
ar
X

iv
:c

s/
04

06
03

7v
2 

 [
cs

.L
O

] 
 2

0 
Ju

n 
20

04

Propositional computability logic II

Giorgi Japaridze∗

Department of Computing Sciences, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

Email: giorgi.japaridze@villanova.edu URL: http://www.csc.villanova.edu/∼ japaridz/

Abstract

Computability logic is a formal theory of computational tasks and resources. Its formulas represent
interactive computational problems, logical operators stand for operations on computational problems,
and validity of a formula is understood as being a scheme of problems that always have algorithmic so-
lutions. The earlier article “Propositional computability logic I” proved soundness and completeness for
the (in a sense) minimal nontrivial fragment CL1 of computability logic. The present paper extends that
result to the significantly more expressive propositional system CL2. What makes CL2 more expressive
than CL1 is the presence of two sorts of atoms in its language: elementary atoms, representing elemen-
tary computational problems (i.e. predicates), and general atoms, representing arbitrary computational
problems. CL2 conservatively extends CL1, with the latter being nothing but the general-atom-free
fragment of the former.

MSC: primary: 03B47; secondary: 03F50; 03B70; 68Q10; 68T27; 68T30; 91A05

Keywords: Computability logic; Interactive computation; Game semantics; Linear logic; Constructive logics

1 Introduction

Being a continuation of [3], this article fully relies on the terminology, notation, conventions and technical
results of its predecessor, with which the reader is assumed to be familiar.

The atoms of our old friend CL1 represent predicates rather than computational problems in general.
Hence, CL1 only describes valid computability principles for elementary problems. This is a rather severe
limitation of expressive power. For example, from the provability of p ∨ ¬p, the soundness of CL1 only
allows us to conclude that, for every predicate p, the elementary problem p ∨ ¬p is computable, i.e. true —
the fact which is already known from classical logic. Well, of course, in the same way we can also discover
a series of less known facts, such as, say, that for any predicates p and q, the problems (p ⊓ q) ∨ ¬(p ⊓ q),
(

p ⊔ (q ∧ p)
)

∨ ¬
(

p ⊔ (q ∧ p)
)

, etc. are computable (and furthermore, due to the constructive character of
the soundness theorem, we would also know how, exactly, to compute such problems). Yet, this would not
be sufficient for us to find that every problem of the form A ∨ ¬A is computable. Such a conclusion could
not be automatically made even if we managed to show — reasoning in the metatheory of CL1 rather than
CL1 itself, of course — that every CL1-formula of the form F ∨ ¬F is provable. Instead, we would only
know that A ∨ ¬A is computable as long as A is a (⊓,⊔,¬,∧,∨,→)-combination of elementary problems.
While the class of problems of this sort is certainly interesting and nontrivial, it is only a modest fraction of
the collection of all entities that we call interactive computational problems.

By simply redefining the semantics of the language of CL1 and no longer requiring that its atoms be
interpreted as elementary problems, we would certainly gain a lot. But perhaps just as much would be lost:
the class of valid formulas would shrink, victimizing many innocent principles such as, say, p → p ∧ p or
p∨ p → p⊔ p. The point is that elementary problems are meaningful and interesting in their own right, and

∗This material is based upon work supported by the National Science Foundation under Grant No. 0208816

1

http://arxiv.org/abs/cs/0406037v2


losing the ability to differentiate them from problems in general would be too much of a sacrifice. Needless
to mention, we would have to say “goodbye” to the nice fact that classical logic is a fragment of the new
logic.

Computability logic has a better solution. It simply allows two sorts of atoms in its language, one for
elementary problems and the other for all problems. This way, not only do we have the ability to characterize
valid principles for problems of either sort within the same formal system, but we can as well capture
principles that intermix elementary problems with not-necessarily-elementary ones. Such an approach also
has technical advantages. As we are going to see, logic CL2, whose language extends that of CL1 by adding
to it the second sort of atoms, has a rather simple (yet unusual) axiomatization, while it remains unclear
and perhaps questionable whether there is a reasonable axiomatization for the fragment of computability
logic whose language only has the second sort of atoms.

This article is devoted to a soundness and completeness proof for the above-mentioned system CL2. Its
main result, with a forward reference to the present paper (and without any proof), has been announced in
[4].

2 Logic CL2

The language of CL2 is the same as that of CL1, with the only “little” difference that, along with the
old atoms of CL1 which we now call elementary, it has an additional sort of nonlogical atoms called
general. We continue using the lowercase letters p, q, r, s as metavariables for elementary atoms, and will be
using the uppercase P,Q,R, S as metavariables for general atoms. We refer to the well-formed expressions
of this language as CL2-formulas, or simply formulas. They are built from atoms in the standard way
using the connectives ¬,∧,∨,→,⊓,⊔. The formulas that do not contain elementary nonlogical atoms we
call general-base, and the formulas that do not contain general atoms (i.e. simply CL1-formulas) we call
elementary-base. This terminology also extends to the corresponding two fragments of CL2; in particular,
the general-base fragment of CL2 is the set of all general-base theorems of CL2, and the elementary-base
fragment of CL2 is the set of all elementary-base theorems of CL2. In view of the promised soundness and
completeness of CL2, we may guess that the elementary-base fragment of CL2 is nothing but (the set of
theorems of) CL1.

An interpretation for the language of CL2 a function that sends each nonlogical elementary atom (as
before) to an elementary game, and sends each general atom to any, not-necessarily-elementary, static game.
This mapping extends to all formulas in the same way as in the case of CL1. Many of our old concepts
such as validity, uniform validity, surface occurrence and positive/negative occurrence, straightforwardly
extend to this new language and there is no need to redefine them. An elementary formula also means
the same as before: this is a formula of classical propositional logic, i.e. a formula that does not contain
general atoms, ⊓ and ⊔. The elementarization of a CL2-formula F means the result of replacing in F

every surface occurrence of the form G1 ⊓ . . .⊓Gn by ⊤, every surface occurrence of the form G1 ⊔ . . .⊔Gn

by ⊥ and, in addition, replacing every positive surface occurrence of each general atom by ⊥ and every
negative surface occurrence of each general atom by ⊤. Finally, as before, a formula is said to be stable iff
its elementarization is a classical tautology; otherwise it is instable.

The rules of inference of CL2 are the two rules (a) and (b) of CL1 — which are now applied to any
CL2-formulas rather than just elementary-base formulas — plus the following additional rule:

Rule (c): F ′ ⊢ F , where F ′ is the result of replacing in F two — one positive and one negative — surface
occurrences of some general atom by a nonlogical elementary atom that does not occur in F .

Example 2.1 The following is a CL2-proof of P ∧ P → P :

1. p ∧ P → p (from ∅ by Rule (a));
2. P ∧ P → P (from 1 by Rule (c)).

On the other hand, while CL2 certainly proves p → p∧p, it does not prove P → P ∧P . Indeed, this formula
is instable and does not contain ⊓ or ⊔, so it cannot be derived by Rules (a) or (b). If it is derived by Rule
(c), the premise should be p → P ∧ p or p → p ∧ P for some nonlogical elementary atom p. In either case

2



we deal with an instable formula that contains no choice operators and only has one occurrence of a general
atom, so that it cannot be derived by any of the three rules of CL2.

Exercise 2.2 Verify that:
1. CL2 ⊢ P ∨ ¬P
2. CL2 6⊢ P ⊔ ¬P
3. CL2 ⊢ P → P ⊓ P

4. CL2 ⊢ (P ∧Q) ∨ (R ∧ S) → (P ∨R) ∧ (Q ∨ S) (Blass’s principle)1

5. CL2 ⊢ p ∧ (p → Q) ∧ (p → R) → Q ∧R

6. CL2 6⊢ P ∧ (P → Q) ∧ (P → R) → Q ∧R

7. CL2 ⊢ P ⊓ (Q ∨R) → (P ⊓Q) ∨ (P ⊓R)
8. CL2 6⊢ (P ⊓Q) ∨ (P ⊓R) → P ⊓ (Q ∨R)
9. CL2 ⊢ (p ⊓Q) ∨ (p ⊓R) → p ⊓ (Q ∨R)

As we remember, CL1 is a conservative extension of classical logic. CL2, in turn, is a conservative
extension of CL1. This fact, of course, is implied by our soundness/completeness theorems. But it can as
well be seen directly through a simple syntactic analysis, taking into account that Rule (c) introduces a
general atom that never disappears in later formulas of a CL2-proof.

Below comes our main theorem. It is simply the later-proven Lemmas 4.1 and 5.1 put together:

Theorem 2.3 CL2 ⊢ F iff F is valid (any CL2-formula F ). Furthermore:
a) There is an effective procedure that takes a CL2-proof of an arbitrary formula F and constructs an

HPM H such that, for every interpretation ∗, H computes F ∗.
b) If CL2 6⊢ F , then F ∗ is not computable for some interpretation ∗ that interprets all elementary atoms

of F as finitary predicates of arithmetical complexity ∆2, and interprets all general atoms of F as problems
of the form (A1

1 ⊔ . . . ⊔ A1
m) ⊓ . . . ⊓ (Am

1 ⊔ . . . ⊔ Am
m), where each A

j
i is a finitary predicate of arithmetical

complexity ∆2.

CL2 is almost the full propositional fragment of the first-order logic FD introduced in [2], where the latter
was conjectured (Conjecture 25.4) to be sound and complete with respect to computability-logic semantics.
What is missing in CL2 is the logical general atom $, interpreted as a ‘computational problem of universal
strength’. In order to keep our proofs shorter, we have not included $ in the language. However, extending
our soundness/completeness proof in a way that accommodates $ does not present a serious challenge.
Anyway, FD can be easily seen to be a conservative extension of CL2, which means that our Theorem 2.3
yields a positive verification of Conjecture 25.4 of [2] restricted to the language of CL2.

Next, reasoning as in [3] (Section 5, Theorem 5.10), Theorem 2.3 allows us to find that Conjecture 26.2
of [2], restricted to the language of CL2, is also correct. That is, we have:

Theorem 2.4 A CL2-formula is valid if and only if it is uniformly valid.

Likewise, our Theorem 2.3 implies a positive verification of the correspondingly restricted Conjecture
24.4 of [2] as well. The latter sounds as follows:

If a formula F is not valid, then F ∗ is not computable for some interpretation ∗ that interprets
all atoms as finitary, determined, strict, unistructural problems.

1This formula is a binary tautology, meaning a tautology of classical propositional logic where each nonlogical atom occurs at
most twice. Blass [1] showed that the set of binary tautologies and their substitutional instances was precisely the multiplicative
fragment of the logic induced by his game semantics for linear logic. It is not hard to see that the ⊓,⊔-free subfragment of
the general-base fragment of CL2 yields exactly the same class of formulas. The fact that the two, technically rather different
semantics (see Section 27 of [2] for a discussion of the differences), introduced with different motivations, validate same formulas
is certainly a positive sign, signifying that both of the semantics are natural. Whether such equivalence extends to the full
general-base fragment of CL2 is unknown as no axiomatic/syntactic characterization has been found so far for the full additive-
multiplicative propositional fragment of the logic induced by Blass’s semantics.

3



Two of the above game properties have not been (properly) defined in [3], so they need to be explained
here. A strict game is a game where, in every legal position, at most one of the players has legal moves.
And a determined game is a game where, on any fixed input, one of the players has a winning strategy, even
though not necessarily an algorithmic one. In precise terms, non-algorithmic strategies can be understood as
HPMs with oracles; such machines, discussed in Section 18 of [2], generalize ordinary HPMs in the same way
as oracle Turing machines generalize ordinary Turing machines. The above-quoted statement of Conjecture
24.4 of [2] is an immediate consequence of clause (b) of our Theorem 2.3 and the fact — known from [2] —
that ⊓,⊔-combinations of finitary predicates are finitary, determined, strict and unistructural.

It is also worth noting that CL2, just like CL1, is decidable, with a brute force decision algorithm
obviously running in at most polynomial space. Whether there are more efficient algorithms is unknown.

3 Technical preliminaries

The rest of this paper is devoted to a proof of Theorem 2.3. This section contains some necessary prelimi-
naries.

3.1 Hyperformulas

In the bottom-up (from conclusion to premises) view, Rule (c) introduces two occurrences of some new
nonlogical elementary atom. For technical convenience, we want to differentiate elementary atoms introduced
this way from all other elementary atoms, and also to somehow keep track of the exact origin of each such
elementary atom q — that is, remember what general atom P was replaced by q when Rule (c) was applied.
For this purpose, we extend the language of CL2 by adding to it a new sort of non-logical atoms, called
hybrid. In particular, each hybrid atom is a pair consisting of a general atom P , called its general
component, and a nonlogical elementary atom q, called its elementary component. We denote such
a pair by Pq. It is assumed that, for every nonlogical elementary atom q and every general atom P , the
language has the (unique) hybrid atom Pq. As we are going to see later, the presence of Pq in a (modified
CL2-) proof will be an indication of the fact that, in the bottom-up view of proofs, q has been introduced
by Rule (c) and that when this happened, the general atom that q replaced was P .

What we call hyperformulas are defined in the same way as CL2-formulas, with the only difference that
now atomic expressions can be of any of the three (elementary, general or hybrid) sorts. “Subhyperformula”
in the context of hyperformulas means the same as “subformula” in the context of formulas.

As in the case of formulas, by a surface occurrence of a subexpression in a given hyperformula F we
mean an occurrence that is not in the scope of ⊓ and/or ⊔. Understanding G → H as an abbreviation for
¬G∨H , an occurrence of a subexpression in a hyperformula is positive (resp. negative) iff it is in the scope
of an even (resp. odd) number of occurrences of ¬. An elementary hyperformula is one not containing ⊓
and ⊔, as well as general and hybrid atoms. Thus, ‘elementary hyperformula’ and ‘elementary CL2-formula’
(as well as ‘elementary CL1-formula’, as well as ‘formula of classical propositional logic’) mean the same.
The elementarization

‖F‖

of a hyperformula F is the result of replacing, in F , every surface occurrence of the form G1 ⊓ . . .⊓Gn by ⊤,
every surface occurrence of the form G1 ⊔ . . . ⊔Gn by ⊥, every positive (resp. negative) surface occurrence
of each general atom by ⊥ (resp. ⊤), and every surface occurrence of each hybrid atom by the elementary
component of that atom. As in the case of formulas, we say that a hyperformula F is stable iff ‖F‖ is valid
in the classical sense; otherwise it is instable.

A hyperformula F is said to be balanced iff, for every hybrid atom Pq occurring in F , the following two
conditions are satisfied:

1. F has exactly two occurrences of Pq, where one occurrence is positive and the other occurrence is
negative, and both occurrences are surface occurrences;

2. the elementary atom q does not occur in F , nor is it the elementary component of any hybrid atom
occurring in F other than Pq.

4



In our soundness proof for CL2 we will employ a “version” of CL2 called CL2◦. Unlike CL2 whose
language consists only of formulas, the language of CL2◦ allows any balanced hyperformulas. The rules
of CL2◦ are Rules (a) and (b) of CL2 (only now applied to any balanced hyperformulas rather than just
CL2-formulas) plus the following Rule (c◦) instead of the old Rule (c):

Rule (c◦): F ′ ⊢ F , where F is the result of replacing in F ′ both occurrences of some hybrid atom Pq by
its general component P .

Lemma 3.1 For any CL2-formula G, if CL2 ⊢ G, then CL2◦ ⊢ G.
Furthermore, there is an effective procedure that converts any CL2-proof of any formula G into a CL2◦-

proof of G.

Proof. Consider any CL2-proof tree for G, i.e. a tree every node of which is labeled with a CL2-
formula that follows by one of the rules of CL2 from the set of (the labels of) its children, with G being
the label of the root. By abuse of terminology, here we identify the nodes of this tree with their labels, even
though, of course, it may be the case that different nodes have same labels. For each node F of the tree
that is derived from its child F ′ by Rule (c) — in particular, where F ′ is the result of replacing in F a
positive and a negative surface occurrences of a general atom P by a nonlogical elementary atom q — do the
following: replace all (both) occurrences of q by the hybrid atom Pq in F ′ as well as in all of its descendants
in the tree. It is not hard to see that this way we will get a CL2◦-proof of G. That the resulting tree is
indeed a CL2◦-proof formally can be verified by induction on the hight of the CL2-proof tree. ✷

By the general dehibridization of a hyperformula F we mean the CL2-formula that results from F by
replacing in the latter every hybrid atom by its general component. Where ∗ is an interpretation and F is a
hyperformula, we define the game

F ∗

as G∗, where G is the general dehibridization of F . Extending the earlier-established lingo to hyperformulas,
for a hyperformula F and an interpretation ∗, whenever F ∗ = A, we say that ∗ interprets F as A.

3.2 Perfect interpretations

A game A is said to be constant iff it does not depend on input, i.e., for every two inputs e1 and e2, we have
WnA

e1
= WnA

e2
and LrAe1 = LrAe2 . Of course, for such a game A, there is no difference between “legal” and

“unilegal”, and we can always write LRA instead of LrAe ; likewise, since e is irrelevant, we can safely omit
this parameter in WnA

e and simply write WnA instead. For a constant game A, we will say “Γ is a legal
run (position) of A” to mean that Γ ∈ LRA, and say “Γ is a ℘-won run of A” to mean that WnA〈Γ〉 = ℘;
similarly, we will just say “℘-illegal...” to mean “℘-illegal ... on some (= all) e”.

For a game A and input e, the e-instantiation of A, denoted

e[A],

is defined by stipulating that, for every input f , Wn
e[A]
f = WnA

e and Lr
e[A]
f = LrAe . Thus, the game

e[A] does not depend on input f . Intuitively, e[A] is the constant game obtained from A by fixing the
input e for it once and forever. Note that when A is a constant game, for any input e, we have e[A] = A.
Based on the definitions of our game operations, it is also easy to see that we always have e[¬A] = ¬e[A],
e[A → B] = e[A] → e[B], e[A1 ∧ . . . ∧ An] = e[A1] ∧ . . . ∧ e[An], and similarly for ∨,⊓,⊔.

An interpretation ∗ is said to be perfect iff it interprets every atom as a constant game. All of our
game operations preserve the constant property of games ([2], Theorem 14.1), which means that perfect
interpretations interpret all (hyper)formulas as constant games. This fact may be worth marking as we will
often implicitly rely on it. For an interpretation ∗ and input e, the perfect interpretation induced by
(∗, e) is the interpretation † that interprets each (elementary or general) atom L as the constant game e[L∗].

Lemma 3.2 Assume F is any hyperformula, e any input, ∗ any interpretation and † the perfect interpreta-
tion induced by (∗, e). Then e[F ∗] = F †.

5



Proof. Induction on the complexity of F . For an atomic F , e[F ∗] = F † is immediate. And the inductive
step is also straightforward, taking into account that the operations e[. . .], ∗, † commute with ¬,∧,∨,→,⊓,⊔.
✷

3.3 Prefixation lemmas

Throughout this paper we follow the notational convention established in [2, 3, 4], according to which letter
℘ exclusively ranges over players, lowercase Greek letters range over moves, and uppercase Greek letters
range over runs, with Φ,Ψ,Θ,Ω typically used for finite runs (positions), and Γ, ∆ for any runs.

Let us also take a note of one technicality. Even though the Lr subclauses of the official definition of
¬,∧,∨ given in [3] (Definition 3.2) involve a nonempty position Φ, by condition (a) of Definition 3.1 of [3] it
is clear that those subclauses automatically extend to any run Γ. We will often implicitly rely on this fact.

Remember the operation of Φ-prefixation ([3], Definition 3.6), the result of applying which to a game A

is denoted 〈Φ〉A. According to definition, 〈Φ〉A is defined iff Φ is a unilegal position of A. For readability
and compactness of formulations, let us agree on the following:

Convention 3.3 Every time we make a statement that involves an expression “〈Φ〉A”, unless otherwise
specified, we imply that Φ is a unilegal position of game A and hence 〈Φ〉A is defined.

The expression 〈Ψ〉〈Φ〉A below and elsewhere should be read as 〈Ψ〉(〈Φ〉A).

Lemma 3.4 For any game A and positions Φ,Ψ, we have:
1. If 〈Φ,Ψ〉A is defined, then so is 〈Ψ〉〈Φ〉A, and vice versa.
2. When 〈Φ,Ψ〉A — or, equivalently, 〈Ψ〉〈Φ〉A — is defined, we have 〈Φ,Ψ〉A = 〈Ψ〉〈Φ〉A.

Proof. Clause 1. Suppose 〈Φ,Ψ〉A is defined, i.e. 〈Φ,Ψ〉 ∈ LRA. Then, by condition (a) of Definition

3.1 of [3], Φ ∈ LRA. This means that 〈Φ〉A is defined; next, by the definition of prefixation, Ψ ∈ LR〈Φ〉A

iff 〈Φ,Ψ〉 ∈ LRA, so that we have Ψ ∈ LR〈Φ〉A, i.e. 〈Ψ〉〈Φ〉A is (also) defined. The ‘vice versa’ part can be
handled in a similar/symmetric way.

Clause 2. Consider any input e and any run Γ. We want to show that Γ ∈ Lr〈Ψ〉〈Φ〉A
e iff Γ ∈ Lr〈Φ,Ψ〉A

e ,

and Wn〈Ψ〉〈Φ〉A
e 〈Γ〉 = Wn〈Φ,Ψ〉A

e 〈Γ〉.

By the definition of prefixation, Γ ∈ Lr〈Ψ〉〈Φ〉A
e iff 〈Ψ,Γ〉 ∈ Lr〈Φ〉A

e . In turn, 〈Ψ,Γ〉 ∈ Lr〈Φ〉A
e iff 〈Φ,Ψ,Γ〉 ∈

LrAe . Finally, 〈Φ,Ψ,Γ〉 ∈ LrAe iff Γ ∈ Lr〈Φ,Ψ〉A
e .

Next, again immediately from the definition of prefixation, we have: Wn〈Ψ〉〈Φ〉A
e 〈Γ〉 = Wn〈Φ〉A

e 〈Ψ,Γ〉 =

WnA
e 〈Φ,Ψ,Γ〉 = Wn〈Φ,Ψ〉A

e 〈Γ〉. ✷

In [3] we used the notation ℘̄ for “℘’s adversary”, and the notation Γ̄ for the result of changing every
label ℘ to ℘̄ (and vice versa) in run Γ. In this paper we go back to the notation established in [2], and write

¬℘ and ¬Γ

instead of ℘̄ and Γ̄, respectively.

Lemma 3.5 For any game A and position Φ with Φ ∈ LR¬A — or, equivalently, ¬Φ ∈ LRA — we have
〈Φ〉¬A = ¬(〈¬Φ〉A).

Proof. First of all, note that, by the definition of (the game operation) ¬, the conditions Φ ∈ LR¬A

and ¬Φ ∈ LRA are indeed equivalent. Assume Φ ∈ LR¬A. Consider any input e and any run Γ. We want
to show that Γ ∈ Lr〈Φ〉¬A

e iff Γ ∈ Lr¬(〈¬Φ〉A)
e , and Wn〈Φ〉¬A

e 〈Γ〉 = Wn¬(〈¬Φ〉A)
e 〈Γ〉.

By the definition of prefixation, Γ ∈ Lr〈Φ〉¬A
e iff 〈Φ,Γ〉 ∈ Lr¬A

e . In turn, by the definition of ¬, 〈Φ,Γ〉 ∈

Lr¬A
e iff ¬〈Φ,Γ〉 ∈ LrAe . Of course, ¬〈Φ,Γ〉 = 〈¬Φ,¬Γ〉. Thus we get: Γ ∈ Lr〈Φ〉¬A

e iff 〈¬Φ,¬Γ〉 ∈ LrAe .

Again by the definition of prefixation, 〈¬Φ,¬Γ〉 ∈ LrAe iff ¬Γ ∈ Lr〈¬Φ〉A
e . And, again by the definition of ¬,

¬Γ ∈ Lr〈¬Φ〉A
e iff Γ ∈ Lr¬(〈¬Φ〉A)

e . Thus, Γ ∈ Lr〈Φ〉¬A
e iff Γ ∈ Lr¬(〈¬Φ〉A)

e .

6



Next, excluding for safety the trivial case Γ 6∈ LR〈Φ〉¬A which — in view of condition (c) of Definition
3.1 of [3] — is taken care of by the previous paragraph, we have:

Wn〈Φ〉¬A
e 〈Γ〉 = Wn¬A

e 〈Φ,Γ〉 (by the definition of prefixation);
Wn¬A

e 〈Φ,Γ〉 = ¬WnA
e 〈¬Φ,¬Γ〉 (by the definition of ¬);

¬WnA
e 〈¬Φ,¬Γ〉 = ¬Wn〈¬Φ〉A

e 〈¬Γ〉 (by the definition of prefixation);

¬Wn〈¬Φ〉A
e 〈¬Γ〉 = Wn¬(〈¬Φ〉A)

e 〈Γ〉 (by the definition of ¬).

This chain of equations yields the desired Wn〈Φ〉¬A
e 〈Γ〉 = Wn¬(〈¬Φ〉A)

e 〈Γ〉. ✷

Remember the notation
Γγ

that we started using in [3], meaning the result of removing from Γ all labeled moves except those of the
form ℘γβ, and then deleting the prefix γ in the remaining moves, i.e. replacing each such ℘γβ by ℘β.

Lemma 3.6 For any games A1, . . . , An (n ≥ 2) and unilegal position Φ of A1 ∨ . . . ∨ An, we have

〈Φ〉(A1 ∨ . . . ∨An) = 〈Φ1.〉A1 ∨ . . . ∨ 〈Φn.〉An.

Proof. Assume Φ ∈ LRA1∨...∨An . Note that then, by the definition of ∨, each Φi. is in LRAi and thus
the 〈Φi.〉Ai are defined.

We prove the above equality by induction on the length of Φ. The basis case with Φ = 〈〉 is straightfor-
ward. Now suppose Φ = 〈Ψ, ℘γ〉, so that

〈Φ〉(A1 ∨ . . . ∨An) = 〈Ψ, ℘γ〉(A1 ∨ . . . ∨An). (1)

By Lemma 3.4,
〈Ψ, ℘γ〉(A1 ∨ . . . ∨ An) = 〈℘γ〉〈Ψ〉(A1 ∨ . . . ∨ An). (2)

Since Φ is a unilegal position of A1∨ . . .∨An, so is Ψ, and, by the induction hypothesis, 〈Ψ〉(A1∨ . . .∨An) =
〈Ψ1.〉A1 ∨ . . . ∨ 〈Ψn.〉An. Hence

〈℘γ〉〈Ψ〉(A1 ∨ . . . ∨ An) = 〈℘γ〉(〈Ψ1.〉A1 ∨ . . . ∨ 〈Ψn.〉An). (3)

By clause 3(a) of Lemma 3.7 of [3], γ = i.β, where i ∈ {1, . . . , n} and 〈℘β〉 ∈ LR〈Ψi.〉Ai . Without loss of
generality, let us assume here that i = 1. Then, by clause 3(b) of the same lemma,

〈℘γ〉(〈Ψ1.〉A1 ∨ . . . ∨ 〈Ψn.〉An) = (〈℘β〉〈Ψ1.〉A1) ∨ 〈Ψ2.〉A2 ∨ . . . ∨ 〈Ψn.〉An. (4)

By Lemma 3.4, 〈℘β〉〈Ψ1.〉A1 = 〈Ψ1., ℘β〉A1. In turn, we clearly have 〈Ψ1., ℘β〉 = 〈Ψ, ℘1.β〉1., i.e. 〈Ψ1., ℘β〉 =
〈Ψ, ℘γ〉1., i.e. 〈Ψ1., ℘β〉 = 〈Φ〉1.. It is also obvious that, for every j 6= 1, we have Ψj. = 〈Ψ, ℘1.β〉j., i.e.
Ψj. = Φj.. Therefore,

(〈℘β〉〈Ψ1.〉A1) ∨ 〈Ψ2.〉A2 ∨ . . . ∨ 〈Ψn.〉An = 〈Φ1.〉A1 ∨ 〈Φ2.〉A2 ∨ . . . ∨ 〈Φn.〉An. (5)

Now, the chain (1)-(5) of equations yields the desired 〈Φ〉(A1 ∨ . . . ∨ An) = 〈Φ1.〉A1 ∨ . . . ∨ 〈Φn.〉An. ✷

By a choice hyperformula we mean a non-atomic hyperformula whose main operator is ⊓ or ⊔. A
quasiatom of a hyperformula E is a surface occurrence of a subhyperformula in E that is either an atom
(of any of the three sorts) or a choice hyperformula. Note that a quasiatom in not just a subhyperformula
but rather a subhyperformula together with a particular occurrence. E.g., in P ∧ ¬P , the two different
occurrences of P present two different quasiatoms. However, for readability (and by abuse of terminology),
we will usually identify a quasiatom with the corresponding hyperformula G, and simply say “the quasiatom
G” once it is clear from the context which of the possibly many occurrences of G we mean.

A quasiatom G of a hyperformula F is said to be positive (resp. negative) (in F ) iff its occurrence in
F is positive (resp. negative). Such a quasiatom G is elementary iff it is an elementary atom; otherwise
we say that it is nonelementary.

In Section 6 of [3] we defined the term “E-specification” (“E-specifies”). This terminology straightfor-
wardly extends to hyperformulas and their quasiatoms. Note that a quasiatom of a given hyperformula F is

7



uniquely determined by its F -specification, even though this is generally not so for subhyperformulas that
are not quasiatoms. For example, where E = q ∨ ¬p, the string ‘2.’ uniquely E-specifies the quasiatom p

while it E-specifies the occurences of two subformulas: p and ¬p. Since specifications uniquely determine
quasiatoms, we can use phrases such as “the occurrence γ of G in E” as long as G is a quasiatom, meaning
the occurrence of G in E that is E-specified by string γ.

For a run Γ, hyperformula F and quasiatom H of F that is F -specified by γ, we use the notation Γγ
F

defined by:

Γγ
F =

{

Γγ if H is positive in F ;
¬Γγ if H is negative in F .

By the surface complexity of a hyperformula F we mean the number of surface occurrences of ¬, ∧,
∨, → in F . Some proofs in this paper will employ induction on surface complexity.

Lemma 3.7 Assume ∗ is a perfect interpretation, E is any hyperformula, and Γ is any run. Then Γ ∈ LRE∗

iff every labeled move of Γ has the form ℘γβ for some γ that E-specifies a nonelementary quasiatom F of
E, such that Γγ

E ∈ LRF∗

.

Proof. Assume the conditions of the lemma. Since ∗ is perfect, all the formulas that we deal with are
interpreted as constant games and, as noted earlier, we do not need to bother about the distinction between
Lr and LR. We prove this lemma by induction on the surface complexity of E. In doing so, we can safely
assume that E is just a (¬,∨)-combination of quasiatoms. Indeed, if not, every subhyperformula K → L of
E can be rewritten as ¬K ∨L, and every subhyperformula K1 ∧ . . . ∧Kn rewritten as ¬(¬K1 ∨ . . . ∨ ¬Kn).
It is not hard to see that each quasiatom of the resulting hyperformula E′ will be E′-specified by the same
string as the string that E-specifies that quasiatom, and the positive/negative status of quasiatoms will also
be identical in E and E′; next, by Definition 3.2(8) and Exercise 3.3(2) of [3], we will have E∗ = E′∗, so
that E and E′ will be the “same” in every relevant aspect.

For the basis of induction, assume E is a quasiatom. If E is an elementary quasiatom and hence E∗

is an elementary game, then Γ ∈ LRE∗

iff Γ = 〈〉, because, as we remember, 〈〉 is the only legal run of
elementary games. And, since in this case E has no nonelementary quasiatoms, the condition Γ = 〈〉 is, in
turn, equivalent to the condition “every labeled move of Γ has the form ℘γβ for some γ that E-specifies a
nonelementary quasiatom F of E ...”. Thus, everything is as claimed by the lemma. Suppose now E is a
nonelementary quasiatom. Note that the occurrence of E — the only nonelementary quasiatom F = E of E
— in itself is E-specified by the empty string ǫ. Inserting ǫ does not change a string, so every labeled move
℘β of Γ has the form ℘ǫβ. And, of course, Γǫ

E = Γ. In view of these observations, the claim of the lemma is
trivially satisfied.

For the inductive step, assume E = ¬K. By the definition of ¬, Γ ∈ LRE∗

iff ¬Γ ∈ LRK∗

. In turn,
by the induction hypothesis, ¬Γ ∈ LRK∗

iff every labeled move of ¬Γ has the form ℘γβ for some γ that
K-specifies a nonelementary quasiatom F of K, such that (¬Γ)γK ∈ LRF∗

. But notice that the same γ also
E-specifies the same quasiatom F , and that (¬Γ)γK = Γγ

E . Hence, the statement of the lemma is correct.

Finally, assume E = K1 ∨ . . . ∨Kn. By the definition of ∨, Γ ∈ LRE∗

iff every move of Γ starts with
‘i.’ for some i ∈ {1, . . . , n} and, for each such i, we have Γi. ∈ LRK∗

i . In turn, by the induction hypothesis,

Γi. ∈ LRK∗
i iff every labeled move of Γi. has the form ℘δβ for some δ that Ki-specifies a nonelementary

quasiatom F of Ki, such that (Γi.)δKi
∈ LRF∗

. Notice that the same F is a nonelementary quasiatom of E

which is E-specified by i.δ, and that (Γi.)δKi
= Γi.δ

E . Thus, Γ ∈ LRE∗

iff every labeled move of Γ has the

form ℘i.δβ, where i.δ is the E-specification of a nonelementary quasiatom F of E, such that Γi.δ
E ∈ LRF∗

.
In other words, with i.δ in the role of γ, the statement of the lemma holds. ✷

We will be using the expression
Γ−γ

to denote the result of deleting in run Γ every labeled move that is ℘γβ for some player ℘ and move/string
β. Do not be misled by the symmetry in notation: Γ−γ and Γγ are not “dual” in any reasonable sense. Also,
to avoid possible ambiguity, our present notational convention assumes that the symbol “−” never occurs in
moves (otherwise replace it with a symbol that satisfies such a condition).

8



Lemma 3.8 Assume ∗ is a perfect interpretation, E is any hyperformula, Φ is a legal position of E∗, γ is
the E-specification of a nonelementary quasiatom F of E, G is a hyperformula with 〈Φγ

E〉F
∗ = G∗, and H

is the result of replacing F by G in E. Then 〈Φ〉E∗ = 〈Φ−γ〉H∗.

Proof. Assume the conditions of the lemma. Our proof proceeds by induction on the surface complexity
of E. As in the previous lemma, considering only ¬ and ∨ in the inductive step would be sufficient.

Assume E is a quasiatom, so that F = E, H = G, and γ is the empty string ǫ. According to one of the
assumptions of the lemma, 〈Φǫ

E〉F
∗ = G∗. Hence, as Φǫ

E = Φ, we have 〈Φ〉F ∗ = G∗. The equations F = E

and H = G allow us to rewrite 〈Φ〉F ∗ = G∗ as 〈Φ〉E∗ = H∗. Of course H∗ = 〈〉H∗, and thus 〈Φ〉E∗ = 〈〉H∗.
But notice that 〈〉 = 〈Φ−ǫ〉, which yields the desired 〈Φ〉E∗ = 〈Φ−ǫ〉H∗.

Next, assume E = ¬K. As in the corresponding step of the previous lemma, γ remains theK-specification
of F , and Φγ

E = (¬Φ)γK . Also, ¬Φ ∈ LRK∗

. It is our assumption that 〈Φγ
E〉F

∗ = G∗, and therefore
〈(¬Φ)γK〉F ∗ = G∗. Then, by the induction hypothesis, 〈¬Φ〉K∗ = 〈(¬Φ)−γ〉L∗, where L is the result of
replacing F by G in K. Hence ¬(〈¬Φ〉K∗) = ¬(〈(¬Φ)−γ 〉L∗). By Lemma 3.5, ¬(〈¬Φ〉K∗) = 〈Φ〉E∗ and
¬(〈(¬Φ)−γ〉L∗) = 〈Φ−γ〉¬L∗. Consequently, 〈Φ〉E∗ = 〈Φ−γ〉¬L∗. But, of course, ¬L∗ = H∗. Thus,
〈Φ〉E∗ = 〈Φ−γ〉H∗.

Finally, assume
E = K1 ∨K2 ∨ . . . ∨Kn.

Then, by Lemma 3.6,
〈Φ〉E∗ = 〈Φ1.〉K∗

1 ∨ 〈Φ2.〉K∗
2 ∨ . . . ∨ 〈Φn.〉K∗

n. (6)

Let Ki be the disjunct of E that contains F , and let δ be the Ki-specification of F . For simplicity of
representation and without loss of generality, let us assume here that i = 1 — of course, any other i can be
handled in a similar way. Thus, γ = 1.δ, and we have

H = L ∨K2 ∨ . . . ∨Kn, (7)

where L is the result of replacing F by G in K1.
As γ = 1.δ, for any j 6= 1 we obviously have Φj. = (Φ−γ)j.. Hence, (6) can be rewritten as

〈Φ〉E∗ = 〈Φ1.〉K∗
1 ∨ 〈(Φ−γ)2.〉K∗

2 ∨ . . . ∨ 〈(Φ−γ)n.〉K∗
n. (8)

It is our assumption that 〈Φγ
E〉F

∗ = G∗, i.e. 〈Φ1.δ
E 〉F ∗ = G∗. But obviously Φ1.δ

E = (Φ1.)δK1
, and therefore

〈(Φ1.)δK1
〉F ∗ = G∗. Then, by the induction hypothesis, 〈Φ1.〉K∗

1 = 〈(Φ1.)−δ〉L∗. But it is not hard to see

that (Φ1.)−δ = (Φ−1.δ)1.. Hence, 〈Φ1.〉K∗
1 = 〈(Φ−1.δ)1.〉L∗, i.e. 〈Φ1.〉K∗

1 = 〈(Φ−γ)1.〉L∗. This allows us to
rewrite (8) as

〈Φ〉E∗ = 〈(Φ−γ)1.〉L∗ ∨ 〈(Φ−γ)2.〉K∗
2 ∨ . . . ∨ 〈(Φ−γ)n.〉K∗

n. (9)

Since Φ ∈ LRE∗

, every move of (Φ and hence of) Φ−γ starts with ‘i.’ for some i ∈ {1, . . . , n}. And, with
Convention 3.3 in mind, (9) implies that

(Φ−γ)1. ∈ LRL∗

, (Φ−γ)2. ∈ LRK∗
2 , . . . (Φ−γ)2. ∈ LRK∗

2 .

By the definition of ∨, all this means that Φ−γ ∈ LRL∗∨K∗
2
∨...∨K∗

n . Then, by Lemma 3.6,

〈Φ−γ〉(L∗ ∨K∗
2 ∨ . . . ∨K∗

n) = 〈(Φ−γ)1.〉L∗ ∨ 〈(Φ−γ)2.〉K∗
2 ∨ . . . ∨ 〈(Φ−γ)n.〉K∗

n.

The above, in conjunction with (9) and (7), yields the desired 〈Φ〉E∗ = 〈Φ−γ〉H∗. ✷

3.4 Manageability

Definition 3.9 Let F be a balanced hyperformula. We say that a run Γ is F -manageable iff the following
three conditions are satisfied:

1. Every labeled move of Γ has the form ℘γα, where γ is the F -specification of a surface occurrence of
either a general atom, or a hybrid atom.

9



2. If γ is the F -specification of a general atom, then Γγ entirely consists of ⊥-labeled moves.

3. If, for some hybrid atom Pq, π and ν are the F -specifications of the positive and the negative occurrence
of Pq in F , respectively, then Γπ is a ⊤-delay (see [3], Section 3) of ¬Γν .

The above technical concept will play a central role in our soundness proof for CL2. Very roughly, the
intuition here is that, when Γ is F -manageable, playing it in no way affects the logical structure of F (clause
1), ensures that the subgames in the “matched” occurrences of atoms evolve to — in a sense — the same
games (clause 3), and that ⊤ does not make any hasty moves in unmatched atoms (clause 2), so that, if
and when at some later point such an atom finds a match, ⊤ will still have a chance to “even out” the
corresponding two subgames.

Lemma 3.10 Let E be any balanced hyperformula, ∗ any perfect interpretation, and Γ an infinite run
with arbitrarily long finite initial segments that are E-manageable legal positions of E∗. Then Γ is an E-
manageable legal run of E∗.

Proof. Assume the conditions of the lemma. They imply that every finite initial segment of Γ is a
legal position of E∗. Hence, by condition (a) of Definition 3.1 of [3], Γ is a legal run of E∗. Also, obviously
Γ satisfies conditions 1 and 2 of Definition 3.9 because it has arbitrarily long initial segments that satisfy
those conditions. So, what remains to show is that Γ satisfies condition 3 of Definition 3.9.

Suppose, for a contradiction, that this is not the case. In particular, there are π, ν and Pq as described
in the antecedent of condition 3 such that Γπ is not a ⊤-delay of ¬Γν . This means that at least one of the
following two statements is true:

(i) For one of the players ℘, the subsequence of the ℘-labeled moves of Γπ (i.e. the result of deleting in Γπ

all ¬℘-labeled moves) is not the same as that of ¬Γν , or

(ii) For some k, n, in ¬Γν the nth ⊤-labeled move is made later than the kth ⊥-labeled move, but in Γπ

the nth ⊤-labeled move is made earlier than the kth ⊥-labeled move.

Whether (i) or (ii) is the case, it is not hard to see that, beginning from some (finite) n, every initial
segment Ψ of Γ of length ≥ n will satisfy the same (i) or (ii) in the role of Γ, and hence Ψ will not be an
E-manageable position of E∗. This contradicts the assumptions of our lemma. ✷

Lemma 3.11 Assume E is a balanced hyperformula, ∗ is a perfect interpretation, and Ω is an E-manageable
legal position of E∗. Suppose γ is the E-specification of a negative (resp. positive) surface occurrence of a
subformula G1 ⊓ . . . ⊓Gn (resp. G1 ⊔ . . . ⊔Gn), and i ∈ {1, . . . , n}. Let H be the result of substituting in E

the above occurrence by Gi. Then:

1. 〈Ω〉 is H-manageable;

2. 〈Ω,⊤γi〉E∗ = 〈Ω〉H∗.

Proof. Assume the conditions of the lemma. It is not hard to see that each of the three conditions
of Definition 3.9 is inherited by H from E. This implies clause 1. Next, since Ω does not contain γ-
prefixed moves (for otherwise, by condition 1 of Definition 3.9, it would not be E-manageable), we have
〈Ω,⊤γi〉γ = 〈⊤i〉 and 〈Ω,⊤γi〉−γ = Ω. Based on this, clause 2 of the present lemma is an easy consequence
of our Lemmas 3.7, 3.8 and clauses 5,6 of Lemma 3.7 of [3]. ✷

Lemma 3.12 Assume A is a constant static game, ℘ is either player, and Γ,∆ are runs such that ∆ is a
℘-delay of Γ. Then:

1. If ∆ is a ℘-illegal run of A, then so is Γ.

2. If Γ is a ¬℘-illegal run of A, then so is ∆.

10



Proof. The above is a fact known from [2] (Lemma 4.7). ✷

Lemma 3.13 Assume E is a balanced hyperformula, ∗ is a perfect interpretation, and Ω is an E-manageable
legal position of E∗. Suppose H is the hyperformula that results from E by replacing in it a positive sur-
face occurrence π and a negative surface occurrence ν of a general atom P by a hybrid atom Pq, such
that H remains balanced. Further assume that Ωπ = 〈⊥π1, . . . ,⊥πn〉 and Ων = 〈⊥ν1, . . . ,⊥νm〉. Then
〈Ω,⊤πν1, . . . ,⊤πνm,⊤νπ1, . . . ,⊤νπn〉 is an H-manageable legal position of H∗.

Proof. Assume the conditions of the lemma. Let

Φ = 〈Ω,⊤πν1, . . . ,⊤πνm,⊤νπ1, . . . ,⊤νπn〉.

Notice that
Φπ

H = Φπ = 〈⊥π1, . . . ,⊥πn,⊤ν1, . . . ,⊤νm〉; (10)

Φν
H = ¬Φν = 〈⊤ν1, . . . ,⊤νm,⊥π1, . . . ,⊥πn〉. (11)

Thus,
Φπ

H is a ⊤-delay of Φν
H . (12)

This implies that Φ is H-manageable, because conditions 1 and 2 of Definition 3.9 are obviously inherited
by H,Φ from E,Ω, and so is condition 3 for any hybrid atom Rs different from Pq.

What remains to show is that Φ ∈ LRH∗

. For this, in view of Lemma 3.7, it would be sufficient to
verify that Φπ

H ∈ LRP∗

and Φν
H ∈ LRP∗

, because for any other (different from π, ν) relevant γ, the similar
condition is inherited by H,Φ from E,Ω taking into account that Φγ = Ωγ .

Since Ω is a legal position of E∗, by Lemma 3.7, we have both Ωπ
E ∈ LRP∗

and Ων
E ∈ LRP∗

. Thus,

〈⊥π1, . . . ,⊥πn〉 ∈ LRP∗

; (13)

〈⊤ν1, . . . ,⊤νm〉 ∈ LRP∗

. (14)

Suppose Φπ
H 6∈ LRP∗

, i.e. (by (10)) 〈⊥π1, . . . ,⊥πn,⊤ν1, . . . ,⊤νm〉 6∈ LRP∗

. In view of (13), Φπ
H cannot

be a ⊥-illegal position of P ∗. So, it must be ⊤-illegal. But then, by (12) and clause 1 of Lemma 3.12, Φν
H is

a ⊤-illegal position of P ∗. This, however, is in obvious contradiction with (11) and(14).

Suppose now Φν
H 6∈ LRP∗

, i.e. (by (11)) 〈⊤ν1, . . . ,⊤νm,⊥π1, . . . ,⊥πn〉 6∈ LRP∗

. This case is simi-
lar/symmetric to the previous one. In view of (14), Φν

H cannot be a ⊤-illegal position of P ∗. So, it must be
⊥-illegal. But then, by (12) and clause 2 of Lemma 3.12, Φπ

H is a ⊥-illegal position of P ∗. This, however, is
in contradiction with (10) and (13). ✷

Lemma 3.14 Assume E is a balanced hyperformula, α is any move, ∗ is a perfect interpretation, Ω is an
E-manageable position, and 〈Ω,⊥α〉 ∈ LRE∗

. Then one of the following conditions is satisfied:

1. α = γβ, where γ is the E-specification of a surface occurrence of a general atom in E. In this case
〈Ω,⊥α〉 is an E-manageable legal position of E∗.

2. α = γβ, where γ is the E-specification of a surface occurrence of a hybrid atom in E. Let σ be the E-
specification of the other occurrence of the same hybrid atom. Then 〈Ω,⊥γβ,⊤σβ〉 is an E-manageable
legal position of E∗.

3. α = γi, where γ is the E-specification of a positive (resp. negative) surface occurrence of a subformula
G1⊓ . . .⊓Gn (resp. G1⊔ . . .⊔Gn) and i ∈ {1, . . . , n}. In this case, where H is the result of substituting
in E the above occurrence by Gi, we have:

(a) 〈Ω〉 is H-manageable;

(b) 〈Ω,⊥α〉E∗ = 〈Ω〉H∗.

11



Proof. Let E, α, ∗, Ω be as assumed in the lemma. By Lemma 3.7, the condition 〈Ω,⊥α〉 ∈ LrE
∗

implies that α should be γβ, where γ is the E-specification of a nonelementary quasiatom F of E. Fix these
γ, β and F . By the definition of nonelementary quasiatom, F is either (1) a general atom, or (2) a hybrid
atom, or (3) a (hyper)formula of the form G1 ⊓ . . . ⊓Gn or G1 ⊔ . . . ⊔ Gn. We consider each of these three
possibilities separately.

Case 1: F is a general atom. Obviously adding to a E-manageable position (Ω) a ⊥-labeled move whose
prefix E-specifies a surface occurrence of a general atom again yields an E-manageable position. So, 〈Ω,⊥α〉
is E-manageable; by the assumptions of the lemma, it is also a legal position of E∗. Thus, condition 1 of
Lemma 3.14 is satisfied.

Case 2: F is a hybrid atom Pq. Let σ be the E-specification of the other occurrence of Pq. We want
to show that 〈Ω,⊥γβ,⊤σβ〉 is an E-manageable legal position of E∗ and hence condition 2 of the lemma is
satisfied.

Subcase 2.1. Assume F is negative in E. That is, γ E-specifies the negative occurrence of Pq and σ

E-specifies the positive occurrence of Pq. Since Ω is E-manageable, Ωσ is a ⊤-delay of ¬Ωγ . Obviously
this implies that 〈Ωσ,⊤β〉 is a ⊤-delay of 〈¬Ωγ ,⊤β〉 = ¬〈Ωγ ,⊥β〉. From here, observing that 〈Ωσ,⊤β〉 =
〈Ω,⊥γβ,⊤σβ〉σ and 〈Ωγ ,⊥β〉 = 〈Ω,⊥γβ,⊤σβ〉γ , we get:

〈Ω,⊥γβ,⊤σβ〉σ is a ⊤-delay of ¬〈Ω,⊥γβ,⊤σβ〉γ . (15)

Remembering our assumption that Ω is E-manageable and taking into account that for any δ 6= γ, σ we have
〈Ω,⊥γβ,⊤σβ〉δ = Ωδ, (15) is obviously sufficient to conclude that

〈Ω,⊥γβ,⊤σβ〉 is E-manageable. (16)

According to the assumptions of the lemma, 〈Ω,⊥γβ〉 ∈ LRE∗

. By Lemma 3.7, this implies that

〈Ω,⊥γβ〉γE ∈ LRP∗

, i.e. ¬〈Ω,⊥γβ〉γ ∈ LRP∗

and, as γ 6= σ, we clearly have ¬〈Ω,⊥γβ,⊤σβ〉γ ∈ LRP∗

.
Then, by (15) and clause 1 of Lemma 3.12, 〈Ω,⊥γβ,⊤σβ〉σ is not a ⊤-illegal position of P ∗. It is not ⊥-

illegal either, for otherwise we would have 〈Ω,⊥γβ〉σ 6∈ LRP∗

which, in view of Lemma 3.7, contradicts our

assumption that 〈Ω,⊥γβ〉 ∈ LRE∗

. Thus, 〈Ω,⊥γβ,⊤σβ〉σ ∈ LRP∗

. Taking into account that for any δ 6= σ

we have 〈Ω,⊥γβ,⊤σβ〉δ = 〈Ω,⊥γβ〉δ, Lemma 3.7 in conjunction with our assumption 〈Ω,⊥γβ〉 ∈ LRE∗

then implies that 〈Ω,⊥γβ,⊤σβ〉 ∈ LRE∗

. This, together with (16), means that condition 2 of Lemma 3.14
is satisfied.

Subcase 2.2. Now assume F is positive in E. That is, γ E-specifies the positive occurrence of Pq and σ

E-specifies the negative occurrence of Pq. By the E-manageability of Ω, Ωγ is a ⊤-delay of ¬Ωσ. Hence
〈Ωγ ,⊥β〉 is a ⊤-delay of 〈¬Ωσ,⊥β〉 = ¬〈Ωσ,⊤β〉. Then, as 〈Ωγ ,⊥β〉 = 〈Ω,⊥γβ,⊤σβ〉γ and 〈Ωσ,⊤β〉 =
〈Ω,⊥γβ,⊤σβ〉σ, we get:

〈Ω,⊥γβ,⊤σβ〉γ is a ⊤-delay of ¬〈Ω,⊥γβ,⊤σβ〉σ. (17)

From here, just as in Subcase 2.1, we conclude that statement (16) is true.

Next, as noted in Subcase 2.1, 〈Ω,⊥γβ〉γE ∈ LRP∗

, which now simply means that 〈Ω,⊥γβ〉γ ∈ LRP∗

.
Then 〈Ω,⊥γβ,⊤σβ〉γ , which equals 〈Ω,⊥γβ〉γ , is not a ⊥-illegal position of P ∗. Therefore, by (17) and
clause 2 of Lemma 3.12, ¬〈Ω,⊥γβ,⊤σβ〉σ is not a ⊥-illegal position of P ∗. But obviously this position — let

us rewrite it as 〈¬Ω,⊤γβ,⊥σβ〉σ — is not ⊤-illegal either, for otherwise we would have 〈¬Ω,⊤γβ〉σ 6∈ LRP∗

,

i.e. ¬〈Ω,⊥γβ〉σ 6∈ LRP∗

, i.e. 〈Ω,⊥γβ〉σE 6∈ LRP∗

which, by Lemma 3.7, contradicts our assumption that

〈Ω,⊥γβ〉 ∈ LRE∗

. Thus, ¬〈Ω,⊥γβ,⊤σβ〉σ ∈ LRP∗

. Continuing as in Subcase 2.1, we can conclude that
condition 2 of Lemma 3.14 is satisfied.

Case 3: F is G1⊓ . . .⊓Gn or G1⊔ . . .⊔Gn. We want to show that then (the rest of) condition 3 of Lemma
3.14 is satisfied. Since Ω is E-manageable, clause 1 of Definition 3.9 imples Ω does not contain γ-prefixed
moves. Therefore we have:

〈Ω,⊥γβ〉γ = 〈⊥γβ〉γ ; (18)

〈Ω,⊥γβ〉−γ = Ω. (19)

By (18) and Lemma 3.7, 〈⊥γβ〉γE ∈ LRF∗

. In view of clauses 5(a) and 6(a) of Lemma 3.7 of [3], this is the
case when β = i ∈ {1, . . . , n} and either F = G1 ⊓ . . .⊓Gn and F is positive in E (so that 〈⊥γβ〉γE = 〈⊥i〉),

12



or F = G1 ⊔ . . . ⊔ Gn and F is negative in E (so that 〈⊥γβ〉γE = 〈⊤i〉). In either case, by clauses 5(b)
and 6(b) of the same lemma, we have 〈⊥γβ〉γEF

∗ = G∗
i . By (18), this means that 〈Ω,⊥γβ〉γEF

∗ = G∗
i .

Then, according to Lemma 3.8, 〈Ω,⊥γβ〉E∗ = 〈Ω,⊥γβ〉−γH∗, where H is the result of replacing in E the
quasiatom F by Gi. Applying (19) and changing γβ back to α, the just-derived equation can be rewritten
as 〈Ω,⊥α〉E∗ = 〈Ω〉H∗. To conclude that condition 3 of Lemma 3.14 is satisfied, it remains to notice that
Ω is H-manageable. This is so for the same reasons as in Lemma 3.11. ✷

3.5 Finalization

Remember from [3] that we call the constant elementary games ⊤ and ⊥ trivial. Note that when a formula
E is elementary and an interpretation ∗ is perfect, E∗ is a trivial game. Here we define the relation ≤ on
trivial games by stipulating that A ≤ B iff A = ⊥ or B = ⊤. In other words, A ≤ B iff (A → B) = ⊤.

Lemma 3.15 Suppose ∗ is a perfect interpretation, FG is an elementary formula, and FH is the result of
replacing in FG a quasiatom G by an elementary formula H. Then we have F ∗

G ≤ F ∗
H as long as one of the

following two conditions is satisfied:

• G is positive and G∗ ≤ H∗;

• G is negative and H∗ ≤ G∗.

Proof. The above lemma does nothing but rephrases, in our terms, a known fact from classical logic
according to which, if in an interpreted formula F we replace a positive (resp. negative) occurrence of a
subformula G by a formula H whose Boolean value is not less (resp. not greater) than that of G, then the
value of the resulting formula will not be less than that of F . ✷

Now we introduce the operation 〈Γ〉↓A of the type {runs}×{constant games} → {trivial games}, which
is rather similar to prefixation. Intuitively 〈Γ〉↓A, that we call the Γ-finalization of A, is the proposition
“Γ is a ⊤-won run of A”. This operation is only defined when Γ is a legal run of A. Extending Convention
3.3 to finalization, every time we make a statement that applies 〈Γ〉↓ to a constant game A, we imply that Γ
is a legal run of A and hence 〈Γ〉↓A is defined. Here is the formal definition of the operation of finalization:

Definition 3.16 Assume A is a constant game and Γ a legal run of A. Then 〈Γ〉 ↓A is the trivial game

defined by Wn〈Γ〉↓A〈〉 = WnA〈Γ〉.

Lemma 3.17 For any constant game A and run Γ with Γ ∈ LR¬A — or, equivalently, ¬Γ ∈ LRA — we
have 〈Γ〉↓¬A = ¬(〈¬Γ〉↓A).

Proof. It is safe to identify players ⊤,⊥ with the corresponding two trivial games ⊤,⊥. In particular,
for a constant game B, we can use 〈Γ〉↓B and WnB〈Γ〉 interchangeably, even though, formally the former
is a (trivial) game while the latter is a player.

Assume A is a constant game, and Γ ∈ LR¬A which, by definition, means the same as ¬Γ ∈ LRA. By the
definition of finalization, 〈Γ〉 ↓¬A = Wn¬A〈Γ〉; by the definition of ¬, Wn¬A〈Γ〉 = ¬WnA〈¬Γ〉; again by
the definition of finalization, WnA〈¬Γ〉 = 〈¬Γ〉↓A and hence ¬WnA〈¬Γ〉 = ¬(〈¬Γ〉↓A). These equations
yield the desired 〈Γ〉↓(¬A) = ¬(〈¬Γ〉↓A). ✷

Lemma 3.18 For any constant games A1, . . . , An (n ≥ 2) and run Γ with Γ ∈ LRA1∨...∨An , we have

〈Γ〉↓(A1 ∨ . . . ∨ An) = 〈Γ1.〉↓A1 ∨ . . . ∨ 〈Γn.〉↓An.

Proof. As in the previous lemma, we identify players ⊤,⊥ with the corresponding trivial games ⊤,⊥.
Assume A1, . . . , An are constant games and Γ ∈ LRA1∨...∨An . The definition of ∨ guarantees that each Γi.

is in LRAi and hence the 〈Γi.〉 ↓Ai are defined. By the definition of finalization, 〈Γ〉 ↓ (A1 ∨ . . . ∨ An) =
WnA1∨...∨An〈Γ〉. The definition of ∨ easily implies that WnA1∨...∨An〈Γ〉 = WnA1〈Γ1.〉 ∨ . . . ∨WnAn〈Γn.〉.
In turn, again by the definition of finalization, each WnAi〈Γi.〉 is nothing but 〈Γi.〉 ↓Ai. Putting all this
together yields the desired 〈Γ〉↓(A1 ∨ . . . ∨ An) = (〈Γ1.〉↓A1) ∨ . . . ∨ (〈Γn.〉↓An). ✷

13



Lemma 3.19 For any constant games A1, . . . , An (n ≥ 2), we have:

1. 〈〉↓(A1 ⊓ . . . ⊓ An) = ⊤.

2. 〈〉↓(A1 ⊔ . . . ⊔ An) = ⊥.

Proof. Immediately from the relevant definitions. ✷

Lemma 3.20 Assume ∗ is a perfect interpretation, E is any hyperformula, Γ is a legal run of E∗, γ is the
E-specification of a nonelementary quasiatom F of E, G is an elementary formula with 〈Γγ

E〉↓F
∗ = G∗, and

H is the result of replacing F by G in E. Then 〈Γ〉↓E∗ = 〈Γ−γ〉↓H∗.

Proof. This lemma is very similar to Lemma 3.8, and the proof of the latter can be literally repeated
here as long as in it we change Φ to Γ, replace prefixation by finalization, and replace the references to
Lemmas 3.5 and 3.6 by references to Lemmas 3.17 and 3.18, respectively. ✷

Lemma 3.21 Assume E is a stable balanced hyperformula, ∗ is a perfect interpretation, and Γ is an E-
manageable legal run of E∗. Then WnE∗

〈Γ〉 = ⊤.

Proof. Assume the conditions of the lemma. For each γ that E-specifies an occurrence of a general or
hybrid atom, let us fix an elementary nonlogical atom rγ that does not occur in E (neither directly nor as the
elementary component of a hybrid atom). Since these atoms do not occur in E, we may make an arbitrary
assumption regarding how they are interpreted by ∗ (otherwise replace ∗ by an appropriate interpretation).
In particular, we assume that, for every γ that E-specifies a quasiatom that is either a general atom P or a
hybrid atom Pq, r

∗
γ = 〈Γγ

E〉↓P
∗. That each such 〈Γγ

E〉↓P
∗ is defined, i.e. Γγ

E is in LRP∗

, is guaranteed by
Lemma 3.7.

Let E1 denote the result of replacing in E:

• every surface occurrence of a general or hybrid atom by rγ , where γ is the E-specification of that
occurrence;

• every surface occurrence of a subformula of the form H1 ⊓ . . . ⊓Hn by ⊤;

• every surface occurrence of a subformula of the form H1 ⊔ . . . ⊔Hn by ⊥.

Since Γ ∈ LRE∗

, by Lemma 3.7, every labeled move of Γ has the form ℘γβ, where γ is the E-specification
of a nonelementary quasiatom F . If such an F is H1 ⊓ . . .⊓Hn, as Γ is E-manageable, we have Γγ

E = 〈〉 and
hence, in view of clause 1 of Lemma 3.19, 〈Γγ

E〉↓F
∗ = ⊤. Similarly, if F is H1 ⊔ . . .⊔Hn, clause 2 of Lemma

3.19 yields 〈Γγ
E〉↓F

∗ = ⊥. Finally, if F is a general or a hybrid atom, then, by our assumptions regarding
how ∗ interprets rγ , we have 〈Γγ

E〉↓F
∗ = r∗γ . In view of these observations, applying Lemma 3.20 as many

times as the number of nonelementary quasiatoms of E, we get 〈Γ〉↓E∗ = 〈〉↓E∗
1 . But E

∗
1 is an elementary

game, and obviously for every elementary game A we have 〈〉↓A = A. Hence,

〈Γ〉↓E∗ = E∗
1 . (20)

Assume E contains k hybrid atoms, where q1, . . . , qk are the elementary components of those atoms
and P1, . . . , Pk are the corresponding general components. Let π1, . . . , πk be the E-specifications of the
positive occurrences of the hybrid atoms whose elementary components are q1, . . . , qk, respectively. Similarly,
let ν1, . . . , νk be the E-specifications of the negative occurrences of the hybrid atoms whose elementary
components are q1, . . . , qk, respectively. Let E2 be the result of replacing in E1 each atom rπi

(1 ≤ i ≤ k)
by rνi . According to clause 3 of Definition 3.9, for each such 1 ≤ i ≤ k, Γπi is a ⊤-delay of ¬Γνi . Hence,
as P ∗

i is a static game, 〈¬Γνi〉↓P ∗
i ≤ 〈Γπi〉↓P ∗

i . This means that r∗νi ≤ r∗πi
. Then, applying Lemma 3.15 k

times, we get
E∗

2 ≤ E∗
1 . (21)

Next, assume E contains m negative occurrences of general atoms, E-specified by δ1, . . . , δm, and n

positive occurrences of general atoms, E-specified by σ1, . . . , σn. Let E3 be the result of replacing in E2 each

14



atom rδi (1 ≤ i ≤ m) by ⊤, and each atom rσj
(1 ≤ j ≤ n) by ⊥. Applying Lemma 3.15 m + n times, we

get
E∗

3 ≤ E∗
2 . (22)

Now compare E3 with ‖E‖. An analysis of how these two formulas have been obtained from E can reveal
that E3 is just the result of replacing in ‖E‖ all (both) occurrences of each atom qi from the earlier-discussed
list q1, . . . , qk by rνi . That is, E3 is a substitutional instance of ‖E‖. The latter is classically valid because,
by our assumptions, E is stable. Therefore E3 is also classically valid, and hence E∗

3 = ⊤. Then statements

(22), (21) and (20) yield 〈Γ〉↓E∗ = ⊤. This means nothing but that WnE∗

〈Γ〉 = ⊤. ✷

4 Soundness of CL2

Lemma 4.1 If CL2 ⊢ F , then F is valid (any formula F ).
Moreover, there is an effective procedure that takes a CL2-proof of an arbitrary formula F and returns

an HPM H such that, for every interpretation ∗, H |= F ∗.

Proof. Proposition 3.9 of [3] implies that, for any formula F and interpretation ∗, the game F ∗ is
static. Therefore, in view of Proposition 6.1 of [3], it would be sufficient to prove the above lemma — in
particular, the ‘Moreover’ clause of it — with “fair EPM E” instead of “HPM H”.

Furthermore, it would be sufficient to restrict interpretations to perfect ones. Indeed, suppose a machine
M (whether it be an EPM or an HPM) wins F † for every perfect interpretation †, and let ∗ be a not-
necessarily-perfect interpretation. We want to see that the same machine M also wins F ∗. Suppose this
is not the case, i.e. M loses F ∗ on some input e. This means that, where Γ is the run spelled by some
e-computation branch of M, we have WnF∗

e 〈Γ〉 = ⊥. This means nothing but that Wne[F∗]〈Γ〉 = ⊥.
Now, let † be the perfect interpretation induced by (∗, e). According to Lemma 3.2, e[F ∗] = F †. Hence

WnF †

〈Γ〉 = ⊥, so that M does not win F †, which is a contradiction.
Finally, Lemma 3.1 allows us to safely replace “CL2” by “CL2◦” in our present lemma.
In view of the above observations, Lemma 4.1 is an immediate consequence of the following Lemma 4.2.

✷

Lemma 4.2 There is an effective procedure that takes a CL2◦-proof of an arbitrary formula F and returns
a fair EPM E such that, for every perfect interpretation ∗, E |= F ∗.

Proof idea. Every CL2◦-proof, in fact, can be viewed as an input- and interpretation-independent
winning strategy for ⊤, and the fair EPM E that we are going to design just follows such a strategy. As
we probably remember from the soundness proof given in [3], the same was the case with CL1, where each
conclusion-to-premise transition of Rule (a) encoded a move by ⊥ (with all premises accounting for all
possible legal moves by ⊥), and the conclusion-to-premise transition of Rule (b) encoded the “good” move
that ⊤ should make in a given situation; in either case, after a move was made, ⊤’s strategy would “jump”
to the corresponding premise H , recursively calling itself on H . In our present case this intuitive meaning
of Rules (a) and (b) is retained. In addition, Rule (c◦) signals ⊤ that from now on it should try — using
copy-cat methods — to keep identical2 the subplays/subruns in the two occurrences of the hybrid atom
introduced (in the bottom-up view) by that rule.

The overall situation with CL1, however, was much simpler than it is with CL2◦. In CL1-proof-derived
strategies, as we just noted, to every legal move in a play corresponded a transition from a given formula to
one of its premises H in the proof. This is no longer the case with CL2◦. Specifically, there is nothing in
CL2◦-proofs corresponding to moves made in hybrid or general atoms. So, by the time when the strategy
jumps to H , the game to which the original game will have been “brought down” may be not H∗ but rather
〈Ω〉H∗, where Ω is the sequence of the moves made by the two players in the hybrid and general atoms of H .
Thus, the strategy has to be successful for such 〈Ω〉H∗ rather than (as this was the case with CL1-proof-
derived strategies) just for H∗. Fortunately, it turns out that success in this more complicated situation is

2This is generally impossible in the literal sense, but what is possible is to ensure that one play is a ⊤-delay of the other
which, taking into account that we are talking about static games, is just as good as if the two plays were fully identical.

15



still possible as long as Ω is H-manageable; and ensuring that Ω is indeed always manageable also turns out
to be a “manageable” task for ⊤. This is where all of our manageability-related lemmas from the previous
section come to help.

Now a little more detailed — yet informal — description of how our strategy/machine E for a CL2◦-
provable formula F works. As noted, it is a recursive strategy, at every step dealing with 〈Ω〉E∗ (∗ being
irrelevant), where E is a CL2◦-provable hyperformula and Ω is an E-manageable (legal) position of E∗.
Initially E = F and Ω = 〈〉. How E acts on 〈Ω〉E∗ depends on by which of the three rules E is derived in
CL2◦.

If E is derived by Rule (b) from H , the machine — exactly as in [3] — makes the move α “prescribed”
by that application of the rule. Say, if E = (G1 ⊔ G2) ∧ (G3 ⊓ G4) and H = G2 ∧ (G3 ⊓ G4), then ‘1.2’ is
such a move. Lemma 3.11 tells us that Ω remains H-manageable and that α brings 〈Ω〉E∗ down to 〈Ω〉H∗.
So, after making move α, the machine switches to its winning strategy for 〈Ω〉H∗. This, by the induction
hypothesis, guarantees success.

If E is derived by Rule (c◦) from H through replacing the two occurrences of a hybrid atom Pq in H by
P , then the machine finds within Ω and copies, in the positive occurrence of Pq, all of the moves made so
far by the environment in the negative occurrence of Pq (or rather in the corresponding occurrence of P ),
and vice versa. This series of moves brings the game down to 〈Ω′〉E∗ = 〈Ω′〉H∗, where Ω′ is result of adding
those moves to Ω. Lemma 3.13 guarantees that Ω′ is H-manageable. So, now the machine switches to its
successful strategy for 〈Ω′〉H∗ and eventually wins.

Finally, suppose E is derived by Rule (a). Our machine keeps granting permission. Now and then the
environment may be making moves in general atoms of E, to which E does not react. However, every time
⊥ makes a move in one of the hybrid atoms, E copies that move in the other occurrence of the same hybrid
atom. Clauses 1 and 2 of Lemma 3.14 guarantee that, while this is going on, (the continuously updated) Ω
remains E-manageable. So, if nothing else happens, in view of Lemma 3.10, Ω — even if its grows infinite
— remains E-manageable, and then Lemma 3.21 guarantees that the game will be won by ⊤ because, as a
conclusion of Rule (a), E is stable. However, what will typically happen during this stage (except one —
the last — case) is that sooner or later ⊥ makes a legal move not in a hybrid or general atom, but rather a
move signifying a choice associated with a ⊓- or ⊔-subformula of E. E.g., if E = (Pq ∨¬Pq)∧ (G3⊓G4), then
‘2.1’ can be such a move. Now the situation is very similar to the case with Rule (b): the machine simply
switches to its winning strategy for 〈Ω〉H∗, where H is the corresponding premise of E (H = (Pq ∨¬Pq)∧G3

in our example). Clause 3(b) of Lemma 3.14 guarantees that 〈Ω〉H∗ is indeed the game to which 〈Ω〉E∗ has
evolved; and, according to clause 3(a) of the same lemma, Ω is H-manageable, so that, by the induction
hypothesis, E knows how to win 〈Ω〉H∗.

Proof. Fix a formula F together with a CL2◦-proof for it. In the present context we view such a proof
as a sequence (rather than tree) of hyperformulas. We will be referring to this sequence as “the proof”, and
referring to the hyperformulas occurring in the proof as “proof hyperformulas”. We assume that there are no
repetitions or other redundancies in the proof (otherwise eliminate them), and that each proof hyperformula
comes with a fixed justification — an indication of by which rule and from what premises the hyperformula
was derived.

We construct the EPM E whose work can be described as follows. At the beginning, this machine creates
two records: E to hold a hyperformula, and Ω to hold a position. It initializes E to F and Ω to 〈〉. After this,
E follows the following interactive algorithm MAIN LOOP. The description of this algorithm assumes that,
at the beginning of each iteration of MAIN LOOP or INNER LOOP, the following condition is satisfied:

(The value of) E is a proof hyperformula.

That this condition is always satisfied can be immediately seen from the description of the algorithm.

Procedure MAIN LOOP: Act depending on which of the three rules was used (last) to derive E in the
proof:

Case of Rule (b): Let H be the premise of E in the proof. H is the result of substituting, in E, a certain
negative (resp. positive) surface occurrence of a subformula G1 ⊓ . . . ⊓ Gn (resp. G1 ⊔ . . . ⊔ Gn) by

16



Gi for some i ∈ {1, . . . , n}. Let γ be the E-specification of that occurrence. Then make the move γi;
update E to H ; repeat MAIN LOOP.

Case of Rule (c◦): Let H be the premise of E in the proof. H is the result of replacing in E some positive
surface occurrence π and some negative surface occurrence ν of a general atom P by a hybrid atom
Pq. Let 〈⊥π1, . . . ,⊥πn〉 and 〈⊥ν1, . . . ,⊥νm〉 be Ωπ and Ων , respectively. Then: make the m+n moves
πν1, . . . , πνm, νπ1, . . . , νπn (in this very order); update Ω to 〈Ω,⊤πν1, . . . ,⊤πνm,⊤νπ1, . . . ,⊤νπn〉;
update E to H ; repeat MAIN LOOP.

Case of Rule (a): Follow the procedure INNER LOOP described below.

INNER LOOP: Keep granting permission until the adversary makes a move α, then act depending on
which of the following four subcases holds:

Subcase (i): α = γβ, where γ E-specifies a surface occurrence of a general atom. Then update Ω to
〈Ω,⊥γβ〉, and repeat INNER LOOP.

Subcase (ii): α = γβ, where γ E-specifies a surface occurrence of a hybrid atom. Let σ be the E-
specification of the other occurrence of the same hybrid atom. Then make the move σβ, update
Ω to 〈Ω,⊥γβ,⊤σβ〉, and repeat INNER LOOP.

Subcase (iii): α = γi, where γ E-specifies a positive (resp. negative) surface occurrence of a subfor-
mula G1 ⊓ . . . ⊓Gn (resp. G1 ⊔ . . . ⊔Gn) and i ∈ {1, . . . , n}. Let H be the result of substituting
in E the above occurrence by Gi. Then update E to H , and repeat MAIN LOOP.

Subcase (iv): α does not satisfy the conditions of any of the above Subcases (i),(ii),(iii). Then go to
an infinite loop in a permission state.

It is obvious that (the description of) E can be constructed effectively from the CL2◦-proof of F . What
we need to do now is to show that E is fair and that it wins F ∗ for every perfect interpretation ∗.

Pick an arbitrary perfect interpretation ∗, an arbitrary input e (which is ignored by E anyway) and an
arbitrary e-computation branch B of E . Fix Γ as the run spelled by B. Consider the work of E in B. For
each k ≥ 1 such that MAIN LOOP makes at least k iterations in B, let Ek denote the value of the record
E at the beginning of the kth iteration of MAIN LOOP. Thus, E1 = F . Since ∗ is a perfect interpretation,
for any hyperformula H , H∗ and e[H∗] are the same. In particular, e[F ∗] = F ∗ = E∗

1 . Our goal is to show

that B is fair and WnF∗

〈Γ〉 = ⊤, i.e. WnE∗
1 〈Γ〉 = ⊤.

Evidently Ek+1 (as long as the (k + 1)th iteration of MAIN LOOP exists) is always one of the premises
of Ek in the proof, so that MAIN LOOP is iterated only a finite number of times. Fix l as the number of
iterations of MAIN LOOP. The lth iteration deals with the case of Rule (a) — and, besides, never with
Subcase (iii) within it — for otherwise there would be a next iteration. This guarantees that E will grant
permission infinitely many times during the lth iteration, so that branch B is indeed fair.

Thus, our remaining duty now is to show that WnE∗
1 〈Γ〉 = ⊤. By condition (c) of Definition 3.1 of [3],

WnE∗
1 〈Γ〉 = ⊤ is immediate when Γ is a ⊥-illegal run of E∗

1 . Hence we exclude this trivial case and, for
the rest of this proof, assume that Γ is not a ⊥-illegal run of E∗

1 . Speaking less formally, we assume that ⊥
never makes illegal moves.

The fact that El is derived by Rule (a) implies that

El is stable. (23)

For each k with 1 ≤ k ≤ l, let Θk be the sequence of the moves made by the players by the beginning
of the kth iteration of MAIN LOOP, where the moves made by E are ⊤-labeled and the moves made by its
adversary are ⊥-labeled. Also, for each such k, let Ωk be the value of record Ω at the beginning of the kth
iteration of MAIN LOOP.

Claim 1. For any k with 1 ≤ k ≤ l,

Ωk is Ek-manageable; (24)

〈Θk〉E∗
1 = 〈Ωk〉E∗

k . (25)

17



This claim can be proven by induction on k. The basis case with k = 1 is trivial as Θ1 = Ω1 = 〈〉.
Now consider an arbitrary k with 1 ≤ k < l and assume (induction hypothesis) that conditions (24)-

(25) are satisfied. We separately consider the following three cases, depending on with which case the kth
iteration of MAIN LOOP deals. In each case we want to show that the above two conditions continue to be
satisfied for k + 1, i.e. that the following statements are true:

Ωk+1 is Ek+1-manageable; (26)

〈Θk+1〉E∗
1 = 〈Ωk+1〉E∗

k+1. (27)

Case of Rule (b). Record Ω is not updated in this case, so Ωk+1 = Ωk. Exactly one (⊤-labeled)
move γi is made during the kth iteration of MAIN LOOP, where γ is the Ek-specification of a negative
(resp. positive) occurrence of a subformula G1 ⊓ . . . ⊓ Gn (resp. G1 ⊔ . . . ⊔ Gn) of Ek and i ∈ {1, . . . , n}.
Thus, Θk+1 = 〈Θk,⊤γi〉. Also, Ek+1 relates to Ek as H does to E in the description of the “Case of
Rule (b)” part of MAIN LOOP and hence as in Lemma 3.11. Keeping this in mind, with Ωk = Ωk+1

in the role of Ω, (26) follows from clause 1 of Lemma 3.11. According to clause 2 of the same lemma,
〈Ωk,⊤γi〉E∗

k = 〈Ωk〉E∗
k+1 = 〈Ωk+1〉E∗

k+1, i.e., by Lemma 3.4,3 〈⊤γi〉〈Ωk〉E∗
k = 〈Ωk+1〉E∗

k+1. But, by
(25), 〈Ωk〉E∗

k = 〈Θk〉E∗
1 . Hence, 〈⊤γi〉〈Θk〉E∗

1 = 〈Ωk+1〉E∗
k+1, i.e. 〈Θk,⊤γi〉E∗

1 = 〈Ωk+1〉E∗
k+1, which, as

〈Θk,⊤γi〉 = Θk+1, proves (27).

Case of Rule (c◦). With Ek in the role of E and Ωk in the role of Ω, let H , π, ν, π1, . . . , πn,
ν1, . . . , νm be as in the description of the ‘Case of Rule (c◦)’ step of MAIN LOOP. Note that Ek+1 =
H and Ωk+1 = 〈Ωk,⊤πν1, . . . ,⊤πνm,⊤νπ1, . . . ,⊤νπn〉. Now, with E = Ek and Ω = Ωk, the condi-

tions of Lemma 3.13 are satisfied (in view of Convention 3.3, the condition 〈Ωk〉 ∈ LRE∗
k is implic-

itly contained in (25)). Therefore, by that lemma, Ωk+1 is an Ek+1-manageable legal position of E∗
k+1,

which proves (26). 〈Ωk+1〉E∗
k+1 can be rewritten as 〈⊤πν1, . . . ,⊤πνm,⊤νπ1, . . . ,⊤νπn〉〈Ωk〉E∗

k+1. By
(25), 〈Ωk〉E∗

k = 〈Θk〉E∗
1 . Also notice that E∗

k+1 = E∗
k , so 〈Ωk〉E∗

k+1 = 〈Θk〉E∗
1 . Hence 〈Ωk+1〉E∗

k+1 =
〈⊤πν1, . . . ,⊤πνm,⊤νπ1, . . . ,⊤νπn〉〈Θk〉E∗

1 . This means that 〈Ωk+1〉E∗
k+1 = 〈Θk,⊤πν1, . . . ,⊤πνm,⊤νπ1,

. . . ,⊤νπn〉E∗
1 . But obviously Θk+1 = 〈Θk,⊤πν1, . . . ,⊤πνm, ⊤νπ1, . . . ,⊤νπn〉. Hence 〈Ωk+1〉E∗

k+1 =
〈Θk+1〉E

∗
1 . This proves (27).

Case of Rule (a). The work of the machine during this (kth) iteration of MAIN LOOP consists of
iterating INNER LOOP a finite number lk ≥ 1 of times (otherwise we would have k = l). Fix this lk. For
each m with 1 ≤ m ≤ lk, let Θk,m be the sequence of the (correspondingly labeled) moves made by the
players at the beginning of the mth iteration of INNER LOOP within the kth iteration of MAIN LOOP.
Thus, Θk,1 = Θk. Similarly, for each such m, let Ωk,m be the value of record Ω at the beginning of the mth
iteration of INNER LOOP within the kth iteration of MAIN LOOP.

Subclaim 1.1. For any m with 1 ≤ m ≤ lk,

Ωk,m is Ek-manageable; (28)

〈Θk,m〉E∗
1 = 〈Ωk,m〉E∗

k . (29)

We prove the above by induction on m. The basis case with m = 1 is straightforward: we have Θk,1 = Θk

and Ωk,1 = Ωk. Hence the basis of our induction onm is nothing but the induction hypothesis of the induction
on k in our proof of Claim 1. That is, it is nothing but statements (24)-(25).

Now consider any m with 1 ≤ m < lk. Assume statements (28)-(29) are true (induction hypothesis). We
want to show that then the following conditions are also satisfied:

Ωk,m+1 is Ek-manageable; (30)

〈Θk,m+1〉E
∗
1 = 〈Ωk,m+1〉E

∗
k . (31)

At the beginning of the mth iteration of INNER LOOP, the machine is waiting for the adversary to make
a move α. Such a move must be made because k is not the last iteration of MAIN LOOP. By our assumption

3Henceforth we will be using Lemma 3.4 without explicitly mentioning it.

18



that ⊥ never makes illegal moves (together the assumption that Θk,m ∈ LRE∗
1 which is implied by (29)),

〈Θk,m,⊥α〉 must be a legal position of E∗
1 , whence 〈⊥α〉 is a legal position of 〈Θk,m〉E∗

1 , whence, by (29),
〈⊥α〉 is a legal position of 〈Ωk,m〉E∗

k , i.e. 〈Ωk,m,⊥α〉 is a legal position of E∗
k . This means that α, Ek (in the

role of E) and Ωk,m (in the role of Ω) satisfy the conditions of Lemma 3.14. Then, in view of that lemma, it
is obvious that α should satisfy (the conditions of) one of the Subcases (i),(ii) or (iii) from the description
of INNER LOOP. Subcase (iii) is impossible because then we would have m = lk. Thus, either Subcase (i)
or Subcase (ii) should be satisfied.

Suppose Subcase (i) is satisfied, with α = γβ as described in that subcase. Then Ωk,m+1 = 〈Ωk,m,⊥γβ〉,
and (30) holds by clause 1 of Lemma 3.14, which also asserts that 〈Ωk,m,⊥γβ〉 is a legal position of E∗

k .
According to (29), 〈Ωk,m〉E∗

k = 〈Θk,m〉E∗
1 , and hence 〈Ωk,m,⊥γβ〉E∗

k = 〈Θk,m,⊥γβ〉E∗
1 , i.e. 〈Ωk,m+1〉E∗

k =
〈Θk,m,⊥γβ〉E∗

1 . But in our case Θk,m+1 = 〈Θk,m,⊥γβ〉. Therefore, 〈Θk,m+1〉E∗
1 = 〈Ωk,m+1〉E∗

k . This proves
(31).

Suppose now Subcase (ii) is satisfied, with α = γβ and σ as described in that subcase. Then Ωk,m+1 =
〈Ωk,m,⊥γβ,⊤σβ〉. Now, (30) follows from clause 2 of Lemma 3.14, which also asserts that 〈Ωk,m,⊥γβ,⊤σβ〉 ∈

LRE∗
k . And, taking into account that Θk,m+1 = 〈Θk,m,⊥γβ,⊤σβ〉, (31) follows from (29). Subclaim 1.1 is

proven.

Back to the ‘Case of Rule (a)’ step of our proof of Claim 1. Consider the lkth (last) iteration of INNER
LOOP within the kth iteration of MAIN LOOP. Since k < l, obviously this iteration deals with Subcase
(iii). Let α and H be as in the description of that subcase. Note that Ek+1 = H and Ωk+1 = Ωk,lk . For the
same reasons as in the proof of Subclaim 1.1, 〈Ωk,lk ,⊥α〉 is a legal position of E∗

k . According to Subclaim
1.1, we have:

Ωk,lk is Ek-manageable; (32)

〈Θk,lk〉E
∗
1 = 〈Ωk,lk〉E

∗
k . (33)

Statement (26) follows from (32) by clause 3(a) of Lemma 3.14. According to clause 3(b) of the same
lemma, 〈Ωk,lk ,⊥α〉E∗

k = 〈Ωk,lk〉E
∗
k+1 and hence 〈Ωk,lk ,⊥α〉E∗

k = 〈Ωk+1〉E∗
k+1. This, in turn, implies

〈⊥α〉〈Ωk,lk 〉E
∗
k = 〈Ωk+1〉E∗

k+1. By (33), 〈Ωk,lk〉E
∗
k = 〈Θk,lk〉E

∗
1 . Hence 〈⊥α〉〈Θk,lk 〉E

∗
1 = 〈Ωk+1〉E∗

k+1

and thus 〈Θk,lk ,⊥α〉E∗
1 = 〈Ωk+1〉E∗

k+1. But observe that 〈Θk,lk ,⊥α〉 = Θk+1. Therefore (27) holds.
Claim 1 is proven.

We continue our proof of Lemma 4.2. Consider the last (lth) iteration of MAIN LOOP. As we noted
earlier when deriving (23), this iteration deals with the case of Rule (a). Let N be {1, . . . , k} if k is the
number of iterations of INNER LOOP within the lth iteration of MAIN LOOP, and be {1, 2, 3, . . .} if there are
infinitely many such iterations. For each m ∈ N , as before, let Θl,m be the sequence of the correspondingly
labeled moves made in the overall run by the beginning of the mth iteration of INNER LOOP within the
lth iteration of MAIN LOOP, and let Ωl,m be the value of record Ω at the beginning of the mth iteration of
INNER LOOP within the lth iteration of MAIN LOOP. For the same reasons4 as in the proof of (28) and

(29) (where from (29) we only need its implicit statement that Ωk,m ∈ LRE∗
k ), we have:

For any m ∈ N , Ωl,m is an El-manageable legal position of E∗
l . (34)

Note that, during the work of E , every update of record Ω extends its previous value by adding new
labeled moves to it, without ever deleting old labeled moves. So, let Ω∞ be the “ultimate” value of Ω,
precisely meaning the shortest run such that, for every m ∈ N , Ωl,m is an initial segment of Ω∞. Of course,
if N = {1, . . . , k}, then Ω∞ is simply Ωl,k. Statement (34) — together with Lemma 3.10 when Ω∞ is infinite
— implies that Ω∞ is an El-manageable legal run of E∗

l . Therefore, by (23) and Lemma 3.21, we have

WnE∗
l 〈Ω∞〉 = ⊤. (35)

Ω∞ is an extension of Ωl, so that Ω∞ = 〈Ωl,∆〉 for some run ∆. Let us fix this ∆. Now (35) can

be rewritten as WnE∗
l 〈Ωl,∆〉 = ⊤. In turn, the latter — remembering the definition of the operation of

4With the minor difference that now the reason why Subcase (iii) is impossible is that otherwise l would not be the last
iteration of MAIN LOOP.

19



prefixation and taking into account that, by (25), Ωl ∈ LRE∗
l — can be rewritten as Wn〈Ωl〉E

∗
l 〈∆〉 = ⊤.

Now, according to Claim 1, 〈Ωl〉E∗
l = 〈Θl〉E∗

1 . Thus, Wn〈Θl〉E
∗
1 〈∆〉 = ⊤, which can be rewritten back as

WnE∗
1 〈Θl,∆〉 = ⊤. (36)

For the same reasons5 as in our proof of Subclaim 1, the lth iteration of MAIN LOOP never deals with
Subcases (iii) or (iv) of ‘Case of Rule (a)’. The remaining Subcases (i) and (ii) add to record Ω all of the
moves made by the players (and no other moves, of course). Therefore, taking into account that the value
of that record is Ωl when the lth iteration of INNER LOOP starts, we can see that ∆ is nothing but exactly
the sequence of all moves made during the lth iteration of INNER LOOP. Hence Γ = 〈Θl,∆〉 where, as we
remember, Γ is the run spelled by the computation branch B of E that we are considering. Thus, by (36),

WnE∗
1 〈Γ〉 = ⊤, and our proof of Lemma 4.2 is complete. ✷

5 Completeness of CL2

Lemma 5.1 If CL2 6⊢ F , then F is not valid (any formula F ).
Moreover, if CL2 6⊢ F , then F ∗ is not computable for some interpretation ∗ that interprets all elementary

atoms of F as finitary predicates of arithmetical complexity ∆2, and interprets all general atoms of F as
problems of the form (A1

1 ⊔ . . . ⊔ A1
m) ⊓ . . . ⊓ (Am

1 ⊔ . . . ⊔ Am
m), where each A

j
i is a finitary predicate of

arithmetical complexity ∆2.

Proof idea. We are going to show that if CL2 6⊢ F , then there is an elementary-base formula ⌈F ⌉ of
the same form as F that is not provable in CL1. Precisely, “the same form as F” here means that ⌈F ⌉
is the result of rewriting/expanding in F every general atom P as a certain elementary-base formula P̌⊓

⊔ .
This, in view of the already known completeness of CL1, immediately yields non-validity for F . As it turns
out, the above formulas P̌⊓

⊔ can be chosen to be as simple as sufficiently long ⊓-conjunctions of sufficiently
long ⊔-disjunctions of arbitrary “neutral” (not occurring in F and pairwise distinct) elementary atoms, with
the “sufficient length” of those conjuncts/disjuncts being bounded by the number of occurrences of general
atoms in F .

Intuitively, the reason why CL1 6⊢ ⌈F ⌉, i.e. why ⊤ cannot win (the game represented by) ⌈F ⌉, is that a
smart environment may start choosing different conjuncts/disjuncts in different occurrences of P̌⊓

⊔ . The best
that ⊤ can do in such a play is to match any given positive or negative occurrence of P̌⊓

⊔ with one (but not
more!) negative or positive occurrence of the same subgame — match in the sense that mimic environment’s
moves in order to keep the subgames/subformulas at the two occurrences identical. Yet, this is insufficient
for ⊤ to achieve a guaranteed success. For, if it was sufficient, then every decision about what to match with
what in ⌈F ⌉ could be modeled, in an attempted CL2-proof for F , by an appropriate application of Rule (c);
this, together with the possibility to model — through Rules (a) and (b) — ⊥’s and ⊤’s decisions required
by the choice connectives in the “ordinary” (non-P̌⊓

⊔ ) parts of ⌈F ⌉, would eventually make F CL2-provable,
which however it is not.

Proof. Fix a formula F . Let P be the set of all general atoms occurring in F . Let us fix m as the
total number of occurrences of such atoms in F ;6 if there are fewer than 2 of such occurrences, then we take
m = 2.

For the rest of this section, let us agree that

a, b always range over {1, . . . ,m}.

For each P ∈ P and each a, b, let us fix an elementary atom

• P̌ a
b

5Again, with the minor difference pointed out in the previous footnote.
6In fact, a much smaller m would be sufficient for our purposes. E.g., m can be chosen to be such that no given general

atom has more than m occurrences in F . But why try to economize?

20



not occurring in F . We assume that P̌ a
b 6= Q̌c

d as long as either P 6= Q or a 6= c or b 6= d. Note that the
P̌ a
b are elementary atoms despite our “tradition” according to which the capital letters P,Q, . . . stand for

general atoms.
Next, for each P ∈ P and each a, we define

• P̌ a
⊔ = P̌ a

1 ⊔ . . . ⊔ P̌ a
m.

Finally, for each P ∈ P , we define

• P̌⊓
⊔ = P̌ 1

⊔ ⊓ . . . ⊓ P̌m
⊔ , i.e. P̌⊓

⊔ = (P̌ 1
1 ⊔ . . . ⊔ P̌ 1

m) ⊓ . . . ⊓ (P̌m
1 ⊔ . . . ⊔ P̌m

m ).

We refer to the above formulas P̌ a
b , P̌

a
⊔ and P̌⊓

⊔ as molecules, in particular, P -based molecules. To
differentiate between the three sorts of molecules, we call the molecules of the type P̌ a

b small, call the
molecules of the type P̌ a

⊔ medium, and call the molecules of the type P̌⊓
⊔ large. Thus, where k is the

cardinality of P , altogether there are k large molecules, k × m medium molecules and k × m × m small
molecules.

For simplicity, for the rest of this section we assume/pretend that the languages of CL1 and CL2 have
no nonlogical atoms other than those occurring in F plus the atoms P̌ b

a (P ∈ P , a, b ∈ {1, . . . ,m}). This way
the scopes of the terms “formula” (meaning formula of the language CL2) and “elementary-base formula”
(meaning formula of CL1) are correspondingly redefined.

Let us say that an occurrence of a molecule in a given elementary-base formula is independent iff it is
not a part of another (“larger”) molecule. E.g., the occurrence of P̌ a

b in P̌ a
b → ⊥ is independent, while in

P̌ a
⊔ → ⊥, i.e. in P̌ a

1 ⊔ . . . ⊔ P̌ a
b ⊔ . . . ⊔ P̌ a

m → ⊥, it is not. Of course, surface occurrences of molecules are
always independent, and so are any — surface or non-surface — occurrences of large molecules.

We say that an elementary-base formula E is good iff the following conditions are satisfied:

Cond1: E contains at most m independent occurrences of molecules.

Cond2: Only large molecules (may) have independent non-surface occurrences in E.

Cond3: Each small molecule has at most one positive and at most one negative independent occurrence in
E.

Cond4: For each medium molecule P̌ a
⊔ , E has at most one positive independent occurrence of P̌ a

⊔ , and when
E has such an occurrence, then for no b does E have a positive independent occurrence of the small
molecule P̌ a

b .

Let E be an elementary-base formula. By an isolated small molecule of E (or E-isolated small molecule,
or a small molecule isolated in E) we will mean a small molecule that has exactly one independent occurrence
in E; we will say that such a molecule is positive or negative depending on whether its independent
occurrence in E is positive or negative. Next, the floorification of E, denoted

⌊E⌋,

is the result of replacing in E every independent occurrence of every P -based (each P ∈ P) large, medium
and E-isolated small molecule by the general atom P .

Claim 1. For any good elementary-base formula E, if CL1 ⊢ E, then CL2 ⊢ ⌊E⌋.

To prove this claim, assume E is a good elementary-base formula, and CL1 ⊢ E. By induction on the
length of the CL1-proof of E, we want to show that CL2 ⊢ ⌊E⌋. We need to consider the following two
cases, depending on which of the two rules of CL1 was used (last) to derive E in CL1.

Case 1: E is derived by Rule (a). Let us fix the set ~H of premises of E. Each formula H ∈ ~H is provable
in CL1. Hence, by the induction hypothesis, we have:

For any H ∈ ~H, if H is good, then CL2 ⊢ ⌊H⌋. (37)

21



We consider the following 3 subcases. The first two subcases are not mutually exclusive, and either one
can be chosen when both of them apply.

Subcase 1.1: E has a positive surface occurrence of a large molecule P̌⊓
⊔ . Pick any a such that neither the

medium molecule P̌ a
⊔ nor any small molecule P̌ a

b (whatever b) have independent occurrences in E. Such an
a exists, for otherwise we would have at least m+1 occurrences of molecules in E (including the occurrence
of P̌⊓

⊔ ), which contradicts Cond1. Let H be the result of replacing in E the above occurrence of P̌⊓
⊔ by

P̌ a
⊔ . Clearly H ∈ ~H . Observe that when transferring from E to H , we just “downsize” P̌⊓

⊔ and otherwise do
not create any additional independent occurrences of molecules, so Cond1 continues to be satisfied for H .
Neither do we introduce any new non-surface occurrences of molecules or any new independent occurrences
of small molecules, so Cond2 and Cond3 also continue to hold for H . And our choice of a obviously
guarantees that so does Cond4. To summarize, H is good. Therefore, by (37), CL2 ⊢ ⌊H⌋. Finally, note
that, when floorifying a given formula, both P̌⊓

⊔ and P̌ a
⊔ get replaced by the same atom P ; and, as the only

difference between E and H is that H has P̌ a
⊔ where E has P̌⊓

⊔ , obviously ⌊H⌋ = ⌊E⌋. Thus, CL2 ⊢ ⌊E⌋.

Subcase 1.2: E has a negative surface occurrence of a medium molecule P̌ a
⊔ . Pick any b such that E

does not have an independent occurrence of P̌ a
b . Again, in view of Cond1, such a b exists. Let H be the

result of replacing in E the above occurrence of P̌ a
⊔ by P̌ a

b . Certainly H ∈ ~H . Conditions Cond1 and
Cond2 continue to hold for H for the same reasons as in Subcase 1.1. In view of our choice of b, Cond3 is
also inherited by H from E. And so is Cond4, because H has the same positive occurrences of (the same)
molecules as E does. Thus, H is good. Therefore, by (37), CL2 ⊢ ⌊H⌋. It remains to show that ⌊H⌋ = ⌊E⌋.
Note that when floorifying E, P̌ a

⊔ gets replaced by P . But so does P̌ a
b when floorifying H because, by our

choice of b, P̌ a
b is an isolated small molecule of H . Since the only difference between H and E is that H has

P̌ a
b where E has P̌ a

⊔ , it is then obvious that indeed ⌊H⌋ = ⌊E⌋.

Subcase 1.3: None of the above two conditions is satisfied. This means that in E all surface occurrences
of large molecules are negative, and all surface occurrences of medium molecules are positive. Every large
molecule P̌⊓

⊔ is a ⊓-formula whose surface occurrences, as we remember, get replaced by ⊤ when transferring
from E to ‖E‖; but the same happens to the corresponding occurrences of P in ⌊E⌋ when transferring from
⌊E⌋ to ‖⌊E⌋‖ because, as we have just noted, such occurrences are negative, and negative surface occurences
of general atoms get replaced by ⊤ when elementarizing formulas. Similarly, every medium molecule P̌ a

⊔ is
a ⊔-formula so that its surface occurrences get replaced by ⊥ when transferring from E to ‖E‖; but the
same happens to the corresponding occurrences of P in ⌊E⌋ when transferring from ⌊E⌋ to ‖⌊E⌋‖ because
they are positive, and positive surface occurences of general atoms get replaced by ⊥ when elementarizing
formulas. Based on these observations, with a little thought we can see that ‖⌊E⌋‖ is “almost the same” as
‖E‖; specifically, the only difference between these two formulas is that ‖⌊E⌋‖ has ⊥ where ‖E‖ has positive
isolated small molecules, and ‖⌊E⌋‖ has ⊤ where ‖E‖ has negative isolated small molecules. Obviously this
means that ‖⌊E⌋‖ is a substitutional instance of ‖E‖ — the result of substituting, in the latter, every positive
isolated small molecule by ⊥ and every negative isolated small molecule by ⊤. As E is derived by Rule (a),
‖E‖ is classically valid. Therefore ‖⌊E⌋‖, as a substitutional instance of ‖E‖, is also classically valid. So, we
have:

⌊E⌋ is stable. (38)

Now consider an arbitrary formula H ′ that is the result of replacing in ⌊E⌋ a positive (resp. negative)
surface occurrence γ of a subformula G′

1 ⊓ . . . ⊓ G′
n (resp. G′

1 ⊔ . . . ⊔ G′
n) by G′

i for some i ∈ {1, . . . , n}.
Our goal is to show that CL2 ⊢ H ′. If we succeed, then, in view of (38), we can conclude that ⌊E⌋ is
derivable in CL2 by Rule (a). The logical structure of E is the same as that of ⌊E⌋, with the only difference
that, wherever ⌊E⌋ has general atoms, E has molecules. Hence the same γ also E-specifies a positive (resp.
negative) occurrence of a subformula G1 ⊓ . . . ⊓ Gn (resp. G1 ⊔ . . . ⊔ Gn) of E. Let then H be the result

of replacing in E this subformula by Gi. Of course H ∈ ~H . So, in view of (37), all what would suffice to
show (in order to find CL2 ⊢ H ′) is that H is good and H ′ = ⌊H⌋. Let us first see that H is good. When
transferring from E to H , Cond1 is inherited by H for the same or a similar reason as in all of the previous
cases. So is Cond2 because we are not creating any new non-surface occurrences. Furthermore, notice that
G1 ⊓ . . .⊓Gn (resp. G1 ⊔ . . .⊔Gn) is not a molecule, for otherwise in ⌊E⌋ we would have a general atom at

22



γ rather than G′
1 ⊓ . . . ⊓G′

n (resp. G′
1 ⊔ . . . ⊔ G′

n). Hence, in view of Cond2, Gi is not a small or medium
molecule. This means that, when transferring from E to H , we are not creating new (nor destroying old)
independent/surface occurrences of any small or medium molecules, so that Cond3 and Cond4 are also
inherited by H from E. To summarize, H is indeed good. Finally, it is also rather obvious that H ′ = ⌊H⌋.
The only case when we might have H ′ 6= ⌊H⌋ would be if there was a small molecule P̌ a

b isolated in E but
not in H , or vice versa (so that the independent occurrence of that molecule in E would become P in ⌊E⌋
and hence in H ′ but stay P̌ a

b in ⌊H⌋, or vice versa). But, as we observed just a while ago, E and H do not
differ in what independent/surface occurrences of what small molecules they have.

Case 2: E is derived by Rule (b). That is, we have CL1 ⊢ H , where H is the result of replacing in E a
negative (resp. positive) surface occurrence of a quasiatom G of the form G1 ⊓ . . .⊓Gn (resp. G1 ⊔ . . .⊔Gn)
by Gi for some i ∈ {1, . . . , n}. Fix these formulas and this number i. Just as in Case 1 (statement (37)),
based on the induction hypothesis, we find:

If H is good, then CL2 ⊢ ⌊H⌋. (39)

We need to consider the following three subcases that cover all possibilities:

Subcase 2.1: G is not a molecule. Reasoning (almost) exactly as we did at the end of our discussion of
Subcase 1.3, we find that H is good. Therefore, by (39), CL2 ⊢ ⌊H⌋. Now, a little thought can convince us
that ⌊E⌋ follows from ⌊H⌋ by Rule (b), so that CL2 ⊢ ⌊E⌋.

Subcase 2.2: G is a large molecule P̌⊓
⊔ . So, the occurrence of G in E is negative, and Gi = P̌ i

⊔. A
(now already routine for us) examination of Cond1-Cond4 reveals that each of these four conditions are
inherited by H from E, so that H is good. Therefore, by (39), CL2 ⊢ ⌊H⌋. Now, ⌊H⌋ can be easily seen to
be the same as ⌊E⌋, and thus CL2 ⊢ ⌊E⌋.

Subcase 2.3: G is a medium molecule P̌ a
⊔ . So, the occurrence of G in E is positive, and Gi = P̌ a

i . There
are two subsubcases to consider:

Subsubcase 2.3.1: E contains no independent occurrence of P̌ a
i . One can easily verify that H is good and

that ⌊H⌋ = ⌊E⌋. By (39), we then get the desired CL2 ⊢ ⌊E⌋.
Subsubcase 2.3.2: E has an independent occurrence of P̌ a

i . Since E also has a positive independent
occurrence of P̌ a

⊔ , Cond4 implies that the above occurrence of P̌ a
i in E is negative. This, in conjunction

with Cond3, means that E does not have any other independent occurrences of P̌ a
i , and thus H has exactly

two — one negative and one positive — independent occurrences of P̌ a
i . This guarantees that Cond3 is

satisfied for H , because H and E only differ in that H has P̌ a
i where E has P̌ a

⊔ . The conditions Cond1 and
Cond2 are straightforwardly inherited by H from E. Finally, Cond4 also transfers from E to H because,
even though H — unlike E — has a positive independent occurrence of P̌ a

i , it no longer has a positive
independent occurrence of P̌ a

⊔ (which, by the same condition Cond4 for E, was unique in E). Thus, H is
good and, by (39), CL2 ⊢ ⌊H⌋. Note that since H is good, by Cond2, both of the independent occurrences
of P̌ a

i in it are surface occurrences. The same, of course, is true for the corresponding occurrences of P̌ a
i

and P̌ a
⊔ in E. Let us now compare ⌊E⌋ with ⌊H⌋. According to our earlier observation, P̌ a

i only has one
independent occurrence in E, i.e. P̌ a

i is E-isolated. Hence the independent occurrence of P̌ a
i , just as that

of P̌ a
⊔ , gets replaced by P when floorifying E. On the other hand, P̌ a

i is no longer isolated in H , so the two
independent occurrences of it stay as they are when floorifying H . Based on this observation, we can easily
see that the only difference between ⌊E⌋ and ⌊H⌋ is that ⌊E⌋ has the general atom P where ⌊H⌋ has the
(two occurrences of) elementary atom P̌ a

i . Since ⌊E⌋ does not contain P̌ a
i (because the only independent

occurrence of it in E, as well as all large and medium P -based molecules, got replaced by P when floorifying
E), and since we are talking about two — one positive and one negative — surface occurrences of P in ⌊E⌋,
we find that ⌊E⌋ follows from ⌊H⌋ by Rule (c). We already know that CL2 ⊢ ⌊H⌋. Hence CL2 ⊢ ⌊E⌋.

Claim 1 is proven.

Now we are very close to finishing our proof of Lemma 5.1. Assume CL2 6⊢ F . Let ⌈F ⌉ be the result
of replacing in F all occurrences of each general atom P ∈ P by P̌⊓

⊔ . Obviously ⌈F ⌉ is good. Clearly we
also have ⌊⌈F ⌉⌋ = F , so that CL2 6⊢ ⌊⌈F ⌉⌋. Therefore, by Claim 1, CL1 6⊢ ⌈F ⌉. Hence, by Lemma 8.2 and
Remark 8.3 of [3], there is an interpretation † that interprets every elementary atom as a finitary predicate

23



of arithmetical complexity ∆2, such that
6|= ⌈F ⌉†. (40)

Let ∗ be an interpretation such that:

• ∗ agrees with † on all elementary atoms;

• ∗ interprets each atom P ∈ P as (P̌⊔
⊔ )†.

Clearly ∗ interprets atoms as promised in our Lemma 5.1. It is also obvious that F ∗ = ⌈F ⌉†. Therefore,
by (40), 6|= F ∗, and the lemma is proven. ✷

References

[1] A. Blass, A game semantics for linear logic. Annals of Pure and Applied Logic 56 (1992), pp.183-
220.

[2] G. Japaridze, Introduction to computability logic. Annals of Pure and Applied Logic 123 (2003),
pp.1-99.

[3] G. Japaridze, Propositional computability logic I. Transactions on Computational Logic (to ap-
pear). A prepublication version is available at http://arxiv.org/abs/cs.LO/0404023.

[4] G. Japaridze, Computability logic: a formal theory of interaction. arXiv:cs.LO/0404024 (April 2004),
26 pages. URL: http://arxiv.org/abs/cs.LO/0404024.

24



Index

atom:
elementary 2
general 2
hybrid 4

balanced hyperformula 4
CL2 2
CL2◦ 5
elementarization:

of formula 2
of hyperformula 4

elementary-base 2
elementary:

atom 2
component 4
formula 2
hyperformula 4
quasiatom 7

finalization 13
floorification 21
general:

atom 2
component 4

general-base 2
good formula 21
hybrid atom 4
hyperformula 4
independent occurrence 21
instable:

formula 2
hyperformula 4

interpretation 2
perfect 5
induced by (∗, e) 5

isolated molecule 21
manageable run 9
molecule: 21

P -based 21
large 21
medium 21
small 21

negative:
isolated molecule 21
occurrence 2,4
quasiatom 7

nonelementary quasiatom 7
positive:

isolated molecule 21
occurrence 2,4
quasiatom 7

quasiatom 7

Rule (c) 2
Rule (c◦) 5
specification (E-specification, E-specify) 7
stable:

formula 2
hyperformula 4

surface complexity 8
surface occurrence:

in formula 2
in hyperformula 4

≤ (as a relation on games) 13
e[A] 5
¬Γ 6
¬℘ 6
F ∗ 5
‖F‖ 4
⌈F ⌉ 20,23
⌊F ⌋ 21
Γγ 7
Γ−γ 8
Γγ
F 8

〈Γ〉↓A 13
P̌ a
b 20

P̌ a
⊔ 21

P̌⊓
⊔ 21

25


