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Abstract  
In effort to achieve higher levels of  realism in game play 
many companies are beginning to put more emphases on 
the creation of  engaging, challenging opponents which is 
necessitating the use of  several algorithms from the field of  
artificial intelligence. This paper will review these 
techniques, their implementation, and discuss who and how 
they are being used within the game development industry. 

INTRODUCTION 
What makes a game fun? Intellectual stimulation? 

Realisticness? Its replay value? All of  these are necessary 
conditions for a game to be successful, and all are areas in 
which artificial intelligence provides significant 
contributions. The goal of  AI in game development is to 
create intelligent opponents, or agents, that can compete 
with the garner in a "brains vs. brains" scenario in lieu of the 
"brains vs. brawn" situations so commonly encountered in 
older games. This necessitates a definition of  intelligence, 
which for the scope of  this paper will simply be agents that 
are realistic in appearance and action from the point of  view 
of  the garner. Does this mean that an agent who scratches 
himself while he is idle appears more realistic than one that 
just stands there? While technically the answer to this 
question is "yes," what we are hoping to achieve with AI is 
an agent that can construct plans, execute these plans, and 
learn from the result. The reason that we are forced to use 
techniques from AI is that games produce a unique element 
to programs: uncertainty. We will begin our look at how 
games attempt to deal with this with by looking at search. 
This section is divided into two sub-sections: basics and 
advanced. Those who are familiar with search and common 
search strategies may wish to skip ahead to the advanced 
section. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage, and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
©2000 ACM 1-58113-250-6/00/0004 $5.00 

SEARCH BASICS 
Consider a game of  chess. At the start of  the game, 

there are 32 pieces and 64 positions on the board. It is 
conceivable that you could list all o f  the possible moves 
from this point. I f  you expanded that list to include all 
possibilities from those positions, you would be building an 
example of  what is known as a search tree. Any problem 
that has a discrete number of  possible states as well as rules 
governing passage from one state to another can be 
represented by a search tree and thus solved using an 
appropriate search algorithm. The problem is that generating 
a complete tree is rarely feasible due to computational 
and/or time constraints. Continuing with chess as our 
example, if  you just considered all of  the pieces that can 
occupy any position on the board (i.e. leave out the pawns 
and bishops) you would still be left with approximately 1.53 
* 10A21 possible boards. Even if  you assumed that you 
could always beat your opponent in twenty moves (a very 
short game) and attempted to draw a tree only forty moves 
deep, you would still end up with around 25^40 possible 
situations, or nodes (assuming a branching factor of  25). So 
what we need is a way to generate a tree as deep as possible 
given our constraints. The way we go about this is to expand 
nodes in some kind of  reasonable manor. Here there are two 
possibilities, in a preset pattern (depth first or breadth first) 
or by intelligently guessing which is the best and expanding 
it first. The latter of  these, heuristic search, is what we will 
concentrate on for reasons that will become apparent. We 
will use what is called a heuristic to assign desirability 
values to each node in our attempts to choose the best one. 
For clarity, we will concentrate on creating a path finding 
algorithm using the A* technique (respectively, this is the 
most common use and method of  search in game 
development). Remember that all a search needs is a set of  
possible conditions and rules governing passage from one 
state to another. Lets assume that we are on a 5X5 grid and 
can move into any adjacent position (Increasing the field 
size or adding obstacles does not significantly impact the 
difficulty of  the algorithm). We will also need to def'me an 
initial position as well as a goal, so lets choose 1,1 and 5,5. 
When our search starts, the first row will consist of  all 
positions possible from 1,1, namely 1,2, 2,2, and 2,1. The 
second row will expand these three and consist of  18 nodes, 
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97 in the third, and so on. So to avoid having to build all of  
this, how will we choose which node to expand? There are 
two common ways of  attributing values to a node. The first 
is the cost associated with the expansion of  the node, and 
the second it a heuristic value. A* uses the sum of  these 
two. In most instances, the cost of  a node will be its depth. 
This attempts to force the algorithm to find the shallowest, 
or optimal, answer. But, you can manipulate the costs to suit 
your needs. Say, for instance that you wanted the resulting 
path to move on a northerly direction because you suspected 
that there were enemy troops to the south. You could simply 
assign lower costs to nodes that move in a northerly 
direction than those that did not. The second value, a 
heuristic, must be defined by the programmer. In two- 
dimensional pathfinders, the Manhattan distance is the 
preferred heuristic of  many developers. This value consists 
of  the sum of  the distance of  the current coordinates from 
those of  the goal coordinates. More specifically, if your 
game doesn't allow diagonal movement, a MD heuristic 
function will look something like abs(dx)+abs(dy), or 
max(abs(dx), abs(dy)) if it does. Now, remember that it is 
the sum of  the cost and heuristic that A* uses to evaluate 
each node, and we are ready to implement our pathfinder. 
We will need to create two lists (or whichever linked data 
type you prefer). The first of  these will be an open list 
consisting of  nodes that have been generated but not 
explored. The second will possess all nodes explored. Note 
that these are lists of  lists as each element in the sub-list 
contains the position, its value, and a parent pointer to the 
node to which it was expanded from. Now all that we need 
is a queuing function to choose the next node to expand 
based on values of  those that have not been explored. Once 
the goal node is generated, we can simply follow the parent 
pointers back to find the path. Now that we are familiar with 
how A* works, we can explain why it is preferred. First, it 
is one of  the most efficient heuristic searches available in 
terms of  time and computational resources required. Second, 
it is guaranteed to fred a solution if  one exists, and moreover 
that solution will be optimal providing that the heuristic 
function never overestimates. We are also in a position to 
explain why use search at all. Instead of  this complicated 
pathfinder, why not just continually move in the dffection of  
the goal. To answer this question, consider a situation in 
which you must move away from the goal in order to reach 
it (i.e. when there is an obstacle between you and your 
destination). Using this type of  algorithm, you will run into 
the obstacle and move back and forth inf'mitely. Simply 
stated, if the goal was to the west, you would run into the 
wall and continually move north, south, north, south, etc. 
because the program is only looking for the position that is 
closest to the goal. Rest assured that examples can be easily 
contrived that will fail other "cheap fixes." Now lets look at 
some other search algorithms. Most informed (heuristic) 
searches currently used are variations of  the A* algorithm 
above. For example, iterative deepening A* (IDA*). On 
each iteration with this method, a depth first search is 

performed based on evaluations identical to A* until either a 
solution is found or an inputted function cost (cost + 
heuristic value) is reached. As would be expected, this 
algorithm has its advantages and disadvantages. IDA* was 
designed to allow search deeper into a tree using less 
memory and it does this well. However, in order to conserve 
memory, it "forgets" what it expanded after each iteration, 
only remembering the cost limit available. Thus, in trees 
where there exist redundant nodes, it is doomed to repeat 
itself. From this problem arose SMA* (simplified memory- 
bounded A*) which simply uses all available memory to 
search. It "forgets" nothing until it runs out of  allotted 
memory at which point it drops nodes from the open list 
starting with those that appear least promising. We are now 
ready to move into some more advanced techniques. 

ADVANCED SEARCH 
For any informed search to provide an optimal 

solution, it must have three things, an admissible heuristic, 
complete knowledge of  the domain that it is searching, and a 
clear definition of  the problem. Moreover, heuristic searches 
are limited by the fact that if  any new information is 
received, then they will essentially have to backtrack and 
start from scratch tying up valuable computational 
resources. We will examine the latter of  these problems 
first. Originally designed for robotics, a new search method 
known as dynamic A*, or D*, has emerged to deal with the 
problem of  unknown, partially known, or changing 
environments. This is especially applicable to game 
development because it removes the need to give the agent 
the unfair advantage of  complete spatial knowledge of  its 
environment. We will concentrate on a D* path finding 
algorithm as this is the most applicable example. Consider 
the event that you are traversing a tunnel only to fred an 
unexpected obstacle. Instead of  backtracking in attempts to 
find other solutions and ignoring the possibility of  a path in 
an unknown region using existing desirability function node 
values, D* allows you to reassign values to all unexplored 
nodes based on the new information. The implementation 
resembles A* in that you still have an open and closed set of  
nodes and a PROCESS_STATE function, but adds a new 
function, MODIFY_COST. This enables the algorithm to 
raise and lower cost fimctions on nodes in the open list if  
their path cost as determined in PROCESS_STATE 
changes. More information on D*, including 
implementation, is available at 
http://www, frc.ri.cmu.edu/~axs. 

A relatively new area of  AI, evolutionary 
programming, is providing us with ways to handle some of  
our other problems such as lack of  heuristics, ill-defined 
problems, and vast search spaces. Genetic algorithms take a 
more biological approach to problem solving by creating a 
digital DNA representation for a problem and evolving it 
until it reaches an optimal, or near optimal solution. This 
evolution process is achieved by taking a set (population) of  

52 



potential solutions (individuals) and evolving them through 
a series of genetic operators. In human DNA, each 
individual is represented by sub-strings built of an alphabet 
consisting of A, G, T, and C (adenine, guanine, thymine, 
and cytosine). Problem representation in GAs mimic this 
representation, with the exception that the alphabet used is 
most often binary. Once an initial population is created 
according to these specifications, individuals are filtered 
through a fitness function to determine their quality, and if 
this value is not satisfactory, then the data is evolved again. 
This Darwinian type of evolution occurs by a process of 
reproduction. Two strings with the highest fitness values 
"mate". This "natural selection" ensures that successful 
strings (ones with a high fitness value) survive the 
evolutionary process while genes with poor fitness values 
eventually perish. The mating process of the two 
chromosomes is achieved by swapping segments which are 
randomly chosen in a process collectively called 
"crossover." For example, consider two parent individuals 
with genes numbered 1 to X. The crossover function would 
choose a randomly generated number between one and X, 
lets say 25. Then, two offspring individuals would be 
created, one with genes numbered 1 to 25 from the first 
parent over 26 to X from the second; and the other would be 
the first 25 of the second parent over the rest of the first. 
Thus, a GA can take an initial population of solutions and 
mutate them with (hopefully) better results each time. When 
does evolution stop? The three most common methods are 
when the variation from one generation to the next reaches a 
predefined level of stability, after a chromosome is created 
that reaches a specified fitness value, or simply upon 
completion of a pre-speeified number of evolutions. The 
downside to genetic algorithms is that when they first run, 
they rely largely on sheer luck as it can take several 
evolutions before significant fitness vales are assigned. 
However, GAs are extremely versatile. They can be applied 
to almost any problem, including the ability to learn. 

MACHINE LEARNING 
As more and more developers turn their efforts to 

the development of artificial life, it is becoming obvious that 
one of the fundamental qualities of intelligence is the ability 
to learn, Knowledge acquisition and representation is 
currently predominately being attempted with adaptive 
technologies such as genetic algorithms and neural 
networks. Following the previous section, it should be fairly 
obvious how a GA can be used for learning. The qualities 
which proved successful (i.e. speed) are retained, and those 
that are not are minimized or dropped (like over 
aggressiveness) through the evolutionary process. Neural 
nets, much like GAs, mimic biological learning, or at least 
what is known about it. In the human brain, there are basic 
cells called neurons that are composed of a core, dendrites 
for receiving information, and axons which serve to pass 
information to other neurons. In each neuron is an electro- 

chemical sensor to detect the strength of incoming charges. 
If  the input is strong enough, then the neuron will fire to all 
cells to which it is connected; otherwise no output occurs 
and the charge dissipates. It is thought that learning takes 
place by modification of the connections between neurons 
so that certain input only channels through specified paths. 
This is where neural nets differ; they have an unchangeable 
structure, or a predefmed number of units that can act as 
neurons and a pre-specified number of links. This restraint 
is overcome by attaching weighted values to the 
connections, so although connections can never be created 
or destroyed, their importance and the signal they receive 
can be increased or reduced. Signal qualifies can also be 
manipulated inside the cell by using a sigmoid function to 
determine the firing point in lieu of a step function. Thus, 
we can continue to mimic the "wet ware" by adjusting these 
values based upon the desired output and the actual output 
of the network. However, this type of network requires a 
mediator to judge and evaluate its performance. Teuvo 
Kohonen pioneered the field of unsupervised learning in 
1982 with the introduction of the Kohonen network. The 
difference in this system was that the output neurons 
compete with each other much like in a genetic algorithm. 
Although this process goes beyond the scope of this paper, 
it will suffice to say that weight to the "winning" c0nneefion 
is increased so that when a similar input is received it will 
be likely to go to this neuron again. 

Another method of learning worthy of mention was 
first used in the game Galapagos by Anark. For their main 
character, they developed an agent that learned from Non- 
stationary Entropic Reduction Mapping (NERM). NERM 
allows Mendel, the agent, to receive feedback from his 
environment, which he uses to adjust his behavior. He is 
self-organizing, meaning that he receives no justification for 
the feedback; he simply acts to minimize the negative, much 
like a pet animal. What this means is he has the ability to 
learn from the environment even if he is not interacting with 
the user. Creatures, by Millennium Interactive, is an organic 
life simulator that perhaps best demonstrates the potential of 
GA's and neural nets in the gaming industry. In the game, 
creatures, called Norns, are born and raised by the garner. 
While growing up, Norns must learn how to speak, interact 
with others, entertain themselves, etc. The GA's come into 
play when they breed. Every aspect of  a Norn is represented 
in its DNA, which is passed down in reproduction (several 
web sites have sprung up to allow this to be done online 
with other garners). Creator Toby Simpson recently 
received an email about a Norn which appeared more 
intelligent that others. Proving the flexibility of GA's, he 
examined it to find that it had spontaneously developed 
additional "lobes" for the AI to work with! So, at this point, 
we have demonstrated how artificial intelligence can create 
gaming agents that can reason and learn. Our other focus 
was on realisticness. The game development industry is 
beginning to put emphasis on individual AI, such as 
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artificial emotion, independent thought, and other like 
topics. 

ARTIFICIAL LIFE 
Even after we have succeeded in creating a 

sufficiently intelligent agent, our job as game developers is 
not complete. If  you will remember, one of  our original 
goals was to create a "realistic" agent and envkonment. This 
is a-life, an emulation of  biological behavior, to which 
several areas contribute. Arguably, emotion is a 
predominant characteristic that makes for realistic behavior 
in lieu of  robotic type actions. Making agents unique used to 
mean only appearance, for example making a character in a 
basketball game look like Michael Jordan. However, we are 
beginning to see a change with the emergence of  a field 
known as artificial emotion. Leading this field is Ian 
Wilson, who has divided emotions into three categories: 
momentary, mood, and personality, which take precedence 
in that order. The latter of  these is the underlying feature 
that will typically be used in decision making. One method 
that is cmrently being used works as follows: the actions 
outlined above in the paper are used to generate not one, but 
a set of  possible actions. Then, each agent compares the 
possibilities to its personality and chooses the action that is 
most fitting to him/her. It is important to note that the 
possibilities are weighted so that the majority of  agents will 
follow the action given, or preferred. Consider the event that 
the garner tells his team to charge the enemy. The agents 
could be presented with a set of  possible weighted (so that 
most would follow the instruction) choices that included 
charging, staying idle, and running. Thus, an agent that was 
excessively passive could sit still, one that was scared could 
run, while the majority charged as told. While it might 
agitate the garner to see some of  his military run from battle 
when told to charge, all would agree that this is what would 
happen in real life. The other two categories of  emotion, 
mood and momentary emotion, must be triggered. Thus, 
like humans, something can spark an action to an agent that 
it normally would not do. For example, in our war game, an 
agent with an aggressive personality who is following 
orders to sit in a bunker may become impatient and agitated 
and thus charge the line because he had been idle too long. 
According to developer Steve Woodcock, this type of  
realism is quickly being brought to the forefront of  game AI. 
Currently, it is being implemented in one of  two ways. The 
first is as implemented in games like Microsoft's Close 
Combat. This is a war simulation game that provides each 
GI an individual personality much like described above. The 
second type is best demonstrated by P.F. Magic's Dogz, and 
Catz series in which the garner creates an autonomous agent 
by defining amounts of  certain traits, and watching the agent 
evolve in its environment. These games go as far as to give 
each agent body language, tempers, etc. Another approach 
to implementing AE is being pioneered by Eleclzonic Arts 
with The Sims. This game is similar to Dogz and Catz in 

that the garner develops an agent and then watches it grow 
in a simulated environment. The difference in the 
implementation is the use of  what developer Will Wright 
calls a "behavioral engine" in which actions and behaviors 
associated with an object are coded into the object itself. So, 
a football will contain code that states how it is to be used 
and when one would want to use it. The problem with AE 
is twofold. First, it is computationally expensive and many 
companies are not providing sufficient resources for any 
true advancement to be made. Secondly, with shoot 'em up 
games and the like dominating the market, there has been no 
real need. Who wants to see a timid demon while playing 
Doom? Of course, a-life is not merely concerned with the 
individual; it must necessarily be interested in the 
coexistence of  all agents in the environment. In this area, it 
has made some remarkable advances. The simplest of  these 
is flocking, in which several characters can engage in some 
group action even if  they do not know why they are doing 
so. This is comparable to a swarm of  bees or a flock of  
birds. However, perhaps the most intriguing advances in a- 
life as it relates to games is inter-agent communication - 
agents working together to achieve a common goal. 
Consider a shooter game in which a monster could realize 
that he needed help and go get a buddy to assist him. Or, 
imagine playing Doom and a monster organizes all of  the 
others against you! While these ideas are promising, work in 
this area is insufficient to predict future possibilities. 

FUZZY LOGIC 
What ties all of  these principles together is fuzzy 

logic. Look around the room. Do you see any tall people? 
Any thick books? You probably answered yes to at least one 
of  these, so you must know exactly what height is "tall", or 
how many pages constitute a "thick" book. Obviously this is 
absurd. Fuzzy logic is essentially a multi-valued logic 
system that permits intermediate values to be defined 
between conventional evaluations like yes/no, true/false, 
black/white, etc. It allows notions like pretty hot and kind of  
cold to be formulated mathematically and processed. This is 
achieved by representing values in something that more 
resembles a bell-shaped graph in lieu of  a step function. For 
example, one cannot represent "young" on a step function 
because to do so necessitates knowing the day in which one 
ceases to be young. What we need, and is provided by fuzzy 
logic, is a function that shows that a person is less young on 
his twentieth birthday than he was the day before, or the day 
before that. Thus fuzzy logic, as opposed to conventional 
logic, proves that a big rat is not the same size as a big 
elephant. Moreover, it retains the use of  conventional ideals 
like negation, conjunction, disjunction, etc. and the truth- 
values that they imply. These types of  distinctions are 
applicable to our intelligent agent because it allows it to 
realize that there is not always a "fight" decision. Similarly, 
it allows for more freedom as problems and states can be 
represented at intermediate values. An interesting company, 
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louderthanabomb (louderthanabomb.com) has designed a 
fuzzy logic editor specifically for game design. More 
information on this topic can be found at The Fuzzy Logic 
Laboratorium (www.flU.uni-linz.ac.at). 

PLANNING 
In order for the agent to effectively accomplish 

anything, it must first construct a plan. Most planning 
algorithms are based on the STRIPS model which stems 
from situation calculus. In STRIPS, each state is represented 
by a predicate, for example location(Agentl ,Tunnel 1); and 
the state of  the environment is represented by a conjunction 
of  these predicates. Thus to construct a plan, a sequence of 
states must be created. Each action consists of  a 
precondition, a post condition, (or effect) and a 
modify condition function. Obviously, the precondition 
defines what states must exist to execute the action, and the 
post condition defines the situation that results. The 
modify conditions function changes the current world state 
to reflect the changes resulting from the action. For 
example, if part of  the world condition was location(X,Y) 
and the action to move from Y to Z was performed, then not 
only would location(X,Z) need to be added to the state of 
the environment, but the previous condition would need to 
be removed to prevent a conflict. We will consider a world 
with three actions: move to(X,Y), ensure loaded(X,Z), 
fire(X,Z,A). In a situation with an initial state if at(A1, R2), 
at(A2,R1); if  agent A1 decided to fire a weapon at A2, the 
final plan would look similar to: move to(A1,R1), 
ensure loaded(A1,Gun), fire(A1,Gun,A2). The steps to 
develop this plan go beyond the scope of  this paper, but it 
will suffice to say that a plan is generated that ensures no 
conflict between the pre and post conditions. Then, the 
variables are unified to create an executable plan. 

CUSTOM GAMES 
A recent trend in many shooter and war simulation 

games has been to allow the user to create his or her own 
agents through extensible AI, which allows the garner to 
actually manipulate the source code. Thus, a player can 
manipulate existing agents in a game, or create entkely new 
ones. This was first attempted by ID with their war 
simulator Quake. Packaged with the game was their 
scripting language, Quake C, which allowed garners to 
create both new levels and creatures, and even define their 
actions in certain situations. As would be expected, this 
spawned an entke subculture of"bot  builders" as they came 
to be known. Extensible AI has been taken even further by 
companies such as GT Interactive and Grimmware. These 
two companies are actually exposing the game's API 
(Application Program Interface) to the player, allowing for 
full manipulation of  all included characters. 

CONCLUSION 
According to surveys taken by developer Steve 

Woodcock in 1997, around 24% of  game development 
companies were employing full time AI programmers who 
received approximately 5% of  total processor time. In the 
same study one year later, the numbers were up to 46% and 
10%, respectively. This definitively proves that AI is, in a 
large part, the future of  the gaming industry. This future will 
rely largely on efficiently incorporating of  all the techniques 
mentioned in this paper; each of  which involves moving 
away from a rule-based approach to AI. The added bonus of 
this progression is that it greatly decreases predictability. 
Autonomous agents are surprisingly spontaneous, especially 
when they are able to mutate on their own through 
biological technologies. For now, we need to realize that if  
we play a game that claims to use AI, and find it too easy, or 
not realistic enough; it is not the fault of the AI, but rather 
the developers. We do not need to discredit the field (as 
some have suggested) simply because some of  its 
implementations fail. Aside from this type of  critique, 
another problem which AI is beginning to overcome is lack 
of  development time. As many of  the AI routines cannot be 
developed until late in the game development process, 
developers have been traditionally expected to turn out large 
amounts work at the last minute with less than ideal results. 
However, with the gradual realization of  the importance of  
this genre, developers are beginning to see a change. By 
allotting AI sufficient resources in games, and providing 
developers with the necessary time needed in the 
development phase, the future of  this field appears very 
promising. 
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