
A Study Of Technologies For Client/Server Applications 

Wei Pan Feinstein 
Advisor 

Dr. J. Scott Hawker 
Department of Computer Science 

University of Alabama 

Abstract-The growing size and complexity of  software 
systems has exposed many shortcomings of  traditional 
software engineering models. This has increased interest in 
Client/Server development. The driving force of  
Client/Server computing is the fundamental belief that 
personal computers connected to small servers provide the 
best price-performance. One of  the most important 
decisions a developer needs to make is to choose the 
optimum development technologies and tools. This has 
become more feasible with the advent of  the powerful 
specialized Client/Server development technologies and 
tools. The purpose of  this paper is to identify the various 
Client/Server technologies that are available, and to explain 
how the technologies are used, and compare and contrast 
these various technologies in the Client/Server model. In 
order to give a better overview of  these technologies and 
tools, this paper will utilize a simulated e-commerce online 
book-order model. The technologies will be used to 
implement this model. 

1. Introduction 
The advent of  powerful and inexpensive PCs has made it 

possible to shift from mainframe-centric systems towards 
Client/Server systems. This shift has been accelerated by 
the fact that the Client/Server model makes cooperative 
computing practical and manageable by supporting the 
division of  applications into functions and services that need 
to be shared by many users [1]. The Client/Server model in 
its simplest form allows developers to split the processing 
load between two logical processes: the client and server 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage, and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
©2000 ACM 1-58113-250-6/00/0004 $5.00 

(See Figure 1). The owner of  the resources or services is 
called the server while the user is called the client. Both the 
client and the server may exist on the same physical 
computer, such as local database servers that run native to 
Windows. 

Request for Services ~1'1 

Client (Message passing Server 
through middle-ware) 

1~ Services 

Figure 1 Client/Server Model 

Client/Server computing is a common model for 
distributing resources. Many of  the Client/Server systems 
run the client and server processes on separate computers. 
From the client view obtaining a service just requires 
sending a request to the server (or middleman) and receiving 
a reply back. 

In a distributed Client/Server system, middleware is the 
glue that binds the clients and the servers together into a 
cohesive system. Middleware is an enabling software layer 
that provides a transparent means of  accessing information 
between clients and servers. Middleware insulates the user 
application from the intricacies of  the various operating 
environments on which the application is running. 

The exploding popularity of  the World Wide Web makes 
the Web-based Client/Server architecture one of  the most 
important applications of  the Client/Server model. The Web 
browser and Web server play the central roles in this model. 

The three-tier Client/Server model is currently the most 
commonly used method in the Client/Server arena. The 
three tiers are the user interface tier, the business rules tier, 
and the database tier [2]. The interface tier is responsible 
for interfacing the user to the application. It often provides 
graphical application information displays, gathers and 
manages user input to the application. The business rules 

184 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1127716.1127757&domain=pdf&date_stamp=2000-04-07


tier is responsible for controlling the application execution 
and enforcing business rules. The database tier is 
responsible for interfacing to the underlying DBMS 
(Database Management System) that provides permanent 
physical data storage. 

The three-tier model makes the application less fragile by 
furdaer insulating the client from changes in the other parts 
of the application [2]. It also gives more flexibility in 
changing an application for either the client or server. 

This paper will study these and other Client/Server 
technologies and demonstrate how the technologies can 
work together to build large, complex applications. Section 
2 provides an overview of the problem and some 
background. Section 3 details and contrasts various 
Client/Server architectural styles that leverage Client/Server 
technology. Section 4 highlights the key results and 
describes possible follow-up work. 

2. Overview of  the Problem 
2 . 1 O v e r v i e w  o f  P r e v i o u s  W o r k  
The Client/Server model has been in use for a number of 
years. A large number of  client/server technologies and 
development tools are available in the current market. 
Below is the summarized research in this area. 

The evolution from mainframe-based architecture to the 
Client/Server architecture has been discussed widely [6]. 
The three-tired Client/Server architecture has also been of 
significant interest. An excellent review of the three-tier 
model and related issues is found in the work by Edwards's 
[7]. Numerous articles discussing the middleware 
technology CORBA are found in the literature. Tim 
Berners-Lee and several other people [5] discuss the 
background and architecture of CORBA thoroughly in the 
work. An electronic banking system was designed and 
implemented as a case study by using CORBA technology 
[2]. In a work by Berg the use of Java RMI from an applet 
is discussed [9]. A Java-CORBA solution is found in a 
study available on the World Wide Web [10]. Using a stock 
market simulation [11] develops a comparison of client 
server middleware including CORBA, DCOM, and 
Java/RMI. 

The Web-based Client/Server technologies have been 
addressed widely. First-generation Web-based applications 
for enterprise computing typically use traditional 
Client/Server architecture with CGI programs [12]. In the 
work by Vetter [12] the server-side web applications is also 
addressed by using servlet and ASP. Case studies 

implementing a database retrieval system are implemented 
in servlet by Karl Moss [14]. 

To date there has been no comprehensive study of the 
Client/Server technologies but rather they have been studied 
and addressed separately in wide variety of  papers under 
different situations. It would be very helpful to the 
researcher as well as practitioner to develop a 
comprehensive treatment of these important new 
technologies. 
2.2 Overview of the E-Commerce Project 
It is difficult for the practitioner to maintain an awareness of 
the multitude of options available and select the appropriate 
technology and tool to develop a solution. It is therefore 
important and very useful to develop a case study to help the 
practitioners understand what is available. The project 
designed for this paper is similar to the AMAZON.COM 
online bookstore. In this project customers can retrieve a 
book inventory to fred out which books are available and 
how much they cost. Books can also be ordered online by 
completing an order form. After the order form is submitted 
the book inventory is updated automatically. The project is 
a simplified simulation of a real world case. 

3. Client/Server Architectures 
3.1 I n t r o d u c t i o n  
This section details alternate Client/Server architectures. 
They are as follows: Section 3.2.1 studies shitting 
functionality between client and server; the thin-client model 
and fat-client model will be addressed. Section 3.2.2 applies 
middleware communication technologies, such as CORBA, 
RMI and DCOM to the distributed Client/Server model. 
Section 3.2.3 applies Web-based Client/Server technology. 
Section 3.2.4 applies three-tier Client/Server technology. 
Section 3.2.5 designs distributed three-tier Client/Server 
architectures. The major functions required to accomplish 
this design are listed as follows: 
1. Initiate session, such as launch application and Web 

URL 
2. Display the welcome page. 
3. Connect to the bookstore inventory. 
4a. Form the page of inventory content. 
4b. Display the contents of the inventory 
5a. Form the customer order form. 
5b. Display the customer order form 
5c. Collect order data and submit order information. 
6. Validate the customer's input data, such as the book 

moun t  that customer orders has to be an integer and 

185 



order quantity has to be less than that in stock. 
7. Update the bookstore inventory. 
8a. Form the order-complete notice. 

Both static and dynamic diagrams are drawn for each of 
the models. Static diagrams show the structure and 
connection of components in the system and basic data flow. 
The dynamic diagram traces the message flow sequence 
when the client and server communicate with each other to 
execute transactions online. 

3.2 Client/Server Architectures 
3.2.1 Basic Client/Server Architecture 
Client/Server architecture has two basic models; depending 
on which side the workload is assigned to in the 
Client/Server model. In the thin-client and fat-server model, 
the client computer is responsible for nothing more than 
presentation management; the server is responsible for the 
majority of functionality. (See Figure2) The functions 
implemented by client and server are included in client-side 
and server-side respectively. The fat-client and thin-server 
model is the opposite; the server is responsible only for 
managing the database, the client does almost everything 
else. (See Figure 3) 

The balance of the job load between the client and server 
can be varied from application to application. Invariably 
there are always tradeoffs on this issue. For example, the 
design decision can be to move the user-input validation 
from the server to the client; this would reduce network 
traffic. Another design decision could be to move the order 
form provider from server to client; this would shorten 
customers' waiting time. These are design issues to be 
determined at the application design phase. 
3.2.2 Distributed Client/Server Architecture 
Middleware technology plays the central role in the 
distributed Client/Server architecture. Based on basic 
Client/Server architecture, we expand this model by adding 
CORBA (Common Object Request Broker Architecture), 

8b. Display the order-complete page and ask if order will 
continue. If so, repeat. 

RMI (Remote Method Invocation), and DCOM (Distributed 
Component Object Model) technologies into the 
architecture. CORBA functions as the middleware to 
connect the client program and server program together 
based on the generic Client/Server model (See Figure 4). 
The client machine and the server machine are physically 
connected across networks. The network communication 
protocol is TCP/IP. The ORB (Object Request Broker) is 
the middleman as its name implies. It needs to be installed 
on both client machine and server machine. The ORB 
connects a client application with the object it wants to use, 
the client program only needs to know the object's name and 
server ORB is IIOP (intemet Inter-ORB Protocol), a 
standard protocol for communication between ORBs on 
TCP/IP network protocol [13]. IIOP enables ORB-based 
communication across networks. The client and server 
programs reside individually on the client machine and 
server machine. In order to represent the basic Client/Server 
model, the database resides on the server side locally. 
The service interface is defined in IDL (Interface Definition 

Language) at the application implementation stage. This 
interface presents the clients the services that the server 
provides. By compilation of the IDL file the compiler 
generates a server skeleton and client stub. The actual 
communication between the client and server applications is 
through the client stub and server skeleton. Client stub and 
server skeleton act like local server or local client, the client 
stub is responsible for getting remote object references. 
They are also responsible for marshalling and unmarshalling 
parameters to accomplish language-independence as well as 
interacting with ORB. Client stub and server skeleton are 
included in the implement applications on both client and 
server side. 

Client Program L Request Server Program ] 
Functions: ~,- Functions: 

1, 4b, 5b, 5c and 8b p Responds 2, 3, 4a, 5a, 6, 7 and 8a 

Client-Side Server-Side 
Figure 2 Thin-Client and Fat-Server Architecture 

Client Program 
Functions: 

1, 2, 3, 4a, 4b, 5a, 5b, 
5c, 6, 7, 8a and 8b 

Client-Side 

Request ,J Server Program 
l Functions: 

-~ DB management 
Response 3, 7 

Server-Side 
Figure 3 Fat-Client and Thin-Server Architecture 

186 



CORBA Client I CORBA Server 
, CORBA Server 

CORBA Client / , . . . . .  Database . . . . .  / Appncauon . A,.,..~. 
Appncauon / 

- r -r - '  I 
I I IDLClient [ ~ ~ Skeleton ] I ~ 

_ _  I I ,  Stub ! - ~ , I I 

i oRB i oRB I 

Client Server 
Figure 4 CORBA-Based Client/Server Architecture 

Client Client Stub 

~ e  Display welcome c, ,ntent 

quest for inventory 
n t ~ n t  L. 

Server Skeleton 

~ Obtain service object, marshal pax 

md the parameters across the netwo~ 1~ 

Send the data across the 
network by using ORB 

Display inventory 
.2ontent ~ Unmarshal results 

/ 

4 -j Display order fo 4 and collect and validate data 

. I  Send order form 

Display order complete 
notice and ask if 
continue to order, if so, 
repeat. 

Obtain service object, marshal 
parameters. 

Send the parameters across the 
network by using ORB 

Send the data across the 
network by using ORB 

Unmarshal parameters. 

Server (Database) 

ameters. 

y using ORB 
Unmarshal pa 

Invoke the me~ 

Return the conten~ 
. d  

~_J Marshal results 

maeters. 
)d 
~ Retrieve 

database 

~ Unmarshal paran Leters. 

[nvoke the method ~[-~lpdate 

Return the content ~latabase 

~-[ Marshal r e s u l t s ,  I 

Figure 5 Message Tracing of CORBA-Based Client/Server 

187 



The client and server applications can be implemented in 
many languages, such as C++ and Java. 

Message tracing of the CORBA-based Client/Server 
architecture is shown in Figure 5. It is based on the basic 
Client/Server architecture, therefore, it is more focused on 
the internal communication part between the client and the 
server with middleware involved. The client is responsible 
for providing all the forms and representing pages for the 
customers as well as validating the customer-input data. 

3.2.3 Web-Based Client/Server Architecture 
Because of the growing popularity of the World Wide Web, 
adapting the Client/Server model into this environment is 
very important. Java is inherently a network-capable 
language. The platform independence of a Java program, 
combined with the automatic on-demand deployment of a 
Java applet provided by the Web, makes it widely used on 
the Web. Figure 6 is an HTML with applet embedded Web- 
based Client/Server architecture. 

When a Java application is compiled, the result of 
compilation is a file of Java bytecode. The bytecode resides 
on the server; when the client accesses an HTML page that 
has Java applet embedded program, the bytecode is 
transmitted to the client. This bytecode is then parsed 
through an interpreter that resides on the client. This 
interpreter is called JVM (Java Virtual Machine). Figure 7 is 
the message-tracing diagram based on the pure HTML web- 
based Client/Server architecture. The client application is 
responsible for providing and presenting the forms and 
pages for the user and checking validation for providing and 
presenting the forms and pages for the user and checking 
validation for the user input; the server application is 
responsible for accessing the database. To simplify the 
diagram, the Java applet is placed with the JVM after it is 
downloaded. 

Java RMI is Sun Microsystem's CORBA-like 
architecture. One advantage of RMI over CORBA is that 
the RMI application has less overhead and better 
performance than CORBA. A disadvantage is that RMI is a 
Java-only solution. DCOM is Microsoft proprietary 
distributed Client/Server middleware technology. Refer to 
my thesis for details of these two technologies. 

3.2.4 Three-Tiered Client-Server 
Architecture 
Dividing the application logic and database server into 
separate parts leads to the three-tiered Client/Server model. 
In the Web-based environment, there are several 
technologies that implement this model. CGI (Common 
Gateway Interface), ASP (Active Server Pages), and Servlet 
are among those technologies accessing databases via 
ODBC (Open Database Connectivity) or JDBC (Java 
Database Connectivity) or by using embedded SQL. 

The traditional Web-based Client/Server architecture is 
with CGI scripts (See Figure 8). CGI is a standard for 
interfacing external applications with information servers, 
such as HTTP or Web server [23]. A plain HTML 
document that the Web browser retrieves is static, which 
means it exists in a constant state: a text file that does not 
change. A CGI program, on the other hand, is executed in 
real-time, so that it can output dynamic information. 

This three-tier CGI Client/Server model needs the Web 
browser and Web server installed on both the client machine 
and server machine separately. The Database server resides 
on the same platform as the business application server. 
ODBC is the interface used in this architecture for the server 
application connecting to the database. CGI engine needs to 
be installed on the middle-tier application server machine 

Launch 

Interpr 
i L ~ Request HTML, appl~t 

I " WeU 

I . . . . . . . . . . .  @ . . . . . . . . . .  Browser 
Request / Return HTML, applet ~ T 

[ Client Platform 1 ( ~ ) . _ _ [  Server Platform 

Client Server 

Figure 6 HTML with Applet Web-Based Client/Server Architecture 

Server ] 
Application 

188 



User Web Browser JVM(Applet) Server (dB) Web Server 

Initiate the session Request HTML file 
.~ Return the HTML file ~1 

Web browser sees applet embedded, request to download ~ e  applet 

[~Retrieve 
Download the applet in bytecode to the browser ]~'-hpplet 

Display the welcome 
~age to the user 

Ask for aventory 

Display the 

~Browser start JVM 

~turn HTML stream 

,~Retum the inventory inventory Return HTML 

~fo Ask for ore rm 

Return HTML ~splay the order fon a 

Collect data and subn tit 

Display the order- 
complete page 

Return HTML 

i r  Interpret the applet 

Interpret the applet 

~ S e n d  request Retriex 
~' ~datab~ 

i ~  Interpret the applet 

Interpret the applet, if ~ ~ input is 
valid; send to the server, 

v I otherwise re-send the or~ [er form 

• to user 
sk for dB update 
etum order complete ~ Upd~ 

datat 
I~ notice 

;e 

~ e  

the 

Figure 7 Message-Tracing of the HTML with Applet in Web-Based Client/Server Architecture 

to execute the CGI code. Figure 9 is the message tracing of 
the three-tier web-based Client/Server model. The client is 
responsible for presenting to users the responding pages and 
forms. The server does the rest of work. 

ASP is Microsoft's solution to server side scripting; it is 
a good substitute for CGI [3]. Servlet is a server-side 
component in Java, which dynamically extends the 
functionality of a server. Refer to my thesis for details of 
these two technologies. 

There are other kinds of three-tier Client/Server 
technologies, such as SSJS (Server Side JavaScript) and 
ColdFusion. Because the Client/Server architectures with 
these technologies are similar with those studied above, they 
are not addressed in detail in this paper. 

The database-centered architecture is currently being 
widely used Report generators such as BrioQuery or 
CrystalReport are used to create the user interface, to collect 

user input and to present the results from the database. The 
application logic defines the business roles by using 
embedded SQL to query the database or by using ODBC. 
3.2.5 Design of Distributed Three-Tier 
CHent/Server Architecture 
In the previous sections several different paradigms of the 
Client/Server model have been addressed. Initially the basic 
Client/Server structure was considered by using both thin- 
client fat-server and fat-client thin-server models. The 
distributed Client/Server structure was then considered by 
applying CORBA, DCOM, and RMI middleware 
technologies. Next the basic Client/Server model was 
expanded from LAN to the World Wide Web. The final 
consideration was to expand two-tier Client/Server model to 
three-tier Client/Server model by separating the application 
logic and database server. Technologies such as CGI, ASP, 
and Servlet were used in this paradigm. 

189 



Server 
Application (CGI[ ~ 

Script) [ ~ 

I \  
Execute \ 

I 
Launch ~ - - - ~  I Engine 

7 S  HTML Streams, Files ' 

B ~ e r  .[ . . . . .  ~ - - - F  SeWr~ber ] 
~etum HTML L .J 

f Client ,~-o~r~ [ Server [ [ Platform J "~......._..._.~..._...1 ~ [ Platform J 

Client Application Server 

Database 
AccUses  

I 
DBMS 

I 
Manage 

Database Server 
Figure 8 Three-Tier Web-Based Client/Server with CGI Architecture 

The three-tier Client/Server model discussed above was 
applied on two platforms. The database server was local to 
the application server. To have a real distributed three-tier 
Client/Server system it is necessary to distribute the 
database server so that it is located on an independent 
machine in the network. This improves scalability and 
robustness and allows the server application to access 
multiple databases. 

To distribute a database server database, database 
middleware is required on the application server machine. It 
plays the role as a translator between the database server and 
its clients. A distributed three-tier Web-based Client/Server 
system will now be considered by combining the 
Client/Server technologies that have been introduced in the 
previous sections. Its model is a distributed three-tier Web- 
based system with ASP technology. In this example Oracle 
database is the database server (See Figure 10). 

From Figure 10, we can see that the first tier (client) and 
second tier (application server) are almost identical to the 
three-tiered architecture with CGI shown in Figure 8. The 
major difference is that the database middleware needs to be 
installed on the application server machine. SQL*Net is 

also installed on the third tier or database server machine. 
SQL*Net distributes the workload associated with 
databases, and supports queries and updates against remote 
databases [4]. SQL*Net is also the basic communication 
protocol between the Oracle database and the application 
server database middleware. SQL or ODBC is used as API 
for the application server programs to access the database 
server. TCP/IP is the network communication protocol 
between the application server and database server. Notice 
in Figure 10 how the application server-tier serves Web- 
based client requests by, in turn, being a client to 
middleware-based database services. 

The simulated online book order case study is a simple 
problem. As we showed earlier in this section the case study 
could be designed and implemented by using much less 
complex Client/Server technologies. The above design 
diagram of distributed three-tier Client/Server models offers 
solution for much more complex e-commerce applications. 
It actually is overqualified for this case study. There are 
more comprehensive designs could be used to implement 
more complicated online e-commerce project, such as by 
using CORBA technology on all of the three tiers. 

190 



User Web Browser Web Server Engine (Server scrip0 database 

Rart session 

Display the 
inventory 
, d  
'ql 

Kequest tor 
inventory 

Display 
inventory 

Request for or& 
form 

Display order 
form 

Get users input 
submit for valid 

Display order 
form again to 
get valid input. 

Display order 
~omplete notice 

Request for welcome 
page 

~Return welcome page 

(equest for inventory 

Return inventory 
HTML streams 

r Request for order form 

Return order form 
, q  

n.don Request for 
validation 

Return the order 
omplete notice. 

Invoke engine 

Return content 
a l  

Retrieve the orde 

Invoke engine. 
h 

Leturn HTML 
treams 

Execute CGI script 

Retrieve database 

form 

Return content 

•Execute CGI script 

Return check result back 
to user if input is invalid, 
other update the database 

Update database 

Return result 
41 

Figure 9 Message Tracing of the Three-Tier Web-Based CGI Client/Server Architecture 

The motivation for this presentation is to show that this 
complex structure can be easily scaled up to accommodate 
much more complex applications, such as changing existing 
database server or adding more database servers. 

4. Conclusions 
In this work an overview of the current major Client/Server 

technologies is given. These technologies are illustrated by 
using a simulated online e-commerce book order system. 
The methodology employed was through the use of 
diagrams to give a visual view of the Client/Server 
structures. Message flow was traced in this simulated model 
for selected Client/Server technologies. This paper 
incrementally introduced various Client/Server technologies, 

including the basic Client/Server model, middleware, Web- 
based with applets, and distributed three-tier model. All of 
these technologies were brought together in complicated, yet 
understandable Client/Server architecture. The last 
comprehensive design, the Web-based three-tiered 
distributed Client/Server design was accomplished by 
separating client user interface, business logic, and database 
across the network. Each tier is isolated from the rest of the 
application system. This architecture and the technologies 
they integrate make application development, modification, 
and updating easier and make application scalability and 
robustness possible. 

It is anticipated that the study of these important 
Client/Server technologies will be useful to the researchers 

191 



Launch 

Re~estHTML 

Web 
Browser 

~eturn HTML 

HTML Streams, Files 

Server Application 
( ~ P  Scrip0 

Execute 

ASP 
Engine ] 

Start the engine 

Server 

gQL / 

% 
% 

% 
% 

% 

%, 
%% 

% 
X Manage 

% 

Oracle [ 
Server 

I 
SQL, ODBC 

Database 
Middle.w~e _ _ ~ _ [  SQL*Net 

SQL statements, queries 

I Client TCP/IP " Server TCP/IP dB Server / 

) 
Client Application Server Database Server 

Figure 10 Distributed Three-Tier Web-Based with ASP Technology and Oracle Database Server 
Client/Server Architecture. 

as well as the practitioners. It should provide a useful 
instrument to help developers choose the appropriate 
technologies and development tools. 
R e f e r e n c e s  
[ 1 ] Abhijit Chaudbury, H. Raghav Rao. Introducing 

Client/Server Technologies in Information Systems 
Curricula. The DATA BASE for Advances in Information 
Systems, Fall 1997 Vol. 28, No. 4. 

[2] Jeremy Rosenberger. Teach Yourself CORBA in 14 days. 
SAMs Publishing, 1998. 

[3] Bill Hatfield. Active Server Pages for Dummies. IDG 
BOOKS, 1998. 

[4] Kevin Loney. ORACLE DBA Handbook 7.3 Edition. 
Osborne McGraw-Hill, 1997. 

[5] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, 
Henrik Frystyk Nielsen, and Arthur Secret. The World- 
Wide Web. Communication ofTheACM, August 1994, 

Vol.37, No.8. 
[6] David S. Linthicum. David Linthicum "s guide to 

Client~Server and lntranet Development. John Wiley & 
Sons, Inc, 1997. 

[7] Jeri Edwards and Deborah Devoe. 3-Tier Client~Server 
At Work. Wiley Publishing, 1997. 

[8] David M. Kroenke. Database Processing. Sixth Edition, 
Prentice Hall, 1998. 

[9] CliffBerg. How do I Use Java Remote Method 
Invocation From An Applet. Dr. Dobb's Journal, March 
1997. 

[ 10] Tom Albertson. Distributed object application 
development: The Java-CORBA solution. Techfocus, 
March, 1998. 

[ 11 ] Gopalan Suresh Raj. A Detailed Comparison of 
CORBA, DCOM and Jaw./RMI. 
http://www.execpc.corn/~gopalan/misc/compare html 

192 



[12] Ron Vetter. Web-based Enterprise Computing. 
Computer May 1999, Vol.32, No.5. 

[13] Visibroker for C++ Reference. Version 3.3 white paper. 

[14] Karl Moss. Java Servlets. Me Graw Hill Publishing, 
1998. 

193 




