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Abstract

Shape decomposition and skeletonization share many common properties and applications. However, they
are generally treated as independent computations. In this paper, we propose an iterative approach that simul-
taneously generates a hierarchical shape decomposition and a corresponding set of multi-resolution skeletons.
In our method, a skeleton of a model is extracted from the components of its decomposition — that is, both
processes and the qualities of their results are interdependent. In particular, if the quality of the extracted
skeleton does not meed some user specified criteria, then the model is decomposed into finer components and
a new skeleton is extracted from these components. The process of simultaneous shape decomposition and
skeletonization iterates until the quality of the skeleton becomes satisfactory. We provide evidence that the
proposed framework is efficient and robust under perturbation and deformation. We also demonstrate that
our results can readily be used in problems including skeletal deformations and virtual reality navigation.
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1 Introduction

Shape decomposition partitions a model into (visually) meaningful components. Recently shape decomposition
has been applied to texture mapping [39], shape manipulation [23], shape matching [33, 16, 18], and collision
detection [27]. Early work on shape decomposition can be found in pattern recognition and computer vision; see
surveys in [38, 48].

A skeleton is a lower dimensional object that essentially represents the shape of its target object. Because a
skeleton is simpler than the original object, many operations, e.g., shape recognition and deformation, can be
performed more efficiently on the skeleton than on the full object. The process of generating such a skeleton is
called skeleton extraction or skeletonization. Examples of automatic skeleton extraction include the Medial Axis
Transform (MAT) [9] and skeletonization into a one dimensional poly-line skeleton (or simply 1D skeleton) [12,
28, 23].

Skeletons have been extracted from different sources, such as voxel (image) based data [50, 36, 8], boundary
represented models [13, 2, 47], and scattered points [45], and for different purposes, such as shape description
[40, 42], shape approximation [3, 49], similarity estimation [19], collision detection [10, 22], biological applications
[1], navigation in virtual environments [26], and animation [44, 23].

Although it has been noted before that a good shape decomposition can be used to extract a high quality
skeleton [28, 23] and that a high quality skeleton can be used to produce a good decomposition [27], this relation-
ship between shape decomposition and skeleton extraction is a relatively unexplored concept, especially in 3D.
Instead, when a relationship is noted, the skeletons are usually treated as an intermediate result or a by-product
of the shape decomposition.

In this paper, we propose an integrated framework for simultaneous shape decomposition and skeleton extrac-
tion that not only acknowledges, but actually exploits the interdependence between these two operations. First,
a simple skeleton is extracted from the components of the current decomposition. Then, this extracted skeleton is
used to evaluate the quality of the decomposition. Finally, if the skeleton is satisfactory under some user defined
criteria, we report the skeleton and the decomposition as our final results. Otherwise, the components are further
decomposed into finer parts using approximate convex decomposition (ACD) [28, 30, 29], which decomposes a
given component by ‘cutting’ its most concave features. Figure 1 illustrates this proposed framework and Figure 2
shows an example of the co-evolution process of the shape decomposition and skeleton extraction.

acceptable

Compute Skeleton S from {Ci}

{Ci}

Decompose {Ci}

Check Quality of S

not
acceptable

Figure 1: Simultaneous shape decomposition and skeleton extraction. The set {Ci} is a decomposition of the
input model P and initially {Ci} = {P}.

Our proposed approach has several advantages and makes contributions as listed below.

• This recursive refinement strategy generates multi-resolution skeletons, from coarse to fine levels of detail,
which is highly desirable for some applications.

• Divide-and-conquer algorithms which operate on the decompositions or skeletons can be more efficient
because refinement is applied to the more complex regions but not to areas with less variation.

• The extracted skeleton is invariant under translation, rotation, and uniform scale, and is not very sensitive
to the boundary noise and skeletal deformations.

• Our approach does not require any pre-processing, e.g., model simplification, or any post-processing, e.g.,
skeleton pruning, which are required by many of the existing methods, e.g., [27, 23, 47].

• Our framework is general enough to work for both 2D polygons and 3D polyhedra.
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Figure 2: The skeleton (shown in the lower row) evolves with the shape decomposition (shown in the upper row).

2 Related Work

Both shape decomposition and skeleton extraction have been studied for decades and there is a large amount
of previous work. In this review, we concentrate on recent developments most relevant to our proposed method.

Shape decomposition. Inspired by psychological studies, such as recognition by components [7] and the
minima rule [20, 21], methods have been proposed to partition models at salient features to produce visually
meaningful components. In pattern recognition, Rom and Medioni [38] partition a model into a set of tubular
(generalized cylinder) shapes according to their curvature properties. As a preprocessing step for mesh generation,
Sonthi et al. [32] identify closed sets (loops) of edges with required convexity and use them to decompose a model
into solid parts. However, these methods work best with simple models with sharp internal angles, such as
mechanical parts.

Methods that are applicable to models with general shapes also exist. Wu and Levine [48] propose a partitioning
method based on a simulated electrical charge distribution on the surface of a model. Mangan and Whitaker
[33] and Page et al. [35] decompose polygonal meshes by applying watershed segmentation with curvature
computation. Li et al. [27] decompose polygonal meshes at critical points along skeletons obtained via model
simplification. Dey et al. [16] segment a model, in R

2 or R
3, into stable manifolds, which are collections of

Delaunay complexes of sampled points on the boundary. Katz and Tal [23] cluster mesh facets into fuzzy regions,
carefully partition facets in those regions, and successfully produce perceptually clean cuts between decomposed
components. A similar approach using a different clustering technique can also be found in [31]. Interactive
methods [25, 18] that identify features via human assistance have also been shown to produce high quality and
clean decompositions.

Skeletonization. The Medial Axis (MA), Voronoi diagram, Shock graph and Reeb graph are common skeleton
representations. Although the MA can represent a lossless shape descriptor [9], it is difficult and expensive to
compute accurately in high (> 2) dimensional space [14]. Several ideas for approximating the MA have been
proposed, e.g., using Voronoi diagram, and its dual Delaunay triangulation [2, 4, 17], of densely sampled points
from the object boundary. Shock graphs [43, 15], another representation of the MA, encode the formation order
and, therefore, the importance of each part of the MA. Reeb graphs, a type of 1D skeleton, extracted from various
Morse functions, are a powerful tool for shape matching [45, 41, 5, 19]. Since Morse functions are defined on
mesh vertices, re-meshing [19, 5] is usually needed to generate a good (accurate) skeleton.

Several methods have been proposed to extract a skeleton from the components of a decomposition [28, 23].
Skeletons can also be constructed by simplifying (contracting) a polygonal mesh to line segments [27].

Multi-scale and multi-resolution skeletons. Multi-scale skeletons [37, 34] consist of a set of skeletons,
S0, . . . , SN , whose union represents a complete skeleton of the model. S0 is the most important part of the skeleton,
representing global topology, while SN encodes local features and is sensitive to local changes. Multi-resolution
skeletons [19] consist of a set of skeletons, S0, . . . , SN , that encode topology at different levels of detail. S0 will
have the coarsest skeleton and SN will contain the most detailed information. This representation is desired for
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some applications. For instance, to extract similar items from a 3D database, a rough skeleton can be used to
reject many unlikely models and incrementally refine the skeleton to get better matches. As previously mentioned,
one of the features of our framework is that its recursive nature results in the construction of multi-resolution
skeletons.

3 Preliminaries

Let P be a polyhedron represented by its boundary ∂P and let HP be the convex hull of P .
Approximate Convex Decomposition. A set of components {Ci} is a decomposition of P if their union is

P and all Ci are interior disjoint, i.e., {Ci} must satisfy:

D(P ) = {Ci | ∪iCi = P and ∀i6=jC
◦
i ∩ C◦

j = ∅} , (1)

where C◦ is the open set of C.
A component C is τ -approximate convex if C has concavity less than or equal to a tunable variable τ . We use

concave(C) to denote the concavity measurement of C. Therefore, the τ -approximate convex decomposition of
P is:

ACDτ (P ) = {Ci ∈ D(P ) | concave(Ci) ≤ τ} . (2)

We define the concavity of a vertex x of C as the distance from x to the convex hull surface of C and the
concavity of C as the maximum concavity of its vertices, i.e., concave(C) = maxx∈C(concave(x)). ACD iteratively
identifies and resolves concave features with maximum concavity. Figure 3 shows an example of this process. We
refer readers to [30, 29] for details regarding ACD.

(a)

x

(b) (c)

split

(d)

Figure 3: (a) The input model. (b) The convex hull of the input model. The concavity of x is measured as the
distance from x to the convex hull surface. (c) The shading of the model represents concavity, i.e., darker areas
have higher concavity. (d) The model is decomposed by partitioning at the high concavity region (indicated by
an arrow).

The Principal Axis. Let X be a set of points and ` be a line. We define dist(X, `), the distance from X to
`, as

∑
X dist(x, `), where x ∈ X. Then, the principal axis (PA) of a set of points X is a line ` such that distance∑

X dist(x, `) is minimized over all possible lines κ 6= `.

4 Framework

We propose a framework that simultaneously performs shape decomposition and skeleton extraction. For
a given polyhedron P , Simultaneous Shape decomposition and Skeleton extraction (SSS) (see Algorithm 4.1)
constructs a skeleton for the model from (local) skeletons extracted from each component of a decomposition,
evaluates the extracted skeleton components, and continues refining the decomposition and the associated skeleton
components until the quality of the skeleton for each component is satisfactory, e.g., the error estimation of the
skeleton for the respective component is smaller than a tunable threshold τ .

There are three important sub-routines that are required by Algorithm 4.1: Ext Skeleton(P ), which ex-
tracts a skeleton from a component P , Error(P, S), which estimates the quality of the extracted skeleton, and
Decompose(P ), which separates P into sub-components when the extracted skeleton is not acceptable. We
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Algorithm 4.1 SSS(P )

1: S = Ext Skeleton(P )
2: if Error(P, S) ≤ τ then

3: Report S as P ’s skeleton and report P as a component
4: else

5: {Ci} = Decompose(P )
6: For each C ∈ {Ci} do return SSS(C)

discuss methods for skeleton extraction Ext Skeleton(P ) in Section 4.1, and methods for quality measurement
Error(P, S) in Section 4.2. Recall that our choice of the Decompose(P ) sub-routine is approximate convex
decomposition.

4.1 Extracting Skeletons

In this section, we discuss two simple methods to extract a (local) skeleton from a component of a decomposition.
These local skeletons can be connected to form a global skeleton of the input model. The centroid method, is very
simplistic but can result in skeletons that do not represent the shape of the object. The second method, based
on the principal axis of a component, is slightly more expensive to compute, but leads to improved skeletons in
some cases.

Using Centroids. One of the easiest ways to construct a skeleton for a component C (in a decomposition)
is to connect the centroids of the openings, called opening centroids, on ∂C to the centroid of C. These openings
are generated when a component is split into sub-components during the decomposition process,

Several similar methods for extracting skeletons have been proposed [28, 23]. Although this approach is simple
and generates fairly good results one of the major drawbacks of this type of skeleton is its inability to represent
some types of shapes. For example, the skeleton of a cross-like model in Figure 4 extracted using its centroids is
only a line segment instead of two crossing line segments. The method described next attempts to address this
problem.

P2
c d e

P1

P3
a b

(using centroids)

P3

P1

b d
P2

c

(using the principal axis)

Figure 4: This example shows a problem that arises when skeletonization is based only on the centroids. Points b

and d are the centers of the openings and a, c and e are the centers of the components P1, P2 and P3, respectively.
This problem can be addressed using the principal axis.

Using the Principal Axis. In this method, we extract a skeleton from a component C (in a decomposition)
using the principal axis of the convex hull HC of C. Instead of connecting the centroids of C’s openings to the
center of mass of C, we connect these centroids to the principal axis enclosed in HC . Figure 5 shows an example
of skeletons constructed in this manner.

Let PA(HC) be a line through the center of mass of HC . parallel to the principal axis of HC . Our method
connects an opening centroid to one of the k points on PA(HC) ∩ HC . These k points, denoted by P, evenly
subdivide PA(HC)∩HC into k+1 line segments. The selection of the value of k is based on the desired minimum
skeleton link length. Let P ′ ⊂ P be a set of points to which the opening centroids connect. Figure 5 illustrates
P and P ′ with circles along PA(HC). Then, the final skeleton S of C contains line segments that connect the
opening centroids to P ′ and line segments that connect the P ′.
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To minimize the chance of getting a long skeleton with many joints, we match the opening centroids to P
so that the cardinality of P ′ and the distances from the opening centroids to P ′ are minimized. We solve this
optimization matching problem using dynamic programming. Details of how we find the optimal solution are
discussed in Appendix A.

In cases where all the points in P ′ lie only on one side of the center of mass c of HC , e.g., P ′ in Figure 5(b),
line segments that connect to the points in P ′ are not enough to represent the entire component. In such cases,
the skeleton will connect P ′ with the end point of P on the other side of the center of mass c. Similarly, when P ′

contains only c, the skeleton will connect c with the end points of P on both sides of c, e.g., the skeleton of the
component P1 in Figure 4 (using the principal axis).

(a)

c PA(HC)

HC

p

o

P ′

P

(b)

PA(HC)

HC

c

Figure 5: Using the principal axis of the convex hull HC to extract a skeleton from a component. Skeletons are
shown in dark thick lines and skeletal joints are shown in dark circles and c denotes the center of mass of HC . (a)
Opening centroids are connected to both sides of c. (b) Opening centroids are connected to only one side of c.

Figure 6 shows three skeletons: two extracted skeletons using the centroid and the principal axis methods, and
one skeleton manually generated by a professional animator. One can see that the skeleton extracted using the
principal axis is topologically more similar to the animator generated skeleton than the skeleton generated using
the centroid method. In Section 5, we analyze the similarity of these skeletons using graph edit distance.

(centroids) (principal axis) (manually)

Figure 6: Notice the differences of these skeletons at the torso, the head, and the fingers.

4.2 Measuring Skeleton Quality

Although several criteria exist for measuring the quality of a skeleton, the general principles we adopt are that
the skeleton should reside in the interior of the model and it should encode the “topology” of the model’s shape.
Thus, using these general criteria, our strategy of computing the quality of a skeleton S is to compare S with
its associated component C. In this section, we propose three methods for measuring quality. This first method
checks whether S intersects ∂C and the second method checks the topological representation of S w.r.t. C. In
the third method, we propose an adaptive measurement based on the volume of the component.
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An important property of these three methods is that, as the decomposition becomes finer, the error of the
skeleton becomes smaller. This property is justified in Appendix C. Figure 8 shows an example of extracted
skeletons based on these three quality measurements.

Checking penetration. Our first method measures the quality of S by checking whether S intersects the
component boundary ∂C. If so, the function Error(C,S) returns a large number (larger than the tolerable value
τ). Otherwise, zero will be returned. The consequence is that C will be decomposed if ∂C ∩ S 6= ∅.

As seen in Figure 8, skeletonization using penetration detection stops evolving after a few iterations and does
not produce skeletons that represent the dragon and the bird.

Measuring centeredness. In the second method, we measure the offsets of S from the level sets of the
geodesic distance map on ∂C. The value for each point in this map is the shortest distance to its closest
opening of C. Ideally, a skeleton should pass through all connected components in all level sets. Therefore, this
measurement method simply checks the number of times that S does not do so. An example of this measurement
is shown in Figure 7.

Let LC be all the connected components in the level sets of C. We define the error of a skeleton S as:

Err(C,S) =

∑
lc∈LC

f(lc, S)

|LC |
, (3)

where f(lc, S) returns 0 if S intersects component lc, and 1 otherwise, and |LC | is the total number of the
connected components in C. Details of how we compute the level sets and f(lc, S) are discussed in Appendix B.

skeleton

5 6
4

7

8

1

2

3

Figure 7: The error measurement for this skeleton, which intersects level sets 4, 7 and 8, is 5
8 .

As seen in Figure 8, skeletonization using the centeredness measurement captures the shape of the dragon and
the bird better then simply using penetration detection, but it has a problem of over segmenting the tail of the
bird and does not produce accurate skeletons in the dragon’s and the bird’s feet.

Measuring convexity. Our idea for the last quality measurement comes from the observation that in many
cases the significance of a feature depends on its volumetric proportion to its “base”. For example, a 5 cm
stick attached to a ball with 5 cm radius is a more significant feature than a 5 cm stick attached to a ball
with 5 km radius. This intuition can be captured by the concept of the convexity of a component C defined as

convexity(C) = vol(C)
vol(HC) , where vol(X) is the volume of a set X. Thus, we can define the error measurement as:

Err(C,S) = 1 − convexity(C) . (4)

Assume that the skeleton S is a good representation of the convex hull HC . Then, a smaller difference between
HC and C means that S is a better representation of C. Thus, although the skeleton S is not included in
Equation 4, S is implicitly considered in terms of HC .

As seen in Figure 8, using convexity produces the most realistic skeleton that captures the overall shape of the
dragon and the bird and also identifies the detailed features of their feet.

4.3 Putting it All Together

Algorithm 4.2 shows a fleshed-out version of the proposed simultaneous shape decomposition and skeletoniza-
tion framework.

Here we suggest using the principal axis, convexity and approximate convex decomposition for local skeleton
extraction, quality measurement and partitioning, respectively. Algorithm 4.2 is used for all the experiments in
Section 5. We would like to emphasize that the choice of these methods is made based on our own experience.
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(checking penetration) (measuring centeredness) (measuring convexity)

Figure 8: Final skeletons of a dragon polyhedron and a bird polygon extracted using different quality estimation
functions: checking penetration, measuring centeredness, and measuring convexity. The maximum tolerable errors
for centeredness and convexity are 0.2 and 0.3, respectively.

Algorithm 4.2 SSSACD(P )

1: Compute a skeleton S from P using the Principal Axis of HP .
2: Estimate the quality of S using convexity.
3: if S is acceptable then

4: Report S as P ’s skeleton and report P as a component.
5: else

6: {Ci} = ACD(P ).
7: For each C ∈ {Ci} do return SSSACD(C)

The framework is not restricted to these selected sub-routines, which can be replaced by other methods to fit
particular needs of an application.

5 Implementation and Results

The experiments in this section are used to demonstrate the efficiency, the robustness, and several applications

of the proposed method. The method was implemented in C++ and all these experiments are performed on a
Pentium 2.0 GHz CPU with 512 Mb RAM. Seventeen decompositions and their associated skeletons are shown
in Figures 8 to 13 and in Tables 1 and 2.

Efficiency. A summary of the studied models, which include several game characters, a high genus model, and
two scanned models, and the skeletonization and decomposition time of these models is shown in Table 1. Table 1
shows that the processing time of SSS depends not only on the size of the model but also on the complexity of
the shape. For example, even though the model in Figure 9 has the fewest triangles, its large genus (18) increases
the processing time. In general, our proposed SSS method can handle models with thousands of triangles in less
than a half a minute and scales well for models with tens or hundreds of thousands of triangles.

We further show that SSS is efficient by comparing our results to two recently proposed shape decomposition
and skeletonization methods that have been shown to produce very promising results; see Figures 10 and 11,
respectively. In both experiments, SSS generates results similar to those results reported previously but SSS

can produce the shape decomposition and the skeletons about 30 times and 5 times faster than those methods
reported in [23] and [47], respectively. We note that there are no well-accepted criteria to compare the quality of
these decompositions and skeletons quantitatively, and therefore we do not intend to claim that our results are
necessarily better.

Robustness. In this set of experiments, we show that SSS is robust under perturbation and deformation,
meaning that the shape decompositions and skeletons remain approximately the same after the input models are
perturbed and deformed. The results are shown in Table 2.

Although there are no well accepted criteria to measure the differences among decompositions, we can measure
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Table 1: Experimental Results

Model
Figure 9 Figure 12 Table 2 Figure 6 Figure 11 Figure 12 Table 2 Figure 2 Table 2

Size 1,984 3,392 5,660 6,564 8,276 11,180 39,694 48,312 243,442
Time 15.6 2.6 1.7 1.5 8.8 3.4 19.4 30.1 73.3

Size is measured as the number of the triangles of each model and the processing time is measured in seconds.

(input)

(decomposition) (skeleton)

Figure 9: This figure shows the decomposition and the skeleton of a model with 18 handles.

the similarity of these skeletons, e.g., using graph edit distance [11] which computes the cost of operations (i.e.,
inserting/removing vertices or edges) needed to convert one graph to another. In this paper, we simply associate
one unit of cost with each operation.

We measure two types of distances, denoted as DO and D2
O. DO is the graph edit distance from a skeleton to

the skeleton extracted from the original mesh. Because removing or inserting a degree-two node does not change
the topology of a graph, we are also interested in the distance, denoted as D2

O, that does not count operations
that create and remove degree-two nodes. Table 2 shows that DO remains small for both perturbed and deformed
models and D2

O is zero for all cases.
Applications. The extracted skeleton can be readily used to create animations. We demonstrate this advan-

tage by re-targeting motion captured data to the skeletons extracted using our method. In Figure 12, we show
a sequence of images obtained from a skeleton-based boxing animation of a baby and a robot using motion data
captured from an adult male. Note that the baby and the robot models have different body proportions and rest
poses. Due to the limited space in this paper, other animations, including walking and pushing a box, are only
included in the submitted supplementary materials. We use the motion captured data instead of a hand-made
animation to show that the extracted skeletons are robust enough to be used by arbitrarily selected motions other
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(SSS) (Katz and Tal [23])

Figure 10: The decomposition with 0.7 convexity and the associated skeleton of the dino-pet model (with 6,564
triangles) are computed in 1.5 seconds whereas Katz and Tal’s approach takes 57 seconds (on a P4 1.5 GHz CPU
with 512 Mb RAM).

(SSS) (Wu et al. [47])

Figure 11: The decomposition with 0.7 convexity and the associated skeleton of the octopus model (with 8,276
triangles) are computed in 8.8 seconds whereas Wu et al.’s approach takes 53 seconds (on a P4 1.5 GHz CPU
with 512 Mb RAM) using a simplified version of this model (with 2,000 triangles).

than a carefully designed motion. The motions, i.e., joints angles, are manually copied from the captured data
to the skeletal joints.

The extracted skeletons can also help to plan motion, e.g., for navigating in the human colon or removing
a mechanical part from an airplane engine. Sampling-based motion planners have been shown to solve difficult
motion planning problems; see a survey in [6]. These methods approximate the free configuration space (C-space)
of a movable object by sampling and connecting random configurations to form a graph (or a tree). However,
they also have several technical issues limiting their success on some important types of problems, such as the
difficulty of finding paths that are required to pass through narrow passages [46]. Using sampling biased toward
the joints of the extracted skeleton, we can alleviate this so called “narrow passage” problem. Figure 13 shows
that the graph constructed using the skeleton-based sampling can better represent the free C-space than using
the uniform sampling [24] with the same number of samples. This is because more of the skeleton-based sampling
samples are placed in the narrower regions. In addition, the connections between the samples in these narrow
regions can be made easily because the components of the decomposition are nearly convex.

6 Discussion and Conclusion

In this paper, we propose a framework that simultaneously generates shape decompositions and skeletons. This
framework is inspired by the observation that both operations share many common properties and applications
but are generally considered as independent processes. This framework extracts the skeleton from the components
in a decomposition and evaluates the skeleton by comparing it to the components. The process of simultaneous
shape decomposition and skeletonization iterates until the quality of the skeleton becomes satisfactory.

We studied two simple skeleton extraction methods, using the centroids and the principal axis, and three quality
evaluation measurements, that compute penetration, centeredness and convexity, respectively. In the experiments,
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Table 2: Robustness tests using perturbed and skeletal deformed meshes. DO is the graph edit distance between
a skeleton extracted from a perturbed or deformed mesh and a skeleton extracted from the original mesh. D2

O is
DO without counting operations on degree-2 nodes (which do not change the topology of the skeleton).

Shape Decomposition. 70% convexity
Original Perturbed (random noise) Deformed

female
16 components

triceratop
9 components

horse
17 components female

16 components
horse

9 components

20 components

triceratop

female
horse

triceratop

18 components

20 components

9 components

Extracted Skeletons. 70% convexity
Original Perturbed Deformed

horsefemale

triceratop

DO = 0

D
2

O = 0

DO = 0

D2

O = 0

DO = 0

D
2

O = 0

female

triceratop

horse
DO = 2

DO = 1

DO = 3

D2

O = 0
D

2

O = 0

D
2

O = 0

triceratop

horse
female
DO = 2

D2

O = 0 DO = 6

D
2

O = 0

DO = 0

D
2

O = 0

we demonstrate that the proposed framework is efficient, robust under perturbation and deformation, and can
readily be used, e.g., to generate animations and plan motion.

There are several ways to extend the current work. First, there is a need to establish a systematic framework
for comparing qualities of shape decomposition and skeletons using more quantitative measuring methods and
benchmarks. Although the proposed quality measurements are based on a general idea of what a good skeleton
should be, more studies are needed to investigate application-specific measurement criteria that should produce
better and more “comparable” results. Second, not all models, such as a bowl, can have reasonable 1D skeletons.
We are interested in using the same framework to extract the approximated medial axis from the components in
a decomposition based on the idea that it is easier to extract the medial axis from a convex object than from a
non-convex object.
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Appendix

A Construct skeleton from the Principal Axis

Here, we show how a local skeleton can be computed using the principle axis. Our goal is to find a match
M : O → P from the opening centroids O to the points P on the principle axis so that the total length of the
match and the number of the matched points (joints) in P is minimized. We let the score function F of a match
M be defined as

F (M) = s1 · |M | + s2 · J(M) , (5)

where |M | and J(M) are the length and joint size of match M , and s1 and s2 are user specified scalars. In this
paper, s1 and s2 are constantly set as 10 and 1, resp. A brute force approach to find an optimal solution will
take O(|P||O|) time, where |P| and |O| is the number of vertices in P and O, respectively. This exponential time
complexity is in general impractical for most applications.

The main idea of finding the optimal match is to group opening centroids O and each group will connect to a
point in P. After knowing how O is grouped, it takes O(|P||O|) time to find solution.
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Grouping O can be done using dynamic programming. An observation enables us to group O is that two
centroids are likely to be grouped when their closest points in P are close. Thus, we first sort O according to their
closest points of P and then group sorted O. A dynamic programming is shown in Algorithm A.1 to group O. In
Algorithm A.1, we use G[i, j] to denote the optimal solution for the sub-problem {Oi, · · · , Oj} and use < GiGj >

and GiGj to denote the joint of two groups Gi and Gj with and without merging Gi and Gj to one group.

Algorithm A.1 Optimal Matching(O, P)

1: for i ∈ {1, · · · , |O|} do

2: G[i, i] = Oi

3: for l ∈ {2, · · · , |O|} do

4: for i ∈ {1, · · · , |O| − l + 1} do

5: j = i + l − 1
6: G[i, j] =< Oi · · ·Oj >

7: score = F (G[i, j],P) {F is defined in Eqn. 5}
8: for k ∈ {i · · · , j − 1} do

9: s = F (G[i, k]G[k + 1, j],P)
10: if s1 < score then

11: G[i, j] = G[i, k]G[k + 1, j]
12: score = s1

B Compute level sets and centeredness

A level set of a component C in a decomposition is a set of points on the surface ∂C of the component with the
same geodesic distance to the closest opening of C. A connected component in a level set is a list of connected
edges, which usually forms a loop on ∂C. A level set can have one or multiple connected component(s).

These level sets can be computed, similar to the construction process of a Reeb graph [42], by flooding the
entire ∂C from the boundaries of the openings of C. In each iteration of this flooding process, the wavefronts will
propagate from the visited vertices to unvisited vertices via incident edges.

To compute centeredness, we need to know how well a skeleton S intersect the level sets of C, i.e., we need
the function f(lc, S) use in Eqn 3, which returns zero if S intersect the level set lc. The function f(lc, S) can be
implemented by simply checking the intersection between each line segment of S and the triangulation of lc.

C ACD increases skeleton quality

In this section, we show that the error measurements of a skeleton described in Section 4.2, i.e., penetration,
centeredness, and convexity, decreases as the input model get decomposed. This is a critical property, which
allows the SSS framework to terminate.

Lemma C.1. Let S be the skeleton of a polyhedron P and let S ′ be the skeleton of the components of the ACD

of P . The error estimation of S ′ must be smaller than the error estimation of S measured using penetration,

centeredness, and convexity defined in Section 4.2.

Proof. We show that all error measurements become zero if the input model is convex. For penetration, because
any two points inside the convex object must not intersect its boundary, a skeleton will never penetrate the object.
For the same reason, the skeleton must not be ‘outside’ of any level set of a convex component. Finally, because
the convexity of a convex object is one, its error must be zero.

Since ACD decomposes P into more convex components than P is after each iteration, the error measurements
of S′ will be closer to zero than S for all three types of measurements.
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