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Abstract
Bytecode hardware-translation improves the performance of a Java Virtual Machine (JVM)

with small hardware resource and complexity overhead. Instruction folding is a technique to fur-
ther improve the performance of a JVM by reducing the redundancy in its stack-based operations.
However, the variable instruction length of the Java bytecode makes the folding logic complex. In
this paper, we propose a folding scheme with reduced hardware complexity and evaluate its perfor-
mance. For eleven benchmark cases, the proposed scheme folded 7.1% to 36.8% of the bytecodes
which correspond to 74.0% to 99.7% of the PicoJava-II’s folding performance.

1. Introduction

In this section, we present an introduction to the hardware-translation based Java Virtual Machine
and the instruction folding.

1.1. Hardware-Translation of Java Bytecode

Hardware-translation is a technique to enhance the performance of the Java Virtual Machine (JVM) [1]
by dynamically replacing the bytecodes to native machine instructions 1. A small translation logic
is inserted between the fetch and decode stages of the processor pipeline. When a flag in the proces-
sor’s status register indicates that the fetched instruction is a Java bytecode, it is converted into native
instructions by the translation unit. If the native instruction is fetched, it bypasses the translation
logic. In theory, the decode and later stages of the processor pipeline do not see the difference be-
tween the native and Java bytecode execution modes which implies that the changes to the processor
core is kept minimum.

Table 1 shows an example of the bytecode translation. In this example, two local variables
which are assigned local variable indexes 3 and 4, are added and the result is written to the local
variable 3. First two bytecodes, ILOAD 3 and ILOAD 4 push the values of two local variables onto
the stack. Following the ARM Jazelle’s specification, R0 to R3 are used to hold the top four words

1. In the court order [2] dated September 30, 2003, ARM’s Jazelle and Nazomi’s U.S. Patent No. 6,332,215 are dis-
tinguished as follows. While Nazomi’s patent translates Java bytecodes into native instructions before reaching the
decode stage of the CPU, ARM’s Jazelle translates bytecodes into controls signals. While this difference may be
important for the patent issues, it is not essential for the ideas discussed in this paper. Therefore, the readers of this
paper can interchangeably read “native instructions” as “the sequence of control signals corresponding to the native
instructions”, vice versa.
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of the operand stack in this example 2. Therefore, the first two bytecodes are translated into two load
word instructions (LDR) using R7 which holds the address of the local variable 0 and corresponding
offsets. Next bytecode, IADD, pops and adds two top of stack words and pushes the result onto the
stack. This bytecode is translated into a native instruction which adds two registers R0 and R1.
The last bytecode, ISTORE 3 pops the top of stack word and writes it to the local variable 3. This
bytecode is replaced with a store word instruction (STR).

Bytecode ARM Instruction
ILOAD 3 LDR R0, [R7, #12]
ILOAD 4 LDR R1 [R7, #16]
IADD ADD R0, R1
ISTORE 3 STR R0, [R7, #12]

Table 1: An example of bytecode hardware-translation.

As shown in the above example, the translation unit reads a single bytecode at a time and
generates a short sequence of native machine instruction(s). The hardware-translation is limited to
the simple 134 bytecodes such as load, store, and arithmetic/logical operations on the stack [3].
Complex bytecodes, such as new (create a new object), are emulated by the software. By limiting
the complexity of the translation mechanism, the hardware resource overhead and the performance
gain are balanced: in the case of Jazelle, it is reported that 8x performance gain was achieved by
12K gates, while typical dedicated or co-processors for JVMs are around 20-25K [4].

1.2. Instruction Folding of Java Bytecode
As shown in the bytecode sequence in Table 1, there is inherent redundancy in the Java bytecode
which comes from its stack architecture. In the above example, it took four bytecodes to add two
variables and write the result back to one of them. Almost all microprocessors can do an equiva-
lent operation with a single instruction, such as ADD A, B. This technique of merging multiple
bytecodes into a single instruction is called the instruction folding and can be found in Java pro-
cessors [8]. However, there are two issues when applying the instruction folding scheme to the
hardware-translation based JVMs. First, most embedded microprocessors, which are the target
platform of the hardware-translation JVM, are RISC architectures. This implies that arithmetic and
logic operations cannot take memory locations as operands. If the part of operand stack for the local
variables is allocated on the main memory (which is likely as shown in the example in Table 1), the
instruction folding is not possible. Previously, we proposed to add a small register file to the data-
path of the JVM to reduce the number of memory accesses caused by the local variables [7]. This
extra register file (called local variable cache in [7]) also makes instruction folding possible on the
hardware-translation based JVMs.

Another issue is the hardware complexity of the logic circuit that detects foldable bytecode
sequences. In Sun’s PicoJava-II, up to four bytecodes are folded into a single microprocessor op-
eration, meaning four bytecodes are decoded simultaneously. Compared to the single bytecode

2. Since the number of registers assigned to hold operand stack entries is fixed to four, they are considered to be used as
a circular buffer with a modulo 4 pointer to R0 to R3 [3]. If more than four items are pushed onto the stack, spill and
restore operations are required. For the sake of simplicity, however, these operations are omitted in this example.
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decoding policy of the hardware translation, decoding four bytecodes for folding detection may be
too complex. Moreover, the variable length of Java bytecode adds more complexity to the detection
of the foldable sequences. The first bytecode opcode is uniquely pointed to by the program counter
(PC), but the next bytecode could be either at PC +1, 2 or even at PC +3 depending on the length
of the first bytecode (excluding non-foldable bytecodes). This means that to obtain the i-th opcode,
where i = 2 · · · 4, we have to decode 1 · · · i − 1 bytecodes beforehand.

In this paper, we present an instruction folding mechanism that provides similar performance
to that of PicoJava-II with a reduced hardware complexity. The proposed scheme is evaluated by
bytecode level simulations and analysis of bytecode sequence patterns that contribute to instruction
folding is presented.

The rest of this paper is organized as follows. In the next section, an overview of PicoJava-II’s
folding scheme is presented. In Section 3, we propose an instruction folding scheme that alleviates
the hardware complexity of PicoJava-II’s scheme. In Section 4, the experimental environment in-
cluding Java Virtual Machine and benchmark programs are first described, and then the proposed
schemed is evaluated by comparing it to the performance of the PicoJava-II through simulations.
Related work and conclusions are presented in Sections 5 and 6, respectively.

2. PicoJava-II’s Instruction Folding Scheme
In this section, the instruction folding scheme of Sun’s PicoJava-II and its source of hardware com-
plexity are described. In PicoJava-II, Java bytecodes are classified into six types [8]:

LV: A local variable load or load from global register or push constant (e. g. ILOAD)

OP: An operation that uses the top two entries of stack and that produces a one-word result (IADD)

BG2: An operation that uses the top two entries of the stack and breaks the group (IF ICMPEQ)

BG1: An operation that uses only the topmost entry of the stack and breaks the group (IFEQ)

MEM: A local variable store, global register store, and memory load (ISTORE)

NF: A nonfoldable instruction (GOTO)

Based on this classification, the following nine bytecode sequences (groups) are defined:

Group 1 LV LV OP MEM

Group 2 LV LV OP

Group 3 LV LV BG2

Group 4 LV OP MEM

Group 5 LV BG2

Group 6 LV BG1

Group 7 LV OP

Group 8 LV MEM

3
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Group 9 OP MEM

Figure 1 shows the block diagram of the PicoJava-II’s foldable sequence detection circuit. Note
that this diagram is reproduced from [8] with the following changes. First, while PicoJava-II has
extended two-byte opcode instructions, they are specific to PicoJava-II’s implementation and unre-
lated to other JVMs in general, including ours. Therefore, the folding type decoders handle only
single byte opcodes. Second, in PicoJava-II, each instruction byte is associated with the length of
the bytecode by assuming that the byte is the opcode. This instruction length is decoded in the
instruction cache which is in the fetch stage of the pipeline. In this paper, we assume that the hard-
ware translation module of the Java bytecode is inserted between the fetch and decode stages and
try to minimize the changes to the processor core. Therefore, unlike PicoJava-II, decoding of the
instruction length is also performed in the hardware translation module.

i0 i1 i2 i3 i4 i5 i6

Instruction Buffer

fdec fdec fdec fdec fdec fdec fdec
Fold
Logic

t0
t1
t2
t3

it0 = t0 it1 it2 it3 it4 it5 it6

l0 =  
acc_len0

l1 l2 l3 l4 l5 l6

Group 1

Group 9

t1 t3t2

it1 it3it2

3-to-1

it3 it6

4-to-1

it2 it6

5-to-1
acc_len0 acc_len1 acc_len2

l1 l3l2

3-to-1

l2 l6

5-to-1

l3 l6

4-to-1

acc_len1 acc_len2 acc_len3

Figure 1: PicoJava-II’s foldable bytecode detection logic.

In the instruction buffer, there are seven entries and each entry consists of an instruction byte (i0
to i6). All instruction bytes are speculatively decoded by folding type decoders (fdec) and generate
instruction types (it0 to it6) and instruction lengths (l0 to l6). The first byte in the buffer (i0) is
always the opcode of the first bytecode (b0). Therefore, it0 is actually the folding type of the first
bytecode (t0).

Since the length of foldable bytecodes varies from one (e. g. IADD) to three (e. g. SIPUSH),
the length of the first bytecode (l0) is given to a 3-to-1 MUX to select the folding type of the
second bytecode (t1) from it1 to it3. The length of the first bytecode (l0) is also used to select the
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accumulated length of the first and the second bytecodes (acc len1) from l1 to l3, which in turn
selects the folding type of the third bytecode (t2) from it2 to it6 as well as to select the accumulated
length of the first through third bytecodes (acc len2).

Similarly, acc len2 selects the folding type of the fourth bytecode (t3) from it3 to it6 and the
accumulated length of the first through fourth bytecodes (acc len3).

The folding detection logic takes folding types of all four bytecodes (t0 to t3) and enables one
of nine output (Group 1 to Group 9) if any foldable sequences are detected. Since a longer sequence
has a priority, for example, for an LV LV OP MEM sequence, only Group 1 output is enabled
(i. e. Group 2 output is disabled).

Note that, the length of the first bytecode (l0) is propagated through three multiplexers (MUXes)
to determine the folding type of the fourth bytecode (t3). t3 is then fed into the folding detection
logic and then finally a possible folding sequence is determined.

It has been pointed out that the instruction folding unit (IFU) can be a critical path in the decode
stage of the PicoJava-II processor pipeline [9]. Together with the fact that the hardware-translation
is performed on a single bytecode basis, we consider it is worth re-exploring the design space of the
instruction folding logic by taking the hardware overhead and complexity into account.

3. Three Bytecode Folding Scheme with Reduced Complexity
In this section, we propose an instruction folding scheme that takes up to three bytecodes with
reduced hardware complexity and still provides a similar performance to that of PicoJava-II. The
primary source of complexity in the PicoJava-II’s folding mechanism is the variable length of the
bytecode, especially, the length of the LV type bytecodes that varies from one to three bytes. To
reduce this complexity, we modified the PicoJava-II’s scheme in the following two points. First,
we limit the number of folding bytecodes to three (i. e. Group 1 is excluded). Next, we exclude
SIPUSH, which is the only three byte long LV type bytecode and handle it as an NF bytecode.

As we will see in the next section, in general, the fraction of Group 1 sequence (LV LV OP
MEM) is small and the instruction count of SIPUSH is also small compared to other LV bytecodes.
The lengths of MEM, BG1 and BG2 are also variable. However, these bytecodes are always at the
end of the foldable sequence and hence do not affect the position of the opcodes of other bytecodes
in a foldable sequence.

Figure 2 shows the block diagram of the proposed folding scheme. While the instruction buffer
still stores seven instruction bytes, it only (speculatively) decodes the folding types (it0 to it4) and
lengths (l0 to l4) of the first five bytes (i0 to i4) since the opcode of the third bytecode in foldable
sequences does not go beyond i4. The folding type of the second bytecode (t1) is selected from
either it1 or it2 based on the length of the first bytecode (acc len0) which is actually l0. The accu-
mulated instruction lengths up to second and third bytecodes (acc len1 and acc len12, respectively)
are obtained in the same manner as in the PicoJava-II with fewer candidates.

The hardware complexity of the proposed mechanism is reduced in the following points. First,
since we have dropped Group 1, the length of the multiplexer chain to obtain the accumulated
instruction lengths has reduced from three to two. Second, the sizes of the MUXes for t1 and t2 as
well as acc len1 and acc len2 have changed from 3-to-1 and 5-to-1 to 2-to-1 and 3-to-1, respectively.
Moreover, the number of folding type decoders (fdec) has been reduced from seven to five.

Block diagrams in Figures 1 and 2 do not include the circuit which handles the cases where the
bytecode sequence is foldable but its length exceeds the size of the instruction buffer. In such a
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Figure 2: Proposed foldable bytecode detection logic.

case, the folding type of the corresponding bytecode must be changed to NF regardless of its prede-
coded folding type. The proposed scheme is also simpler than PicoJava-II in this part because only
acc len0 = 1 or 2 and acc len1 = 2 to 4 are valid for the folding type signals t1 and t2, respectively.
Therefore, all the instruction bytes for a foldable sequence are always in the instruction buffer in the
propose mechanism.

A complete and precise estimation of the hardware overhead and speed cannot be obtained
without (at least) the datapath that is controlled by the folding pattern signals detected in the pattern
detection module. At present, we do not have such a complete model of a hardware-translation based
JVM and also the emphasis of this paper is placed on the optimization of the folding sequences.
However, as a metrics of the hardware complexity and operation speed, we wrote Verilog models
for the circuits in Figures 1 and 2 and synthesized them under the 0.35µ rule. In PicoJava-II’s model
(Figure 1), the delay of the longest path (from i0 to Group 1) was 2.82ns. On the other hand, in the
proposed scheme (Figure 2), the delay of the longest path (from i0 to Group 2) was 2.50ns, which
is a reduction of 11%. We also compared the logic circuit areas and it was found that the proposed
scheme occupied 35% less area than that of PicoJava-II.

6



INSTRUCTION FOLDING IN A HARDWARE-TRANSLATION BASED JAVA VIRTUAL MACHINE

4. Performance Evaluation

In this section, we evaluate the performance of the proposed folding mechanism and compare it to
that of PicoJava-II. We also use the two bytecode version of PicoJava-II’s mechanism which only
works for Groups 5 to 9 as another reference. First, we present the simulation environment including
JVM and benchmark programs and the simulation results follow.

4.1. Experimental Environment

For the JVM and Java Runtime Environment, we use Kaffe version 1.0.7 [10]. Kaffe is an open-
source implementation of the JVM and we compiled it with “–with-engine=intrp” option so that all
bytecodes are interpreted. It is assumed that a 16-entry local variable cache is attached to the JVM
which works as described in [7]. This size of the local variable cache can accommodate all local
variables of DES, ECM and PNG, and is effectively large enough for SAXON with XSLTMark test
case documents and GrinderBench.

Note that, the LV type bytecodes can be further divided into two classes. The first class is those
actually accessing local variables, such as ILOAD. If the local variable cache does not have a valid
copy of the accessed local variable, it must be loaded from the memory. Therefore, for example, a
Group 7 sequence ILOAD 1, IADD, is effectively not folded if the local variable 1 is not present
in the local variable cache. Another class of LV bytecodes is those not actually accessing local
variables, such as ICONST 0. When such a bytecode appears in any foldable sequence, it is always
folded.

The benchmark programs used for the evaluation are listed in Table 2. The first set of benchmark
programs is SAXON Version 6.3, an XSLT processor [11], driven by four test case XML documents
from XSLTMark [12]. We chose four test case documents, chart, decoy, encrypt and trend, based
on the average number of bytecode executed for a method invocation and the functional categories
defined in the XSLTMark.

The Embedded CaffeineMark consists of five tests, Sieve, Loop, Logic, Method and Float [13].
Each of these tests is basic and tries to measure various aspects of JVM. Composite results of all
five tests are used.

DES is a DES based encryption and decryption of a text file using the Bouncy Castle Crypto
Package [14]. A text file of 5KB is first encrypted and then decrypted using the sample program
included in the Bouncy Castle Crypto package
(src/org/bouncycastle/crypto/examples/DESExample.java).

PNG extracts properties of a PNG image file (512 × 512 from [16]) such as pixel size and bit
depth using com.sixlegs.png PNG decoder and its sample program
PropertiesExample.java [15].

Next four benchmark programs, chess, crypto, kxml and pngdecode are from GrinderBench [5].
It is a suite of Java kernels developed by the Embedded Microprocessor Benchmark Consortium
(EEMBC) [6] and focuses on the Connected Limited Device Configuration (CLDC) part of the
Java 2 Micro Edition (J2ME).

The fraction of each bytecode type and the average run length for each benchmark program are
presented in Tables 3. The average run length is the number of contiguously executed bytecodes
without interruption by invocation or return. The higher this number, the more chances of folding.
The number in parentheses in the LV column indicates the fraction of three-byte LV bytecode (SI-
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Benchmark Description
SAXON Version 6.0 with XSLTMark 1.2.0

chart Generates an HTML chart of some sales data
(select, control).

decoy Simple template with decoy patterns to distract
the matching process (match).

encrypt Performs a Rot-13 operation on all element names and text nodes
(function).

trend Computes trends in the input data (select, functions).
ECM Embedded CaffeineMark (Sieve, Loop, Logic, Method and Float).
DES DES encryption/decryption using the Bouncy Castle Crypto
PNG Extract PNG image properties using com.sixlegs.png

GrinderBench
chess A chess playing engine that determines a set of chess moves
crypto Java implementations of DES, DESede, IDEA Blowfish

and Twofish algorithms.
kxml Measures XML parsing and/or DOM tree manipulation.
png Decodes PNG images

Table 2: Benchmark program description.

PUSH). Since this bytecode is handled as an NF in the proposed scheme, this number indicates the
cases where PicoJava-II can fold instructions but the proposed scheme cannot.

4.2. Simulation Results

In this section, we present and analyze the results of simulations. Figure 3 shows the breakdown of
the folded bytecodes for SAXON with four XSLTMark test cases. Compared to other benchmark
programs, the fractions of folded bytecodes for SAXON are small. Two reasons can be found in
Tables 3. First, they have high fractions of non-foldable bytecode (NF) ranging from 26.8% to
40.3%. Second, the average run lengths are short, leading to fewer chances of folding. Among
these four cases, the highest folding performance is archived in chart. With the proposed scheme,
18.0% of bytecodes are folded, which is 96% of PicoJava-II (18.8%) as shown in Table 4. While
the difference is small, Groups 1, 4 and 7 are major contributors to it.

The performance of the proposed scheme is almost the same as PicoJava-II’s for other three
test cases (98.3, 98.8 and 98.5%). The proposed scheme cannot fold Group 1, but more Groups 2
and 9 are folded in the proposed scheme. The two bytecode version of PicoJava-II’s scheme (PJ2B)
performs significantly worse than the other two schemes (68.6% to 81.9% of PicoJava-II). In PJ2B,
three and four byte sequences (Group 1 to 4) are partially detected as two byte sequences and
folded. The increases resulting from partially folded sequences are mostly in Group 5 and 7. The
most evident case is Group 5 in chart in which PJ2B folds 4.6% more bytecodes than the original
PicoJava-II. Decoy has a shorter run length and a higher fraction of NF bytecode than those of
encrypt. However, all three folding schemes perform better on decoy than on encrypt.
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Bench Bytecode Types (%) Run
-mark LV OP BG1 BG2 MEM NF Length

SAXON with XSLTMark
chart 44.4 (0.7) 4.3 7.7 12.6 4.1 26.8 11.6
decoy 44.4 (0.3) 2.3 8.3 9.9 4.0 31.1 8.8
encrypt 42.5 (0.1) 4.0 7.4 14.0 3.3 28.8 10.8
trend 39.9 (0.1) 1.6 9.8 5.8 2.6 40.3 4.9
ECM 45.3 (0.0) 5.3 9.8 13.8 7.1 18.9 69.0
DES 43.9 (0.7) 24.5 1.7 10.1 9.2 10.7 63.3
PNG 42.8 (2.5) 11.0 3.8 13.3 2.9 26.3 24.3

GrinderBench
chess 44.1 (0.0) 6.1 4.5 16.5 3.5 25.4 33.6
crypto 45.6 (2.0) 21.8 2.4 9.5 11.0 9.7 35.0
kxml 43.3 (0.6) 3.6 8.8 12.4 2.7 29.3 10.8
pngdecode 39.6 (1.1) 9.6 10.6 5.9 9.1 25.1 14.2

Table 3: Benchmark program bytecode analysis. The numbers in parentheses in the LV column
are the fractions of three byte LV bytecode (i. e. SIPUSH). The right-most column (Run
Length) shows the average number of contiguously executed bytecodes without interrup-
tion by invocation or return.

Figure 4 shows the breakdown of the folded bytecodes in the Embedded CaffeineMark, DES
and PNG. The average run length of Embedded CaffeineMark (ECM) is 69.0 bytecodes, which is
the longest among the benchmark programs used in this paper. This long sequence of uninterrupted
bytecodes leads to high folding ratios (24.0% to 29.8%). One thing that should be noted is that,
while 7.1% of bytecodes are of MEM type, we hardly see Group 4 in PicoJava-II and the proposed
scheme. Instead, 3.1% of bytecodes are folded in Group 8 in all three schemes. Therefore, a large
fraction of MEM bytecodes follow LVs: meaning either they copy one LV to another (e. g. ILOAD 1
and ISTORE 2) or initialize an LV by a constant (ICONST 2 and ISTORE 3). 1.6% of bytecodes
are folded in Group 1 in PicoJava-II. However, when it is compared to the sums of Groups 1 and 2
in the proposed scheme, the difference shrinks to 0.5%. This implies that the increase of Group 2
in the proposed scheme effectively absorbs most of the Group 1 sequences. The proposed scheme
achieves a relative performance of 98.1% of PicoJava-II’s scheme. In PJ2B, we see that the fraction
of Group 7 is significantly higher than PicoJava-II and the proposed scheme (3.6% against 0.4%).
This is possibly because the LV OP part of Groups 1 and 2 were detected and folded as Group 7 in
PJ2B. The relative performance of PJ2B was 80.6%.

DES has a very long average run length (63.3, next to ECM) and the lowest fraction of NF
bytecodes (10.7%). It also has a very high fraction of OP bytecodes (24.5%), which leads to large
numbers of folded bytecodes in Groups 2, 7 and 9. These two properties confirm the computation-
intensive nature of DES encryption/decryption algorithms. While the fraction of MEM bytecodes
is the second highest in the benchmarks used, the fraction of Group 8 foldings is quite low (0.1%).
This means, unlike ECM, MEM bytecodes are used to store the results of OP bytecodes rather than
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Figure 3: Breakdown of the folded bytecodes for SAXON with XSLTMark test cases. For each
benchmark, three bars indicate Two-Bytecode version of PicoJava-II, proposed scheme,
PicoJava-II’s scheme (left to right).

initialization or copy of local variables. In DES, the fractions of three-byte LV bytecodes (SIPUSH)
is relatively high (0.7%) and the fraction of Group 1 is also high among the benchmark programs
used. Since SIPUSH and Group 1 are excluded in the proposed scheme, these two properties are
disadvantages for the proposed scheme. The fraction of Group 2 in the proposed scheme is not
high enough to cover the Group 1 sequences which are folded in PicoJava-II and also the fraction
of Group 7 is slightly lower in the proposed scheme. The proposed scheme performed 95.2% of
PicoJava-II’s folding scheme. In PJ2B, we see that the bar for Group 7 is much longer than in
PicoJava-II or in the proposed scheme, but it is not long enough to cover Groups 1 to 4 that are
missing in PJ2B. The relative performance of PJ2B is only 67.1% of the original four-byte folding
scheme.

PNG has a relative short run length and a high NF bytecode fraction. These characteristics make
the folding performance in PNG similar to those in SAXON. Its fraction of NF bytecode is 26.3%
and the average run length is only 24.3 bytecodes. As a result, even with the PicoJava-II’s scheme,
only 17.7% of bytecodes are folded. Also, 2.9% of bytecodes are folded as Group 1 in PicoJava-II
and 2.5% of bytecodes are SIPUSH, both of which are disadvantages for the proposed scheme. The
relative performance of the proposed scheme is 88.2%. With PJ2B, the fractions of Groups 5 and 7
are increased significantly by partially folding the longer sequences (Groups 1 to 4). Its relative
performance is 77.2%.
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Figure 4: Embedded CaffeineMark, DES, PNG. For each benchmark, results of Two-Bytecode ver-
sion of PicoJava-II, proposed scheme, PicoJava-II’s scheme are shown from left to right.

GrinderBench is a collection of Java applications for embedded platforms and it examines dif-
ferent aspects JVMs. The behavior of crypto, kxml and pngdecode have some similarities with
other benchmark programs used in this paper: DES, SAXON and PNG, respectively. However, the
differences in their run time behaviors look to be more emphasized. Consequently, they also show
quite different folding performance (Figure 5).

Chess has a relative long run length. The difference between the performance of the proposed
scheme and that of PicoJava-II is quite small. The relative performance of the proposed scheme is
99.7%, which is the best among the benchmark progrms used in this paper.

On the contrary, the difference between folding schemes is stressed in crypto. It has the lowest
fraction of NF bytecode (9.7%) and a moderate run length (35.0 bytecodes). These factors contribute
to the good folding performance of PicoJava-II (38.1%). However, 2.0% of bytecodes are SIPUSH
and 8.4% of bytecodes are folded as Group 1. These two cases cannot be handled by the proposed
scheme and they lower the relative performance of the proposed scheme to 88.1%. As explained
earlier, these performance characteristics of crypto are common to DES, but the difference is more
emphasized.

Kxml’s behavior is similar to those of SAXON with XSLT test cases. Its run length is only
10.8 bytecodes and the fraction of NF bytecode is 29.3%. These factors explain the relatively low
folding performance of 18.1% in PicoJava-II and 17.1% in the proposed scheme. In addition, we can
observe that the largest fraction of folded bytecodes are in Group 3 (LV LV BG2). We can consider
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Folding SAXON with XSLTMark
Scheme chart decoy encrypt trend
PJ2B 68.6 70.3 81.9 79.5
Proposed 96.0 98.3 98.8 98.5

Folding Other Benchmarks
Scheme ECM DES PNG
PJ2B 80.6 67.1 77.2
Proposed 98.1 95.2 88.2

Folding GrinderBench
Scheme chess crypto kxml pngdecode
PJ2B 77.3 66.1 66.5 66.2
Proposed 99.7 88.1 94.2 74.0

Table 4: Relative performance of two-bytecode version of PicoJava-II (PJ2B) and the proposed
scheme normalized to PicoJava-II’s four-bytecode folding scheme.

that kxml uses more conditional branches than arithmetic and logical operations. The fractions of
OP and BG2 bytecode, 3.6% and 12.4%, also support this idea.

It is expected that pngdecode exhibits the similar behavior as that of PNG. However, the dif-
ference among folding schemes is, again, more stressed. The relative performance of the proposed
scheme is only 74.0%, which is the worst figure among the benchmark programs used in this paper.
The main contributor to this difference is obvious, the folding capability of Group 1. PicoJava-
II’s scheme folds 12.9% of the total bytecodes as Group 1, which is not possible in the proposed
scheme. Another reason for the difference in the relative performance is SIPUSH bytecodes, which
take 1.1% of the total number of bytecodes executed in pngdecode. This three-byte long bytecode
is considered to be the source of differences in Groups 3 and 7.

The relative performance of PJ2B for GrinderBench ranges from 66.1% to 77.3%, which is
significantly lower than that of the proposed scheme, ranging from 74.0% to 99.7%.

In principle, it is possible that opcodes form a foldable sequence but the folding of the sequence
is not performed in the PicoJava-II. This is because, while the opcode of the last bytecode in the
foldable sequence is present in the instruction buffer, its parameter is not. For example, the sequence
of SIPUSH 0x100, ILOAD 4, IADD, ISTORE 5 is a Group 1 sequence and is eight byte long. While
the opcode of the last bytecode ISTORE 5 is in the instruction buffer (and its folding type is decoded
as MEM), its parameter (local variable index 5) is not. Therefore, this sequence cannot be folded
as a Group 1. However, for the simulations in this paper, we did not see any instance of such
“parameter overflow” in PicoJava-II, even for PNG which has the highest fraction of SIPUSH.
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Figure 5: EEMBC benchmark programs. For each benchmark, results of two-bytecode version of
PicoJava-II, proposed scheme, PicoJava-II’s scheme are shown from left to right.

5. Related Work
ARM’s Jazelle and Nazomi’s Jstar are commercial products that incorporate hardware-translation
in their JVMs. In this paper, the base design of the hardware-translation based JVM assumed the
information published in ARM’s white paper [3]. However, the ideas presented in this paper do
not depend on the features specific to ARM or Nazomi’s architectures and should be applicable to
JVMs on most embedded RISC microprocessors.

PicoJava-II [8] directly executes Java bytecodes by the hardware. Since a pure JVM is not
sufficient to build a real system, PicoJava’s instruction set is extended for running applications
written in “legacy” programming languages such as C/C++. Therefore, its design approach takes an
opposite direction from the hardware-translation which tries to execute Java bytecodes by adding a
small translation logic to the standard RISC type microprocessors. Our proposed instruction folding
scheme is based on PicoJava-II.

Radhakrishnan et. al studied the microarchitecture of PicoJava-II and pointed out the instruction
folding was the critical path of the processor pipeline [9]. To solve this issue, they proposed to move
the instruction folding module from the decode stage of the pipeline to the instruction fill unit in
the fetch stage. They also proposed to store the folded bytecodes in a dedicated cache (decoded
bytecode cache) so that the folded bytecodes would be executed faster in the future.

Kim and Chang proposed a more aggressive folding mechanism which tried to find two or more
foldable instruction sequences in which one breaks the sequence of the others [17]. The emphasis
was placed on how to find such multiple sequences in the instruction stream and they did not work
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on how to fold each basic sequence (such as LV LV OP MEM). Moreover, since their scheme detects
the foldable sequences by a state machine, it can be only used for ahead-of-time folding (and used
later by storing it in a decoded bytecode cache as in [9]). Otherwise, if it is implemented by a
combinational circuit, the size of the detection logic and instruction buffer will be larger than that
for single sequence folding schemes.

Some embedded RISC processors can combine multiple operations into an instruction [18].
Such a combined instruction is converted to multiple operations before the decoding stage of the
processor pipeline. This mechanism allows the RISC style instruction set (leading to a fixed instruc-
tion length and a simple decoding logic) and also a higher code density (reducing the instruction
memory size). It is possible to pre-compile Java bytecodes into native instructions for a higher
code density before deploying the program. However, one of the advantages of JVMs, the platform
independence, will be lost in this case.

6. Conclusions and Future Work

In this paper, we proposed an instruction folding scheme for a hardware-translation based JVM.
One of the sources of hardware complexity in the instruction folding in the PicoJava-II is the vari-
able length of the bytecode format. The proposed scheme alleviated this problem by removing
the SIPUSH which is the only three-byte long LV bytecode in the folding type classification of
PicoJava-II. We also excluded the four-byte code sequence (LV LV OP MEM, Group 1 in PicoJava-
II) so that the number of bytecodes decoded simultaneously is reduced from four to three. The
proposed scheme achieved 74.0% to 99.7% of the PicoJava-II’s scheme for seven benchmarks. In
the image file analysis programs (PNG and pngdecode from GrinderBench), the effect of removing
Group 1 sequence and SIPUSH bytecode were most significant. If we were to exclude these two
programs, the worst relative performance of the proposed scheme would increase to 88.1%.

Currently, a Group 1 sequence (LV LV OP MEM) is partially folded as a Group 2 sequence (LV
LV OP) in the proposed scheme. However, if the local variable accessed in the first LV is not present
in the local variable cache, we should have more chances of folding by discarding the first LV and
handle the (partial) sequence of LV OP MEM as Group 4. Note that, LV loads a local variable while
MEM stores to a local variable. Therefore, a MEM bytecode does not require the local variable to
be present in the local variable cache and hence its access is hit as long as the index of the variable
is with in the range of the local variable cache. A possible improvement for the proposed scheme is
to look up the status of the local variable cache before folding. With this scheme, we can expect the
folding ratio to be increased at the cost of local variable cache look-up.

In this paper, we evaluated the effectiveness of the proposed instruction scheme by the fraction
of folded bytecodes. Actually, foldable bytecodes are only one of three types of codes executed on a
JVM, other two are non-foldable (that include bytecodes that cannot be hardware-translated and are
handled by software emulation) and native methods. We plan to develop a more complete model of
a hardware-translation based JVM so that we can evaluate the performance by total execution time
and power consumption of all three types of codes mentioned above.

Recently, ARM has combined the hardware translation with dynamic compilation technique [19].
The bytecode execution of a method takes advantages of hardware-translation during the first few
invocations. When the method is identified to be executed frequently, it is complied dynamically.
Such a hybrid execution model should also be considered for more realistic performance evaluation.
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