
ar
X

iv
:c

s/
03

08
01

2v
1 

 [
cs

.C
C

] 
 5

 A
ug

 2
00

3

Constant-Depth Frege Systems with Counting

Axioms Polynomially Simulate Nullstellensatz

Refutations

Russell Impagliazzo⋆ and Nathan Segerlind⋆⋆

Department of Computer Science
University of California, San Diego

La Jolla, CA 92093
{russell,nsegerli}@cs.ucsd.edu

Abstract. We show that constant-depth Frege systems with counting
axioms modulom polynomially simulate Nullstellensatz refutations mod-
ulo m. Central to this is a new definition of reducibility from formulas
to systems of polynomials with the property that, for most previously
studied translations of formulas to systems of polynomials, a formula
reduces to its translation. When combined with a previous result of the
authors, this establishes the first size separation between Nullstellensatz
and polynomial calculus refutations. We also obtain new, small refuta-
tions for certain CNFs by constant-depth Frege systems with counting
axioms.

1 Introduction

This paper studies proof sizes in propositional systems that utilize modular
counting in limited ways. The complexity of propositional proofs has received
much attention in recent years because of its connections to computational and
circuit complexity [17,20,25,7]. In particular, NP equals coNP if and only if
there exists a propositional proof system that proves every tautology in size
polynomial in the size of the tautology [17]. But before we can prove lower
bounds for all proof systems, it seems necessary that we be able to prove lower
bounds for specific proof systems. There was much initial success showing lower
bounds for constant-depth proof systems [1,22,24]. While these proof systems
can simulate many powerful theorem proving techniques, such as resolution, they
cannot perform reasoning that involves modular counting. For this reason, there
has been much interest in recent years regarding proof systems that incorporate
modular counting in different ways. Three such systems are: constant-depth
Frege systems augmented with counting axioms [2,3,6,5,14,27,8,19] (counting
axioms state that a set of size N cannot be partitioned into sets of size m when
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N is indivisible by m), the Nullstellensatz system [5,14,8,15,12], which captures
static polynomial reasoning, and the polynomial calculus [16,26,18,10,13], which
captures iterative polynomial reasoning.

We show that constant-depth Frege systems with counting axioms modulo
m polynomially simulate Nullstellensatz refutations modulo m. This allows us
to transform Nullstellensatz refutations into constant-depth Frege with count-
ing axioms proofs with a small increase in size, and to infer size lower bounds
for Nullstellensatz refutations from size lower bounds for constant-depth Frege
with counting axioms proofs. In particular, this method establishes the first su-
perpolynomial size separation between Nullstellensatz and polynomial calculus
refutations.

Our simulation also shows that previously used proof techniques were not
only sufficient but necessary. Papers such as [5,14,8,19] prove size lower bounds
for constant-depth Frege systems with counting axioms by converting small
proofs into low degree Nullstellensatz refutations. The existence of such low
degree Nullstellensatz refutations is then disproved by algebraic and combina-
torial means. Low degree Nullstellensatz refutations are small (because there
are few monomials), so our simulation shows that if there were such a low de-
gree Nullstellensatz refutations, there would be a small constant-depth Frege
with counting axioms proof. Therefore, Nullstellensatz degree lower bounds are
necessary for size lower bounds for constant-depth Frege systems with counting
axioms.

It is not immediately clear how to compare constant-depth Frege systems
with Nullstellensatz refutations because Frege systems prove propositional for-
mulas in connectives such as

∧

,
∨

and ¬, and the Nullstellensatz system shows
that systems of polynomials have no common roots. We propose a new definition
of reducibility from propositional formulas to systems of polynomials: a formula
F reduces to a system of polynomials over Zm if we can use F to define an
m-partition (a partition in which every class consists of exactly m elements) on
the satisfied monomials of the polynomials. The simulation shows that if a for-
mula has a small reduction to a set of polynomials with a small Nullstellensatz
refutation, then the formula has a small refutation in constant-depth Frege with
counting axioms. This notion of reduction seems natural in that for previously
studied translations of formulas into systems of polynomials, a formula reduces
to its translation.

1.1 Outline of the Paper

In section 2, we give some definitions that we will we use in the rest of the paper.
The simulation of Nullstellensatz refutations modulo m by constant-depth

Frege systems with counting axioms modulo m works by defining two different
m-partitions on the satisfied monomials in the expansion of the Nullstellensatz
refutation. One covers the satisfied monomials perfectly, and the other leaves out
exactly one satisfied monomial. In section 3, we show that Frege systems with
counting axioms can prove in constant depth and polynomial size that such a
partition can not exist.
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Section 4 formalizes our definition of reducibility from propositional formulas
to systems of polynomials and proves the main simulation theorem.

In section 5 we show that, for several methods of translating propositional
formulas into systems of polynomials, a formula efficiently reduces to its trans-
lation.

We explore some applications of the simulation in section 6. First, we ob-
tain small constant-depth Frege with counting axioms refutations for unsolvable
systems of linear equations in which each equation contains a small number of
variables. This class of tautologies includes the Tseitin tautologies and the “τ
formulas” for Nisan-Wigderson pseudorandom generators built from the parity
function [4,21]. The Tseitin tautologies on a constant degree expander can be
expressed as an unsatisfiable set of constant-width clauses, and are known to
require exponential size to refute in constant-depth Frege systems [9]. There-
fore, as a corollary, we obtain an exponential separation of constant-depth Frege
systems with counting axioms and constant-depth Frege systems with respect to
constant-width CNFs.

2 Definitions, Notation and Conventions

In this paper, we perform many manipulations on partitions of sets into pieces
of a fixed size. We make use of the following definitions:

Definition 1. Let S be a set. The set [S]
m

is the collection of m element subsets
of S; [S]

m
= {e | e ⊆ S, |e| = m}. For e, f ∈ [S]

m
, we say that e conflicts with

f , e ⊥ f , if e 6= f and e ∩ f 6= ∅.

When N is a positive integer, we write [N ] for the set of integers {i | 1 ≤
i ≤ N}. The collection of m element subsets of [N ] are denoted by [N ]

m
, not by

[[N ]]
m
.

Throughout this paper, we use the word polynomial to mean “multivariate
polynomial.”

Definition 2. A monomial is a product of variables. A term is scalar multiple
of a monomial.

Definition 3. For a monomial t =
∏

i∈I x
αi

i , its multilinearization, t̄, is defined
as t̄ =

∏

i∈I xi. Let f =
∑

t ctt be a polynomial. The multilinearization of f , f̄ ,
is defined as f̄ =

∑

t ctt̄. We say that a polynomial f is multilinear if f = f̄ .

Definition 4. Let n > 0 be given, and let x1, . . . , xn be variables. Let I ⊆ [n]
be given. The monomial xI is defined to be

∏

i∈I xi.

Notice that a multilinear polynomial f in the variables x1, . . . , xn can be
written as

∑

I⊆[n] aIxI .
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2.1 Proof Systems

Propositional proof systems are usually viewed as deriving tautologies by apply-
ing inference rules to a set of axioms. However, it can be useful to take the dual
view that such proof systems establish that a set of hypotheses is unsatisfiable by
deriving FALSE from the hypotheses and axioms. Such systems are called refuta-
tion systems. The Nullstellensatz and polynomial calculus systems demonstrate
that sets of polynomials have no common solution, and are inherently refutation
systems. Frege systems are traditionally viewed as deriving tautologies, but for
ease of comparison, we treat them as refutation systems.

Furthermore, we will be discussing propositional formulas and polynomials
in the same set of variables. This is justified by identifying the logical constant
FALSE with the field element 0 and the logical constant TRUE with the field
element 1.

Constant-Depth Frege Systems A Frege system is a sound, implicationally
complete propositional proof system over a finite set of connectives with a finite
number of axiom schema and inference rules. By the methods of Cook and Reck-
how [17], any two Frege systems simulate one another up to a polynomial factor
in size and a linear factor in depth. For concreteness, the reader can keep in
mind the following Frege system whose connectives are NOT gates, ¬, and un-
bounded fan-in OR gates,

∨

, and whose inference rules are: (1) Axioms A ∨ ¬A,

(2) Weakening A
A∨B

(3) Cut A∨B (¬A)∨C

B∨C
(4) Merging

∨

X∨
∨

Y
∨

(X∪Y ) (5) Unmerging
∨

(X∪Y )
∨

X∨
∨

Y
.

Let H be a set of formulas. A derivation from H is a sequence of formulas
f1, . . . , fm so that for each i ∈ [m], either fi is a substitution instance of an
axiom, fi is an element of H, or there exist j, k < i so that fi follows from fj
and fk by the application of an inference rule to fj and fk.

For a given formula F , a proof of F is a derivation from the empty set of
hypotheses whose final formula is F .

For fixed set of hypotheses H, a refutation of H is a derivation from H whose
final formula is FALSE.

The size of a derivation is the total number of symbols appearing in it.
We say that a family of tautologies τn, each of size s(n), has polynomial size

constant-depth Frege proofs (refutations) if there are constants c and d so that
for all n, there is a proof (refutation) of τn so that each formula in the proof has
depth at most d, and the proof (refutation) has size O (sc(n)).

Counting Axioms Modulo m Constant-depth Frege with counting axioms
modulo m is the extension of constant-depth Frege systems that has axioms that
state for integers m,N , m ≥ 2 and N 6≡m 0, it is impossible to partition a set
of N elements into pieces of size m.

Definition 5. Let m > 1 and N 6≡m 0 be given. Let V be a set of N elements.
For each e ∈ [V ]m, let there be a variable xe.
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CountVm =
∨

v∈V







∧

e∈[V ]m

e∋v

¬xe






∨

∨

e,f∈[V ]m

e⊥f

(xe ∧ xf )

Frege with counting modulo m derivations are Frege derivations that allow
the use of substitution instances of Count[N ]

m (with N 6≡m 0) as axioms.

Nullstellensatz Refutations One way to prove that a system of polynomials
f1, . . . , fk has no common roots is to give a list of polynomials p1, . . . , pk so
that

∑k
i=1 pifi = 1. Because we are interested in translations of propositional

formulas, we add the polynomials x2 − x as hypotheses to guarantee all roots
are zero-one roots.

Definition 6. For a system of polynomials f1, . . . , fk in variables x1, . . . , xn

over a field F , a Nullstellensatz refutation of f1, . . . , fk is a list of polynomials
p1, . . . , pk, r1, . . . , rn satisfying the following equation:

k
∑

i=1

pifi +

n
∑

j=1

rj
(

x2
j − xj

)

= 1

For a polynomial q, a Nullstellensatz derivation of q from f1, . . . , fk is a list
of polynomials p1, . . . , pk, r1, . . . , rn satisfying the following equation:

k
∑

i=1

pifi +

n
∑

j=1

rj
(

x2
j − xj

)

= q

The degree of the refutation (derivation) is the maximum degree of the poly-
nomials pifi, rj

(

x2
j − xj

)

.
We define the size of a Nullstellensatz refutation (derivation) to be the num-

ber of monomials appearing in p1, . . . , pk and f1, . . . , fk.
Hilbert’s weak Nullstellensatz guarantees that over a field, all unsatisfiable

systems of polynomials have Nullstellensatz refutations [23]. We can define Null-
stellensatz refutations over any ring, but such systems are no longer complete.
In this paper, we work with Nullstellensatz refutations of polynomials over Zm,
and for the sake of generality, we make no assumptions on m unless otherwise
stated.

Polynomial Calculus

Definition 7. Let f1, . . . , fk be polynomials over a field F . A polynomial cal-
culus refutation of f1, . . . , fk over F is a sequence of polynomials g1, . . . , gm so
that, gm = 1, and for each i ∈ [m], either gi is fl for some l ∈ [k], gi is xl

2 − xl

for some l ∈ [n], gi is agj + bgl for some j, l < i, a, b ∈ F , or gi is xlgj for some
j < i, l ∈ [n].
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The size of a polynomial calculus refutation is the total number of monomi-
als appearing in the polynomials of the refutation. The degree of a polynomial
calculus refutation is the maximum degree of a polynomial that appears in the
refutation.

3 Contradictory Partitions of Satisfied Variables

To simulate Nullstellensatz refutations in constant-depth Frege systems with
counting axioms, we construct two partitions on the satisfied monomials of the
refutation: one which covers the satisfied monomials exactly, and another which
covers the satisfied monomials with m− 1 new points. This is impossible, and in
this section, we show that constant-depth Frege systems with counting axioms
can prove that this is impossible with polynomial size proofs.

Definition 8. Let positive integers n and k be given. Let u1, . . . , un be a set
of Boolean variables. For each e ∈ [n]m, let ye be a variable, and for each e ∈
[n+ k]

m
, let ze be a variable. CPn,k

m (u,y, z) is the negation of the conjunction
of the following formulas:

“every variable covered by the first partition is satisfied”
for each e ∈ [n]m, ye →

∧

i∈e ui

“every satisfied variable is covered by the first partition”
for each i ∈ [n], ui →

∨

e∋i ye
“no two overlapping edges are used by the first partition”

for each e, f ∈ [n]
m

with e ⊥ f , ¬ye ∨ ¬yf
“every variable covered by the second partition is satisfied”

for each e ∈ [n+ k]
m
, ze →

∧

i∈e

i≤n
ui

“every satisfied variable is covered by the second partition”
for each i ∈ [n], ui →

∨

e∋i ze
“every extra point is covered by the second partition”

for each i, n+ 1 ≤ i ≤ n+ k,
∨

e∋i ze
“no two overlapping edges are used by the second partition”

for each e, f ∈ [n+ k]
m

with e ⊥ f , ¬ze ∨ ¬zf

Lemma 1. Fix m and k so that m is not divisible by k. For all n, the tautol-
ogy CPn,k

m has a constant depth, size O(nm) proof in constant-depth Frege with
counting modulo m axioms.

Proof. Fix m, n and k. The proof of CPn,k
m is by contradiction. We define a

set U of size mn + k and formulas φe for each e ∈ [U ]
m

so that we can derive
(

¬CountUm
)

[xe ← φe] in size O(nm) from the hypothesis ¬CPn,k
m .

Let U be the set consisting of the following points: pr,i, r ∈ [m], i ∈ [n] (the
r’th copy of the row of variables) and pm,i, n+ 1 ≤ i ≤ k (the extra points.)

“when ui is unset, we group together its copies”
for each i ∈ [n], φ{p1,i,...,pm,i} = ¬ui
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“in the first m− 1 rows, use the partition given by the ye’s”
for each r ∈ [m− 1], each i1, . . . , im ∈ [n], φ{pr,i1 ,...,pr,im} = y{i1,...,im}

“in the last row, use the the partition given by the ze’s”
for each i1, . . . , im ∈ [n+ k], φ{pm,i1 ,...,pm,im} = z{i1,...,im}

other edges are not used
for all other e ∈ [U ]m, φe = 0

Now we sketch the derivation of
(

¬CountUm
)

[xe ← φe] from ¬CP
n,k
m . It is

easily verified that the derivation has constant depth and size O((mn + k)
m
) =

O(nm).
“Every point of U is covered by the partition.”
Let pr,i ∈ U with i ∈ [n], r ∈ [m − 1] be given. From ¬CPn,k

m derive ui →
∨

f∈[n]m

f∋i

yf . Because
∨

f∈[n]m

f∋i

yf is a sub-disjunction of
∨

e∈[U]m

e∋pr,i

φe, we may derive

ui →
∨

e∈[U]m

e∋pr,i

φe with a weakening inference. Because φ{p1,i,...,pm,i} = ¬ui, we

may derive ¬ui →
∨

e∈[U]m

e∋pr,i

φe. Combining these two formulas yields
∨

e∈[U]m

e∋pr,i

φe.

The case for pm,i, i ∈ [n] is similar.

For a point pm,i, n + 1 ≤ i ≤ n + k, from ¬CPn,k
m derive

∨

f∈[n+k]m

f∋i

zf . A

weakening inference applied to this derives
∨

e∋pm,i
φe.

“No overlapping edges are used.”
Let e1, e2 ∈ [U ]

m
be given so that e1 ⊥ e2, and neither φe1 nor φe2 is

identically 0.
If φe1 = ¬ui and φe2 = yf , then e1 is {pr,i | r ∈ [m]} and e2 is {pr,j | j ∈ f}

for some r ∈ [m] and f ∈ [n]
m

so that i ∈ f . From ¬CPn,k
m derive yf → ui. From

this, derive ¬¬ui ∨ ¬yf = ¬φe1 ∨ ¬φe2 .
If φe1 = yf1 and φe2 = yf2 , then e1 is {pr1,i | i ∈ f1} and e2 is {pr2,i | i ∈ f2}

with r1 = r2 and f1 ⊥ f2. From ¬CP
n,k
m derive ¬yf1 ∨ ¬yf2 = ¬φe1 ∨ ¬φe2 .

The only other cases are when φe1 = ¬ui and φe2 = zf or φe1 = zf1 and
φe2 = zf2 , and these are handled similarly.

4 The Simulation

Because we work over Zm, a polynomial vanishes on a given assignment if and
only if there is an m-partition on its satisfied monomials (recall that we treat a
monomial with coefficient a as having a distinct copies.) The definability of this
partition is the connection between refuting a propositional formula and refuting
a system of polynomials.

4.1 Reducing Formulas to Systems of Equations

The method we use to reduce a formula to a system of polynomials is to define
a partition on the satisfied monomials of the polynomials with small, constant-
depth formulas and prove that these formulas define a partition using the formula
as a hypothesis.
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Because of the central role played by the sets of monomials appearing in
each polynomial, we take a moment to define this notion precisely. First of all,
because we are concerned only with 0/1 assignments, a polynomial vanishes
if and only if its multilinearization vanishes. For this reason, we restrict our
attention to multilinear polynomials. We treat a term axI as a distinct copies of
the monomial xI . For this reason, when we talk about the “set of monomials” of a
polynomial, we do not mean the set of monomials that appear in the polynomial,
but a set which includes a copies of each monomial with coefficient a. We will
generally identify axI with a objects m1,I , . . . ,ma,I . Think of mc,I as the c’th
copy of the monomial xI . There should be little confusion of the dual use of the
symbol “m” because when the symbol appears without a subscript it denotes
the modulus, and when it appear with a subscript it denotes a monomial.

Definition 9. Let f =
∑

I⊆[n] aIxI be a multilinear polynomial over Zm. The
set of monomials of f is the following set:

Mf = {mc,I | I ⊆ [n], c ∈ [aI ]}

Definition 10. Let x1, . . . , xn be Boolean variables. Let f be a multilinear poly-
nomial in the variables x1, . . . , xn. For each E ∈ [Mf ]

m
, let θE be a formula in

x. We say that the θ’s form an m-partition the satisfied monomials of f if the
following formula holds:

∧

E∈[Mf ]
m



θE →
∧

mc,I∈E

∧

k∈I

xk



 ∧







∧

E,F∈[Mf ]m

E⊥F

¬θE ∨ ¬θF







∧
∧

mc,I∈Mf









(

∧

k∈I

xk

)

→
∨

E∈[Mf ]m

E∋mc,I

θE









Definition 11. Let x1, . . . , xn be Boolean variables. Let Γ (x) be a propositional
formula. Let F = {f1, . . . , fk} be a system of polynomials over Zm with a Null-
stellensatz refutation p1, . . . , pk, r1, . . . , rn. If, for each i ∈ [k], there are formulas
βi
E(x), E ∈

[

Mf̄i

]m
, so that there is a size T , depth d Frege derivation from Γ (x)

that, for each i, the βi’s form an m-partition on the satisfied monomials of f̄i,
then we say that Γ reduces to F in depth d and size T .

4.2 The Simulation

Theorem 1. Let m > 1 be an integer. Let x1, . . . , xn be Boolean variables. Let
Γ (x) be a propositional formula, and let F be a system of polynomials over Zm so
that Γ reduces to F in depth d and size T . If there is a Nullstellensatz refutation
of F with size S, then there is a depth O(d) Frege with counting axioms modulo
m refutation of Γ (x) with size O(S2mT ).
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Proof. Let p1, . . . , pk, r1, . . . , rn be a size S Nullstellensatz refutation of F . Let
βi
E(x), for i ∈ [k], E ∈ [Mf̄i

]
m
, be formulas so that from Γ there is a size T ,

depth d proof that for each i the βi
E(x)’s form an m-partition on the satisfied

monomials of f̄i.
We obtain contradictory partitions of the the monomials that appear in the

expansion of
∑k

i=1 p̄if̄i in which polynomials are multiplied and multilinearized,
but no terms are collected. In other words, the set is the collection, over i ∈ [k],
of all pairs of monomials from p̄i and f̄i.

V =
k
⋃

i=1

{(mc,I ,md,J , i) | mc,I ∈Mp̄i
, md,J ∈Mf̄i

}

Notice that |V | = O(S2).
For each v ∈ V , v = (mc,I ,md,J , i), let γv =

∧

k∈I∪J xk. Think of these as
the monomials. We will give formulas θE , that define a partition on the satisfied
monomials with m − 1 many extra points, and ηE , that define a partition on
the satisfied monomials with no extra points. We will give a O(|V |m + T ) =
O(S2m + T ) derivation from Γ of the following:

¬CP|V |,m−1
m [uv ← γv, yE ← θE , zE ← ηE ]

On the other hand, by lemma 1, CP|V |,m−1
m has constant depth Frege proofs of

size O(|V |m), so CP|V |,m−1
m [uv ← γv, yE ← θE , zE ← ηE ] has a constant depth

Frege proof of size O(|V |mT ). Therefore, Γ has a depth O(d) Frege refutation
of size O(S2mT ).

The Partition with m− 1 Extra Points

Notice that we have the following equation:

k
∑

i=1

p̄if̄i =

k
∑

i=1

pifi +

n
∑

j=1

rj(x2
j − xj) = 1

So when we collect terms after expanding
∑k

i=1 p̄if̄i and multilinearizing, the
coefficient of every nonconstant term is 0 modulo m, and the constant term is 1
modulo m.

For each S ⊆ [n], let VS = {(mc,I ,md,J , i)) ∈ V | I ∪ J = S}. Think of these
as the occurrences of xS in the multilinearized expansion.

For each S ⊆ [n], S 6= ∅, there is an m-partition on VS , call it PS . Likewise,
there is an m-partition on V∅ ∪ [m− 1], call it P∅.

Define the formulas θE as follows: for each E ∈ ([V ] ∪ [m− 1])
m
, if E ∈ PS

for some S ⊆ [n] then θE =
∧

k∈S xk, otherwise θE = 0.
Constant-depth Frege can prove that this is a m-partition of the satisfied

monomials of
∑k

i=1 p̄if̄i with m − 1 extra points. The proof has size O(|V |m)
and depth O(1). It is trivial from the definition of θE that the edges cover only
satisfied monomials. That every satisfied monomial

∧

k∈S xk is covered is also
trivial: the edge from PS is used if and only if the term xS is satisfied. Finally, it
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easily shown that the formulas for two overlapping edges are never both satisfied:
only edges from PS are used (regardless of the values of the x’s), so for any pair
of overlapping edges, E ⊥ F , one of the two formulas θE or θF is identically 0.

The Partition with No Extra Points

The idea is that an m-partition on the satisfied monomials on f̄i can be used
to build an m-partition on the satisfied monomials of tf̄i, for any monomial t.

For each E ∈ [V ]
m
, define ηE as follows: if E = {(mc,I ,mdl,Jl

, i) | l ∈ [m]}
for some i ∈ [k], mc,I ∈ Mfi , then ηE =

∧

k∈I xk ∧ β{mdl,Jl
|l∈[m]}, otherwise,

ηE = 0.
There is a size O(S + |V |m), depth O(d) Frege derivation from Γ that the

ηE ’s form an m-partition on the satisfied monomials of
∑k

i=1 p̄if̄i. We briefly
sketch how to construct the proof. Begin by deriving from Γ , for each i, that the
βi
E ’s form an m-partition on the satisfied monomials of f̄i.
“Every satisfied monomial is covered.” Let (mc,I ,md,J , i) ∈ V be given. If

∧

k∈I∪J xk holds, then so do
∧

k∈I xk and
∧

k∈J xk. Because the β
i’s form an m-

partition on the satisfied monomials of f̄i, we may derive
∨

F∈[Mfi ]
m βi

F . From

this derive
∨

F∈[Mfi ]
m

∧

k∈I xk∧βi
F . A weakening inference applied to this yields

∨

E∈[V ]m ηE .

“Every monomial covered is satisfied.” Let v = (mc,I ,md,J , i) ∈ V be given so
that v ∈ E and ηE holds. For this to happen, E = {(mc,I ,mdl,Jl

, i) | l ∈ [m]}. By
definition,, ηE =

∧

k∈I xk ∧βi
{mdl,Jl

|l∈[m]}, and therefore
∧

k∈I xk holds. Because

the βi’s form an m-partition on the satisfied monomials of f̄i, we have that
∧

k∈J xk holds. Therefore
∧

k∈I∪J xk holds.
“No two conflicting edges E and F can have ηE and ηF simultaneously satis-

fied.” If E ⊥ F , and neither θE nor θF is identically 0, then they share the same p̄i
component. That is, there exists i, mc,I ∈Mp̄i

so that E = {(mc,I ,mdl,Jl
, i) | l ∈

[m]}, and F = {(mc,I ,md′
l,J′

l
, i) | l ∈ [m]}. Because E ⊥ F , we have {mdl,Jl

|
l ∈ [m]} ⊥ {md′

l,J′
l
| l ∈ [m]}. Because the βi’s form an m-partition on the

satisfied monomials of f̄i, we can derive ¬βi
{mdl,Jl

|l∈[m]} ∨ ¬β
i
{md′l,J

′
l
|l∈[m]}. We

weaken this formula to obtain ¬βi
{mdl,Jl

|l∈[m]}∨¬β
i
{md′l,J

′
l
|l∈[m]}∨

∨

k∈I ¬xk, and

from that derive ¬
(

∧

k∈I xk ∧ βi
{mdl,Jl

|l∈[m]}

)

∨¬
(

∧

k∈I xk ∧ βi
{md′l,J

′
l
|l∈[m]}

)

=

¬ηE ∨ ¬ηF .

5 Translations of Formulas into Polynomials

5.1 Direct Translation of Clauses

For sets of narrow clauses, a common way to translate the clauses into polyno-
mials is to map x to 1− x, ¬x to x and replace “OR” by multiplication. This is
most commonly used for constant-width CNFs, and in this case, we show that
clauses efficiently reduce to their translations.

Definition 12. [11] For a clause C in variables x, the direct translation of C,
tr(C), is defined recursively as follows: (i) tr(∅) = 1 (ii) tr(A∨x) = tr(A)(1−x)
(iii) tr(A ∨ ¬x) = tr(A)x
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For a CNF F , the direct translation of F , tr(F ), is the set {tr(C) | C ∈ F}.

It is easily verified by induction that an for any clause C, a Boolean assign-
ment satisfies C if and only if it is a root of tr(C).

Whenever C is satisfied, there exists an m-partition on the satisfied monomi-
als of tr(C). Moreover, if C contains at most w variables, then the m-partition
can be defined by depth two formulas of size O(2w), and by the completeness
of constant-depth Frege systems, there is a constant depth derivation from C of
size 2O(w) that these formulas define an m-partition on the satisfied monomials
of tr(C). Therefore, C reduces to tr(C) in constant depth and size O(2w).

Lemma 2. If F is an unsatisfiable CNF of m clauses of width w, then F is
reducible to tr(F ) in size m2O(w) and depth O(1).

5.2 Translations That Use Extension Variables

More involved translations of formulas into sets of polynomials use extension
variables that represent sub-formulas. The simplest way of doing this would be
to reduce an unbounded fan-in formula Γ to a bounded fan-in formula, and
then introduce one new variable yg per gate g, with the polynomial that says
yg is computed correctly from its inputs. It is easy to give a reduction from Γ
to this translation, of depth depth(Γ ) and size poly(|Γ |). (We can define yg by
the subformula rooted at g and every polynomial would have constant size, so
defining the partition is trivial.) However, this translation reveals little for our
purposes because there is usually no small degree Nullstellensatz refutation of
the resulting system of polynomials, even for trivial Γ . For example, say that
we translated the formula x1,¬(((((x1 ∨ x2) ∨ · · · ∨ xn) this way. The resulting
system of polynomials is weaker than the induction principles (see the end of
this section) which require Ω(log n) degree NS refutations [15].

We give an alternative translation of formulas into sets of polynomials so
that the formula is unsatisfiable if the set of polynomials has no common root.
A formula f reduces to the set of polynomials with depth O(depth(f)) and
size O(|f |). Moreover, for many previously studied unsatisfiable CNFs (such as
the negated counting principles), this translation is the same as the previously
studied translations (up to constant-degree Nullstellensatz derivations).

Definition 13. Let f be a formula in the variables x1, . . . , xn and the connec-
tives {

∨

,¬}. For each pair of subformulas g1 and g2 of f , we write g1 → g2 if
g1 is an input to g2. Canonically order the subformulas of f , and write g1 < g2
if g1 precedes g2 in this ordering. For each subformula g of f , let there be a
variable yg - the value of g. For each pair of subformulas of f , g1 and g2, so that
the top connective of g2 is

∨

and g1 → g2, let there be a variable zg1,g2- “g1 is
the first satisfied input of g2”. The polynomial translation of f , POLY(f), is the
following set of polynomials:

For each variable xi:
“The value of subformula xi is equal to xi”
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yxi
− xi

For each subformula g whose top connective is
∨

:
“if g1 < g2, g1 → g, g2 → g, and g1 is satisfied ,

then g2 is not the first satisfied input of g”
yg1zg2,g

“if g1 is the first satisfied input of g,
then g1 is satisfied”
zg1,gyg1 − zg1,g

“g is satisfied if and only if the some input to g
is the first satisfied input of g”
yg −

∑

g1→g zg1,g
For each subformula g whose top connective is ¬:

Let g1 the unique input of g,
“if g1 is satisfied if and only if g is not satisfied”

yg1 + yg − 1
The formula f is satisfied:

yf − 1

One can show by induction that if f is satisfiable then POLY(f) has a com-
mon root. By the contrapositive, if POLY(f) has no common roots, then f is
unsatisfiable.

Lemma 3. Let f be a Boolean formula in the variables x1, . . . , xn. If f is sat-
isfiable, then POLY(f) has a common 0/1 root.

Proof. Let α be a 0/1 assignment to x1, . . . , xn. For any propositional formula
g, let α(g) denote the value of g under the assignment α.

Suppose that α(f) = 1. We extend α to the variables of POLY(f) as follows:
For each subformula g of f , let α(yg) = α(g). When g =

∨

gi and α(g) = 1, let
i0 be the first input to g so that α(gi) = 1. Set α(zgi0 ) = 1 and for i 6= i0, set
α(zgi) = 0. When g =

∨

gi and α(g) = 0, α(zgi,g) = 0 for all i.
We now show by induction that α is a root of POLY(f). Clearly, for each

variable xi, α is a root of yxi
− xi. Consider a subformula ¬g. Because α(y¬g) =

α(¬g) and α(yg) = α(g) = 1 − α(¬g), α is a root of y¬g + yg − 1. Consider
a subformula g =

∨

i gi. If α(g) = 0, then for all i, α(zgi,g) = 0, α(ygi) = 0
and α(yg) = 0. In this case, α is clearly a root to zgi,gygi − zgi,g, ygizgj ,g and
yg −

∑

i zgi,g. In the case when α(g) = 1, there exists i0 so that α(zgi0 ,g) = 1
and for all j 6= i0, α(zgj ,g) = 0. Moreover, α(ygi0 ) = 1, α(yg) = 1 and for all
j < i0, α(ygj ) = 0. Therefore, α is a root to ygj zgi,g for all i < j, zgi,gygi − zgi,g
for all i, and yg −

∑

i zgi,g. Finally, α is a root of yf − 1 because α(f) = 1 by
assumption.

The argument of lemma 3 can be carried in Frege systems with depthO(depth(f))
and size O(|f |).

Theorem 2. If f is a formula in the variables x1, . . . , xn and the connectives
{
∨

,¬}, then f is reducible to POLY(f) in depth O(depth(f)) and size polynomial
in |f |.
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Proof. We proceed in two stages. First, we give a set of formulas, EXT(f), that
is in the variables xi, yg and zg1,g2 and is analogous to the translation of f into
polynomials. We show that this translation has a constant depth, polynomial size
reduction to POLY(f) and then show that f has a depth O(depth(f)) reduction
to EXT(f) of size polynomial in |f |.

Let EXT(f) be the following set of formulas:

For each variable xi:
yxi
↔ xi

For each subformula g whose top connective is
∨

:
“if g1 < g2, g1 → g, g2 → g, and g1 is satisfied ,

then g2 is not the first satisfied input of g”
¬yg1 ∨ ¬zg2,g

“if g1 is the first satisfied input of g,
then g1 is satisfied”
zg1,g → yg1

“g is satisfied if and only if some input to g
is the first satisfied input of g
yg ↔

∨

g1→g zg1,g
For each subformula g whose top connective is ¬:

Let g1 the unique input of g,
“if g1 is satisfied then g is not satisfied”

yg1 ↔ ¬yg
The formula f is satisfied:

yf

There is a straightforward constant-depth, polynomial-size reduction of EXT(f)
to POLY(f). For each polynomial of POLY(f), there is a formula of EXT(f)
that reduces to the polynomial; the formula associated with each polynomial
is given in table V.1. For the constant-size polynomials of POLY(f), the corre-
sponding formula of EXT(f) implies that there is an m-partition on the satisfied
variables of the polynomial. Because the polynomial involves a constant number
of variables, the partition may be defined and proved correct in constant size,
depth two.

Table 1. Polynomials and their Associated Formulas

polynomial associated formula

yxi
− xi yxi

↔ xi

yg1zg2,g ¬yg1 ∨ ¬zg2,g
zg1,gyg1 − zg1,g zg1,g → yg1
yg1 + yg − 1 yg1 ↔ ¬yg

yf − 1 yf
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The only polynomials of POLY(f) that involve a non-constant number of
variables are those of the form yg −

∑

g1→g zg1,g, and from the hypotheses of
EXT(f) it can be shown that yg is satisfied if only if exactly one of the zg1,g’s
is satisfied. Because there are (m− 1) copies of each zg1,g in such a polynomial,
we can group yg with these copies of zg1,g whenever zg1,g is satisfied.

To reduce f to EXT(f), it is easy to check to that there is a polynomial size,
depth O(depth(f)) derivation of the following substitution instance of EXT(f)
from the hypothesis f . (The substitution instances of each formula are given in
table V.2.)

EXT(f)[yg ← g, zg1,g ← (g1 ∧
∧

g2<g1
g2→g

¬g2)]

Table 2. Formulas and their Substitution Instances

formula substitution instance comment

yxi
↔ xi xi ↔ xi

¬yg1 ∨ ¬zg2,g ¬g1 ∨ ¬(g2 ∧
∧

g3<g2
g3→g

¬g3) g1 < g2

zg1,g → yg1 (g1 ∧
∧

g2<g1
g2→g

¬g2) → g1

yg ↔ ∨g1→gzg1,g g ↔ ∨g1→g(g1 ∧
∧

g2<g1
g2→g

¬g2) g = ∨g1→gg1

yg1 ↔ ¬yg g1 ↔ ¬g g = ¬g1
yf f

Example: We illustrate our translation with a the clauses of the negated
counting principles. The translation of this set of clauses turns out to be same
(up to constant degree Nullstellensatz derivations) as the polynomial formulation
of the counting principles previously studied.

Let V be a set of cardinality indivisible by m. The clauses are Fv =
∨

e∋v xe

for v ∈ V and Ge,f = ¬xe ∨ ¬xf for e, f ∈ [V ]m with e ⊥ f . The standard
translation of these systems has the polynomials

∑

e∋v xe, for v ∈ V , and xexf ,
for e ⊥ f .

The polynomials introduced by the translation of Ge,f are: yxe
− xe, yxf

−
xf , y¬xe

+ yxe
− 1, y¬xf

+ yxf
− 1, y¬xe

z¬xf ,Ge,f
, z¬xe,Ge,f

y¬xe
− z¬xe,Ge,f

,
z¬xf ,Ge,f

y¬xf
− z¬xf ,Ge,f

, yGe,f
− z¬xe,Ge,f

− z¬xf ,Ge,f
and yGe,f

− 1. It is easy
to check that thee is a constant degree derivation of xexf from these polynomi-
als (in particular, a non-optimal but constant-degree derivation is given by the
completeness of the Nullstellensatz system).

The polynomials introduced by the translation of Fv are: yxe
− xe, zyxe ,Fv

yf
(for e, f ∋ v and e < f), zyxe ,Fv

yxe
− zyxe ,Fv

(for e ∋ v), yFv
−
∑

e∋v zyxe ,Fv
and

yFv
−1.With a degree two Nullstellensatz derivation we may derive

∑

e∋v ze,Fv
xe−

1. Multiplying this by
∑

e∋v xe, and reducing using the previously derived poly-
nomials xexf and the axioms x2

e−xe, yields
∑

e∋v ze,Fv
xe−

∑

e∋v xe. Subtracting
this from

∑

e∋v ze,Fv
xe − 1 yields

∑

e∋v xe.
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A Note on Translations of Formulas to Polynomials Using Extension

Variables

Definition 14. The induction principle of length M , IND(M), is the following
system of polynomials: y1, yr+1yr − yr+1 (for r < M) and yM − 1.

Theorem 3. [15,12] The IND(M) system has Nullstellensatz refutations of de-
gree O(logM) over any field. Moreover, over any field the system requires degree
Ω(logM) Nullstellensatz refutations.

The “standard” translation of xn,¬(((((xn ∨xn−1)∨· · ·∨x1)))) into polyno-
mials using extension variables introduces new variables z1, . . . , zn−1, with poly-
nomials xn − 1, 1− (1− xn)(1− xn−1)− zn−1, 1− (1− zn−1)(1− xn−2)− zn−2,
. . . , 1− (1− z2)(1−x1)− z1, and z1. (The indices have been reversed from those
of subsection 5.1 to ease the reduction.)

We may define this set of polynomials from IND(n) using the following def-
initions: xi := yi for i, 1 ≤ i ≤ n, and zi := yi, for i ≤ n − 1. The polynomials
z1 = y1 and xn−1 = yn−1 are belong to IND(n), and for each r, 1 ≤ r ≤ n−2,

1− (1 − zr+1)(1 − xr)− zr = 1− (1− yr+1)(1 − yr)− yr
= 1− (1 + yr+1yr − yr − yr+1)− yr = −(yr+1yr − yr+1)

Similarly, 1− (1− xn)(1− xn−1)− zn−1 = −(ynyn−1 − yn).
Because there is a constant degree reduction from IND(n) to the standard

translation of xn,¬(((((xn ∨ xn−1)∨ . . . x1)))) into polynomials, this translation
requires super-constant degree to refute in the Nullstellensatz system.

6 An Application to Unsatisfiable Systems of

Constant-Width Linear Equations

Many tautologies studied in propositional proof complexity, such as Tseitin’s
tautologies [9] and the τ formulas of Nisan-Wigderson generators built from
parity functions, can be expressed as inconsistent systems of linear equations
over a field Zq in which each equation involves only a small number of variables.
We show that in such situations, constant-depth Frege with counting axioms
modulo q can prove these principles with polynomial size proofs.

Fix a prime number q. Let A be an m × n matrix over Zq, let x1, . . . , xn

be variables and let b ∈ Z
m
q be so that Ax = b has no solutions. Let w be the

maximum number of non-zero entries in any row of A.
For each i ∈ [m], let Ai be the i’th row of A, and let pi be the polynomial

Aix− bi. Let Ci the CNF that is satisfied if and only pi(x) = 0. Notice that Ci

has size at most 2w. The explicit encoding of Ax = b is the CNF
∧m

i=1 Ci.
The methods of subsection 5.1 show that

∧m

i=1 Ci is reducible to the sys-
tem of polynomials {p1, . . . , pm} via a constant depth reduction of size m2O(w).
Moreover, the system of polynomials {p1, . . . , pm} has a degree one Nullstellen-
satz refutation given by Gaussian elimination. Moreover, degree one refutations
are of size O(mn). Thus we have the following theorem:
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Theorem 4. Fix a prime number q. Let A be an m × n matrix, let x1, . . . , xn

be variables and let b ∈ Z
m
q be so that Ax = b has no solutions. Let w be the

maximum number of non-zero entries in any row of A.
There is a constant depth Frege with counting axioms modulo q refutation of

the explicit encoding of Ax = b of size polynomial in m,n and 2w.

The Tseitin graph tautologies on an expander graph are known to require
exponential size constant-depth Frege proofs [9]. Because these principles can be
represented as an unsatisfiable system of linear equations, they have polynomial
size constant-depth Frege with counting axioms proofs.

Corollary 1. There exists a family of unsatisfiable sets of constant width clauses
that require exponential size constant-depth Frege refutations, but have polyno-
mial size constant-depth Frege with counting axioms refutations.
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