts than just declarative parts or sequences of 

statements. The following is a list of all the grammatica.1 

const,ructs which may be replaced by an ellipse. 

l component-declaration (LRM 3.7) 

l discriminant-specification (3.7.1) 

142 



Ada Letters, Spring 1991 Volume XI, Number 3 

0 variant (3.7.3) 

l basic-declarative-item (3.9) 

0 name (4.1) 

0 primary (4.4) 

0 case-statement-alternative (5.4) 

l simple-statement (6.1) 

l entry-declaration (9.5) 

0 select-alternative (9.7.1) 

l exception-handler (11.2) 

When an ellipse occurs within a list of any of these 

items, such as a list of record components, it stands for 

any number of missing items in the list, i.e., the list is 

in general an “incomplete” list. The list is also taken 

to be unordered, which is a useful assumption since it 

is unlikely that users could specify the exact ordering 

within a list of items that they want to find. 

Some of the constructs above occur in contexts 

where the list may be empty - for example, a 

declarative section in a subprogram may contain no 

declarative items at all. In such cases, an ellipse alone 

is considered to specify “zero or more” such items. For 

other constructs, such as discriminant specifications or 

variants, the list cannot be empty, given the surrounding 

context indicating that such a list occurs at all. For 

exa.mple, given the following record description: 

type Ret (. . .) is 
record 

. . . 
end record; 

a matching test program must have at least one record 

discriminant, as otherwise the parentheses of the record 

discriminant should have been omitted. This is also true 

for case statement alternatives, since a case statement 

cannot have an empty list of alternatives. In each 

case, the context of a single ellipse should make it clear 

whether it is specifying “zero or more” or “one or more” 

items. 

4.4 Matching within Nested Scopes 

As described above, an ellipse in a list of items indicates 

that this list pattern can match a test list with a.ddi- 

tional don’t-care items. However, all the items specified 

must occur in the same scope, that which is indicated 

in the pattern. It is also possible to indicate that one or 

more of the items in the list can match aga.inst items (in 

the test program) that occur in a nested scope to tha.t 

indicated in the pattern. This can be specified for a 

declarative part, with inner scopes such as procedures, 

packages, etc., or for a sequence of statemems, with 

nested block statements. The matching process will 

search recursively for the specified items within any such 

nested scopes. 

Such a group of items is specified by enclosing 

them within curly brackets (“{ “ and “}“). Each item 

within the curly brackets can match an item in a 

difleren2 nested scope. An occurrence of this construct 

is considered to be followed by an implicit occurrence of 

an ellipse in the list as well. 

This construct allows us to specify a.nd match 

language features without knowing in advance whether 

they will occur on the top level of the test program, 

or within some nested subprogram, package, or block 

statement. It is particularly useful within sta.tement 

sequences, since many statements in ACVC tests occur 

in nested block statements within the main statement 

section. The following example illustrates the use of the 

nested scope construct: 

Example 4: 
procedure foo is 

E : pat-enumeration-type; 
int : pat-integer-type; 
. . . 

begin 
{ E:=...; 

int := . . . . 

1 
end; 

This specifies a procedure with a declaration of two 

variables: one of an enumeration type, the other an 

143 



Ada Letters, Spring 1991. Volume XI, Number 3 

integer type. And somewhere in the statement section, 

an assignment to each of these variables. However, 

enclosing the statement section of the procedure within 

brackets indicates that these assignment statements 

may occur nested anywhere within the statement sec- 

tion, perhaps in a block statement. Without the 

bracketing, the assignment statement would have to 

occur on the top level of the statements section. This 

pattern will match either of the following two Ada 

programs (among others): 

Example 5: 
procedure foo is 

type A-Type is array(l..lO) of float; 

Arr : A-Type; 
type small-enum is (a, b, c, d, e); 
small-var : small-enum; 
I : integer; 

begin 
Arr(3) := 1.0; 
small-va.r := a; 
I := 1; 

end; 

Example 6: 
procedure foo is 

type A-Type is array(l..lO) of float; 
.Arr : A-Type; 
.type small-enum is (a, b, c, d, e); 
small-var : small-enum; 
If : integer; 

begin 

begin 
begin 

small-var := a; 
end; 
I := 1; 

end; 
end; 

In the first program, both of the assignment state- 

ments occur in the main sequence of statements in the 

procedure. In the second program, the assignment 

statements each occur in two different nested scopes 

within the sequence of statements. This illustrates that 

the items enclosed in brackets can each match test items 

found in different inner scopes. 

4.4.1 Bracketed Compilation Units 

The above use of the bracketing construct allows 

for the specification of undetermined scoping ‘1~‘iUGn a 

unit, but the outermost scope is still clearly specified. 

However, in :many cases we may not care at all about 

the outer context within which a particular construct 

is located. In such cases, we can simply specify a 

library unit entirely enclosed within curly bra.ckets. 

This indicates that this library unit may be matched 

in the test program by a program unit found at a.7~~ 

scope level, either at the top level, or nested. 

As an ex.ample, this pattern will match any corre- 

sponding Ada procedure, nested at any level within a. 

program: 

Example 7~ 
{ procedure foo is 

A : pat-integer-type; 
B : pat-integer-type; 

. . . 
begin 

A := . . . . 

end ; 

II 

4.5 The PAT Block Construct 

The above new constructs allow for the designation 

of complete library units (and a few other declarative 

items) without specifying the outer scope. But ‘we 

also may want to specify just a list of declara.tions, 

or a list of statements, without specifying even what 

kind of unit they may occur in. For this reason, we 

have added a new production to the Ada grammar, a 

pat-block. Syntactically, this construct is simi1a.r to a 

block statement enclosed in brackets: 
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[ DECLARE 
declarative-part ] 

BEGIN 
sequence-ofstatements 
[EXCEPTION 

exception-handler 
END {exception-handler}] 

, 

The semantics of this construct are such that 

we can specify a list of declarations, or statements, 

independently of any surrounding context. Or, we can 

specify a pairing of declarations and statements, as 

within a regular block statement. Specifically, the rules 

are: 

1. If the statements section consists of only a “...“, 

then we search only for items occurring in the 

declarations section. 

2. If the declarations section consists of only a ‘I...” 

(or is entirely empty), then we search only for items 

occurring in the statements section. 

3. If both sections contain anything other than “...“, 

then we search for a scope with this combina.tion 

of declarations and statements, for example, in a 

procedure, package body, or block statement. 

When there are non-ellipse items in either the declara- 

tions or statements sections, we assume an implicit “...” 

in each section as well. 

5 The Ada Features Identifica- 
t ion System 

The Program Analysis tool has been developed as part 

of an Ada Features Identification System (AFIS) that 

also includes facilities for identifying, recording, and 

retrieving information about the individual language 

features found in each ACVC test. A set of 295 primary 

features has been defined: a modified Ada/Ed front-end 

reports which of these features are present in any given 

Ada program or PAT pattern. A database system is 
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under development to manage the storage and retrieva.1 

of this data. 

The main purpose of identifying primary langua.ge 

features is to pare down, or “filter” the set of candi- 

date Ada programs that might match a given pa.ttern, 

and thus make most efficient use of the PAT pattern 

matching tool. For example, the pattern in exa.mple 1 

contains the following primary features: 

l component-declaration 

l default-expression:discriminant 

l discriminant-specification 

0 name 

l procedure-specification 

l record-type-definition 

l subprogram-body 

l type-declaration:full 

0 variant-part 

We would not attempt to match this pattern against 

any Ada programs that do not contain at least all 

of these features (For example, a program that has 

no discriminant specification.) By first querying the 

primary features database we can avoid attempting such 

futile matches. 

Note that the primary features occurring in a 

pr0gra.m or pattern are identified as a se-t of features, in 

no particular order or context within the unit. Referring 

back to the example described in the text at the end 

of section 2, the database entry would contain the 

information that the given program contains a generic 

unit as well as a fixed point type; the full PAT tool 

must be used to determine whether these two occur in 

the specific syntactic relation of interest. 

The list of primary features was derived primarily 

from terms used in the Ada LRM, pa.rticularly the 

index and syntax summary (appendix E) of the LRM. 

In most cases, the features a.re eit,her nonterminals 

of the syntax summary, or major terms of the index 

(those printed in boldface), or both. In some ca.ses, 

one feature is a general or basic term, a.nd a. few 

other features are special cases of that general fea- 
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ture. For example, the fizature “generic-formal-type” 

has the subcases “generic-formal-type:discrete-type” , 

“generic-formal-type:integer-type”, etc. Essentially, we 

have taken some very sim.ple combinations of features 

and considered them as atomic primary features, for 

the purpose of improving the efficiency of the filtering 

process. Clearly, the distinction between primary fea- 

tures and feature combinat,ions is a matter of definition. 

However, the goal of the primary features identification 

system was to allow identification of features as a simple 

by-product of (instrumented) parsing and static seman- 

tic analysis, so that a database of feature occurrences 

could be built for the entire ACVC suite by a process 

no more difficult than a validation run. We have 

therefore included primary features that are detailed 

enough to provide effective filtering, but that are easily 

identifiab1.e from local, mostly syntactic information. 

More complicated combinations of features require the 

use of the PAT tool. 

Figure 1 illustrates the various components of 

AFIS: the Features Coverage Facility, the database of 

primary features (PRIM) and its interface, the PAT tool 

itself, and the dat,abase MAPS, which holds information 

a.s to previous pattern/ACVC tests matches. The 

a,rrows in the figure indicate the actions taken when 

a new feature combination needs to matched against 

the ACVC suite. First, the PRIM database is queried 

for potentially matching tests, based on the primary 

features extracted from the pattern. The resulting 

subset of ACVC tests is then matched against the 

pattern, using PAT. If any matches are found, that 

test-name/pattern-name pair is stored in MAPS. 

In addition to its use as a filter, the primary 

features information also provides a much more fine- 

grained indexing into the suite than that afforded by 

the ACVC naming conventions. The primary features 

database interface can easily answer such queries as: 

“list all the ACVC tests that contain generic formal 

objects with default expressions”, or “allocators with 

qualified expressions”. 
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