
Fundamentals of Artificial Intelligence in Game Development

B.C. Bridger
Chris S. Groskopf

University of Georgia
Athens, Georgia

Contact: idlemind79@hotmail.com

Abstract
In effort to achieve higher levels of realism in game play
many companies are beginning to put more emphases on
the creation of engaging, challenging opponents which is
necessitating the use of several algorithms from the field of
artificial intelligence. This paper will review these
techniques, their implementation, and discuss who and how
they are being used within the game development industry.

INTRODUCTION
What makes a game fun? Intellectual stimulation?

Realisticness? Its replay value? All of these are necessary
conditions for a game to be successful, and all are areas in
which artificial intelligence provides significant
contributions. The goal of AI in game development is to
create intelligent opponents, or agents, that can compete
with the garner in a "brains vs. brains" scenario in lieu of the
"brains vs. brawn" situations so commonly encountered in
older games. This necessitates a definition of intelligence,
which for the scope of this paper will simply be agents that
are realistic in appearance and action from the point of view
of the garner. Does this mean that an agent who scratches
himself while he is idle appears more realistic than one that
just stands there? While technically the answer to this
question is "yes," what we are hoping to achieve with AI is
an agent that can construct plans, execute these plans, and
learn from the result. The reason that we are forced to use
techniques from AI is that games produce a unique element
to programs: uncertainty. We will begin our look at how
games attempt to deal with this with by looking at search.
This section is divided into two sub-sections: basics and
advanced. Those who are familiar with search and common
search strategies may wish to skip ahead to the advanced
section.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
©2000 ACM 1-58113-250-6/00/0004 $5.00

SEARCH BASICS
Consider a game of chess. At the start of the game,

there are 32 pieces and 64 positions on the board. It is
conceivable that you could list all o f the possible moves
from this point. I f you expanded that list to include all
possibilities from those positions, you would be building an
example of what is known as a search tree. Any problem
that has a discrete number of possible states as well as rules
governing passage from one state to another can be
represented by a search tree and thus solved using an
appropriate search algorithm. The problem is that generating
a complete tree is rarely feasible due to computational
and/or time constraints. Continuing with chess as our
example, if you just considered all of the pieces that can
occupy any position on the board (i.e. leave out the pawns
and bishops) you would still be left with approximately 1.53
* 10A21 possible boards. Even if you assumed that you
could always beat your opponent in twenty moves (a very
short game) and attempted to draw a tree only forty moves
deep, you would still end up with around 25^40 possible
situations, or nodes (assuming a branching factor of 25). So
what we need is a way to generate a tree as deep as possible
given our constraints. The way we go about this is to expand
nodes in some kind of reasonable manor. Here there are two
possibilities, in a preset pattern (depth first or breadth first)
or by intelligently guessing which is the best and expanding
it first. The latter of these, heuristic search, is what we will
concentrate on for reasons that will become apparent. We
will use what is called a heuristic to assign desirability
values to each node in our attempts to choose the best one.
For clarity, we will concentrate on creating a path finding
algorithm using the A* technique (respectively, this is the
most common use and method of search in game
development). Remember that all a search needs is a set of
possible conditions and rules governing passage from one
state to another. Lets assume that we are on a 5X5 grid and
can move into any adjacent position (Increasing the field
size or adding obstacles does not significantly impact the
difficulty of the algorithm). We will also need to def'me an
initial position as well as a goal, so lets choose 1,1 and 5,5.
When our search starts, the first row will consist of all
positions possible from 1,1, namely 1,2, 2,2, and 2,1. The
second row will expand these three and consist of 18 nodes,

51

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1127716.1127727&domain=pdf&date_stamp=2000-04-07

97 in the third, and so on. So to avoid having to build all of
this, how will we choose which node to expand? There are
two common ways of attributing values to a node. The first
is the cost associated with the expansion of the node, and
the second it a heuristic value. A* uses the sum of these
two. In most instances, the cost of a node will be its depth.
This attempts to force the algorithm to find the shallowest,
or optimal, answer. But, you can manipulate the costs to suit
your needs. Say, for instance that you wanted the resulting
path to move on a northerly direction because you suspected
that there were enemy troops to the south. You could simply
assign lower costs to nodes that move in a northerly
direction than those that did not. The second value, a
heuristic, must be defined by the programmer. In two-
dimensional pathfinders, the Manhattan distance is the
preferred heuristic of many developers. This value consists
of the sum of the distance of the current coordinates from
those of the goal coordinates. More specifically, if your
game doesn't allow diagonal movement, a MD heuristic
function will look something like abs(dx)+abs(dy), or
max(abs(dx), abs(dy)) if it does. Now, remember that it is
the sum of the cost and heuristic that A* uses to evaluate
each node, and we are ready to implement our pathfinder.
We will need to create two lists (or whichever linked data
type you prefer). The first of these will be an open list
consisting of nodes that have been generated but not
explored. The second will possess all nodes explored. Note
that these are lists of lists as each element in the sub-list
contains the position, its value, and a parent pointer to the
node to which it was expanded from. Now all that we need
is a queuing function to choose the next node to expand
based on values of those that have not been explored. Once
the goal node is generated, we can simply follow the parent
pointers back to find the path. Now that we are familiar with
how A* works, we can explain why it is preferred. First, it
is one of the most efficient heuristic searches available in
terms of time and computational resources required. Second,
it is guaranteed to fred a solution if one exists, and moreover
that solution will be optimal providing that the heuristic
function never overestimates. We are also in a position to
explain why use search at all. Instead of this complicated
pathfinder, why not just continually move in the dffection of
the goal. To answer this question, consider a situation in
which you must move away from the goal in order to reach
it (i.e. when there is an obstacle between you and your
destination). Using this type of algorithm, you will run into
the obstacle and move back and forth inf'mitely. Simply
stated, if the goal was to the west, you would run into the
wall and continually move north, south, north, south, etc.
because the program is only looking for the position that is
closest to the goal. Rest assured that examples can be easily
contrived that will fail other "cheap fixes." Now lets look at
some other search algorithms. Most informed (heuristic)
searches currently used are variations of the A* algorithm
above. For example, iterative deepening A* (IDA*). On
each iteration with this method, a depth first search is

performed based on evaluations identical to A* until either a
solution is found or an inputted function cost (cost +
heuristic value) is reached. As would be expected, this
algorithm has its advantages and disadvantages. IDA* was
designed to allow search deeper into a tree using less
memory and it does this well. However, in order to conserve
memory, it "forgets" what it expanded after each iteration,
only remembering the cost limit available. Thus, in trees
where there exist redundant nodes, it is doomed to repeat
itself. From this problem arose SMA* (simplified memory-
bounded A*) which simply uses all available memory to
search. It "forgets" nothing until it runs out of allotted
memory at which point it drops nodes from the open list
starting with those that appear least promising. We are now
ready to move into some more advanced techniques.

ADVANCED SEARCH
For any informed search to provide an optimal

solution, it must have three things, an admissible heuristic,
complete knowledge of the domain that it is searching, and a
clear definition of the problem. Moreover, heuristic searches
are limited by the fact that if any new information is
received, then they will essentially have to backtrack and
start from scratch tying up valuable computational
resources. We will examine the latter of these problems
first. Originally designed for robotics, a new search method
known as dynamic A*, or D*, has emerged to deal with the
problem of unknown, partially known, or changing
environments. This is especially applicable to game
development because it removes the need to give the agent
the unfair advantage of complete spatial knowledge of its
environment. We will concentrate on a D* path finding
algorithm as this is the most applicable example. Consider
the event that you are traversing a tunnel only to fred an
unexpected obstacle. Instead of backtracking in attempts to
find other solutions and ignoring the possibility of a path in
an unknown region using existing desirability function node
values, D* allows you to reassign values to all unexplored
nodes based on the new information. The implementation
resembles A* in that you still have an open and closed set of
nodes and a PROCESS_STATE function, but adds a new
function, MODIFY_COST. This enables the algorithm to
raise and lower cost fimctions on nodes in the open list if
their path cost as determined in PROCESS_STATE
changes. More information on D*, including
implementation, is available at
http://www, frc.ri.cmu.edu/~axs.

A relatively new area of AI, evolutionary
programming, is providing us with ways to handle some of
our other problems such as lack of heuristics, ill-defined
problems, and vast search spaces. Genetic algorithms take a
more biological approach to problem solving by creating a
digital DNA representation for a problem and evolving it
until it reaches an optimal, or near optimal solution. This
evolution process is achieved by taking a set (population) of

52

potential solutions (individuals) and evolving them through
a series of genetic operators. In human DNA, each
individual is represented by sub-strings built of an alphabet
consisting of A, G, T, and C (adenine, guanine, thymine,
and cytosine). Problem representation in GAs mimic this
representation, with the exception that the alphabet used is
most often binary. Once an initial population is created
according to these specifications, individuals are filtered
through a fitness function to determine their quality, and if
this value is not satisfactory, then the data is evolved again.
This Darwinian type of evolution occurs by a process of
reproduction. Two strings with the highest fitness values
"mate". This "natural selection" ensures that successful
strings (ones with a high fitness value) survive the
evolutionary process while genes with poor fitness values
eventually perish. The mating process of the two
chromosomes is achieved by swapping segments which are
randomly chosen in a process collectively called
"crossover." For example, consider two parent individuals
with genes numbered 1 to X. The crossover function would
choose a randomly generated number between one and X,
lets say 25. Then, two offspring individuals would be
created, one with genes numbered 1 to 25 from the first
parent over 26 to X from the second; and the other would be
the first 25 of the second parent over the rest of the first.
Thus, a GA can take an initial population of solutions and
mutate them with (hopefully) better results each time. When
does evolution stop? The three most common methods are
when the variation from one generation to the next reaches a
predefined level of stability, after a chromosome is created
that reaches a specified fitness value, or simply upon
completion of a pre-speeified number of evolutions. The
downside to genetic algorithms is that when they first run,
they rely largely on sheer luck as it can take several
evolutions before significant fitness vales are assigned.
However, GAs are extremely versatile. They can be applied
to almost any problem, including the ability to learn.

MACHINE LEARNING
As more and more developers turn their efforts to

the development of artificial life, it is becoming obvious that
one of the fundamental qualities of intelligence is the ability
to learn, Knowledge acquisition and representation is
currently predominately being attempted with adaptive
technologies such as genetic algorithms and neural
networks. Following the previous section, it should be fairly
obvious how a GA can be used for learning. The qualities
which proved successful (i.e. speed) are retained, and those
that are not are minimized or dropped (like over
aggressiveness) through the evolutionary process. Neural
nets, much like GAs, mimic biological learning, or at least
what is known about it. In the human brain, there are basic
cells called neurons that are composed of a core, dendrites
for receiving information, and axons which serve to pass
information to other neurons. In each neuron is an electro-

chemical sensor to detect the strength of incoming charges.
If the input is strong enough, then the neuron will fire to all
cells to which it is connected; otherwise no output occurs
and the charge dissipates. It is thought that learning takes
place by modification of the connections between neurons
so that certain input only channels through specified paths.
This is where neural nets differ; they have an unchangeable
structure, or a predefmed number of units that can act as
neurons and a pre-specified number of links. This restraint
is overcome by attaching weighted values to the
connections, so although connections can never be created
or destroyed, their importance and the signal they receive
can be increased or reduced. Signal qualifies can also be
manipulated inside the cell by using a sigmoid function to
determine the firing point in lieu of a step function. Thus,
we can continue to mimic the "wet ware" by adjusting these
values based upon the desired output and the actual output
of the network. However, this type of network requires a
mediator to judge and evaluate its performance. Teuvo
Kohonen pioneered the field of unsupervised learning in
1982 with the introduction of the Kohonen network. The
difference in this system was that the output neurons
compete with each other much like in a genetic algorithm.
Although this process goes beyond the scope of this paper,
it will suffice to say that weight to the "winning" c0nneefion
is increased so that when a similar input is received it will
be likely to go to this neuron again.

Another method of learning worthy of mention was
first used in the game Galapagos by Anark. For their main
character, they developed an agent that learned from Non-
stationary Entropic Reduction Mapping (NERM). NERM
allows Mendel, the agent, to receive feedback from his
environment, which he uses to adjust his behavior. He is
self-organizing, meaning that he receives no justification for
the feedback; he simply acts to minimize the negative, much
like a pet animal. What this means is he has the ability to
learn from the environment even if he is not interacting with
the user. Creatures, by Millennium Interactive, is an organic
life simulator that perhaps best demonstrates the potential of
GA's and neural nets in the gaming industry. In the game,
creatures, called Norns, are born and raised by the garner.
While growing up, Norns must learn how to speak, interact
with others, entertain themselves, etc. The GA's come into
play when they breed. Every aspect of a Norn is represented
in its DNA, which is passed down in reproduction (several
web sites have sprung up to allow this to be done online
with other garners). Creator Toby Simpson recently
received an email about a Norn which appeared more
intelligent that others. Proving the flexibility of GA's, he
examined it to find that it had spontaneously developed
additional "lobes" for the AI to work with! So, at this point,
we have demonstrated how artificial intelligence can create
gaming agents that can reason and learn. Our other focus
was on realisticness. The game development industry is
beginning to put emphasis on individual AI, such as

53

artificial emotion, independent thought, and other like
topics.

ARTIFICIAL LIFE
Even after we have succeeded in creating a

sufficiently intelligent agent, our job as game developers is
not complete. If you will remember, one of our original
goals was to create a "realistic" agent and envkonment. This
is a-life, an emulation of biological behavior, to which
several areas contribute. Arguably, emotion is a
predominant characteristic that makes for realistic behavior
in lieu of robotic type actions. Making agents unique used to
mean only appearance, for example making a character in a
basketball game look like Michael Jordan. However, we are
beginning to see a change with the emergence of a field
known as artificial emotion. Leading this field is Ian
Wilson, who has divided emotions into three categories:
momentary, mood, and personality, which take precedence
in that order. The latter of these is the underlying feature
that will typically be used in decision making. One method
that is cmrently being used works as follows: the actions
outlined above in the paper are used to generate not one, but
a set of possible actions. Then, each agent compares the
possibilities to its personality and chooses the action that is
most fitting to him/her. It is important to note that the
possibilities are weighted so that the majority of agents will
follow the action given, or preferred. Consider the event that
the garner tells his team to charge the enemy. The agents
could be presented with a set of possible weighted (so that
most would follow the instruction) choices that included
charging, staying idle, and running. Thus, an agent that was
excessively passive could sit still, one that was scared could
run, while the majority charged as told. While it might
agitate the garner to see some of his military run from battle
when told to charge, all would agree that this is what would
happen in real life. The other two categories of emotion,
mood and momentary emotion, must be triggered. Thus,
like humans, something can spark an action to an agent that
it normally would not do. For example, in our war game, an
agent with an aggressive personality who is following
orders to sit in a bunker may become impatient and agitated
and thus charge the line because he had been idle too long.
According to developer Steve Woodcock, this type of
realism is quickly being brought to the forefront of game AI.
Currently, it is being implemented in one of two ways. The
first is as implemented in games like Microsoft's Close
Combat. This is a war simulation game that provides each
GI an individual personality much like described above. The
second type is best demonstrated by P.F. Magic's Dogz, and
Catz series in which the garner creates an autonomous agent
by defining amounts of certain traits, and watching the agent
evolve in its environment. These games go as far as to give
each agent body language, tempers, etc. Another approach
to implementing AE is being pioneered by Eleclzonic Arts
with The Sims. This game is similar to Dogz and Catz in

that the garner develops an agent and then watches it grow
in a simulated environment. The difference in the
implementation is the use of what developer Will Wright
calls a "behavioral engine" in which actions and behaviors
associated with an object are coded into the object itself. So,
a football will contain code that states how it is to be used
and when one would want to use it. The problem with AE
is twofold. First, it is computationally expensive and many
companies are not providing sufficient resources for any
true advancement to be made. Secondly, with shoot 'em up
games and the like dominating the market, there has been no
real need. Who wants to see a timid demon while playing
Doom? Of course, a-life is not merely concerned with the
individual; it must necessarily be interested in the
coexistence of all agents in the environment. In this area, it
has made some remarkable advances. The simplest of these
is flocking, in which several characters can engage in some
group action even if they do not know why they are doing
so. This is comparable to a swarm of bees or a flock of
birds. However, perhaps the most intriguing advances in a-
life as it relates to games is inter-agent communication -
agents working together to achieve a common goal.
Consider a shooter game in which a monster could realize
that he needed help and go get a buddy to assist him. Or,
imagine playing Doom and a monster organizes all of the
others against you! While these ideas are promising, work in
this area is insufficient to predict future possibilities.

FUZZY LOGIC
What ties all of these principles together is fuzzy

logic. Look around the room. Do you see any tall people?
Any thick books? You probably answered yes to at least one
of these, so you must know exactly what height is "tall", or
how many pages constitute a "thick" book. Obviously this is
absurd. Fuzzy logic is essentially a multi-valued logic
system that permits intermediate values to be defined
between conventional evaluations like yes/no, true/false,
black/white, etc. It allows notions like pretty hot and kind of
cold to be formulated mathematically and processed. This is
achieved by representing values in something that more
resembles a bell-shaped graph in lieu of a step function. For
example, one cannot represent "young" on a step function
because to do so necessitates knowing the day in which one
ceases to be young. What we need, and is provided by fuzzy
logic, is a function that shows that a person is less young on
his twentieth birthday than he was the day before, or the day
before that. Thus fuzzy logic, as opposed to conventional
logic, proves that a big rat is not the same size as a big
elephant. Moreover, it retains the use of conventional ideals
like negation, conjunction, disjunction, etc. and the truth-
values that they imply. These types of distinctions are
applicable to our intelligent agent because it allows it to
realize that there is not always a "fight" decision. Similarly,
it allows for more freedom as problems and states can be
represented at intermediate values. An interesting company,

54

louderthanabomb (louderthanabomb.com) has designed a
fuzzy logic editor specifically for game design. More
information on this topic can be found at The Fuzzy Logic
Laboratorium (www.flU.uni-linz.ac.at).

PLANNING
In order for the agent to effectively accomplish

anything, it must first construct a plan. Most planning
algorithms are based on the STRIPS model which stems
from situation calculus. In STRIPS, each state is represented
by a predicate, for example location(Agentl ,Tunnel 1); and
the state of the environment is represented by a conjunction
of these predicates. Thus to construct a plan, a sequence of
states must be created. Each action consists of a
precondition, a post condition, (or effect) and a
modify condition function. Obviously, the precondition
defines what states must exist to execute the action, and the
post condition defines the situation that results. The
modify conditions function changes the current world state
to reflect the changes resulting from the action. For
example, if part of the world condition was location(X,Y)
and the action to move from Y to Z was performed, then not
only would location(X,Z) need to be added to the state of
the environment, but the previous condition would need to
be removed to prevent a conflict. We will consider a world
with three actions: move to(X,Y), ensure loaded(X,Z),
fire(X,Z,A). In a situation with an initial state if at(A1, R2),
at(A2,R1); if agent A1 decided to fire a weapon at A2, the
final plan would look similar to: move to(A1,R1),
ensure loaded(A1,Gun), fire(A1,Gun,A2). The steps to
develop this plan go beyond the scope of this paper, but it
will suffice to say that a plan is generated that ensures no
conflict between the pre and post conditions. Then, the
variables are unified to create an executable plan.

CUSTOM GAMES
A recent trend in many shooter and war simulation

games has been to allow the user to create his or her own
agents through extensible AI, which allows the garner to
actually manipulate the source code. Thus, a player can
manipulate existing agents in a game, or create entkely new
ones. This was first attempted by ID with their war
simulator Quake. Packaged with the game was their
scripting language, Quake C, which allowed garners to
create both new levels and creatures, and even define their
actions in certain situations. As would be expected, this
spawned an entke subculture of"bot builders" as they came
to be known. Extensible AI has been taken even further by
companies such as GT Interactive and Grimmware. These
two companies are actually exposing the game's API
(Application Program Interface) to the player, allowing for
full manipulation of all included characters.

CONCLUSION
According to surveys taken by developer Steve

Woodcock in 1997, around 24% of game development
companies were employing full time AI programmers who
received approximately 5% of total processor time. In the
same study one year later, the numbers were up to 46% and
10%, respectively. This definitively proves that AI is, in a
large part, the future of the gaming industry. This future will
rely largely on efficiently incorporating of all the techniques
mentioned in this paper; each of which involves moving
away from a rule-based approach to AI. The added bonus of
this progression is that it greatly decreases predictability.
Autonomous agents are surprisingly spontaneous, especially
when they are able to mutate on their own through
biological technologies. For now, we need to realize that if
we play a game that claims to use AI, and find it too easy, or
not realistic enough; it is not the fault of the AI, but rather
the developers. We do not need to discredit the field (as
some have suggested) simply because some of its
implementations fail. Aside from this type of critique,
another problem which AI is beginning to overcome is lack
of development time. As many of the AI routines cannot be
developed until late in the game development process,
developers have been traditionally expected to turn out large
amounts work at the last minute with less than ideal results.
However, with the gradual realization of the importance of
this genre, developers are beginning to see a change. By
allotting AI sufficient resources in games, and providing
developers with the necessary time needed in the
development phase, the future of this field appears very
promising.

BIBLIOGRAPHY
1 .www. gameai.com
2.www. gamedev.net
3.www. gamasutra.com
4.www. frc.ri.cmu.edu/-axs/
5.www-cs-students.stanford.edu/.~amitp/gameprog.html
h5.ttp ://forum. swarthmore.edu/~j a¥/leam- game/index.html
7.www.ide.hk-r.se/---pdv/mypublications.html
8.Russell, S. and Norvig, P (1995) Artificial Intelligence A
Modem Approach, Prentice Hall
9.www. flll.uni-linz.ac.at
10.www.louderthanabomb.com
11.www.alife.com
12.http//ai.about.com/compute/ai/library/weekly/aa070598.h
tin
13.www.gamasutra. corn/features/19990507/artificial%5Fem
otion%5F01.him
14.http://ai.about.com/compute/ai/library/weekly/aal 21598.
him
15.www.ma.umist.ac.uk/dsumpter/beesim/

55

