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Abstract

One of the major tasks of evolutionary biology is the recardion of phylogenetic trees from
molecular data. This problem is of critical importance imast all areas of biology and has a very
clear mathematical formulation. The evolutionary modejii&en by a Markov chain on the true evolu-
tionary tree. Given samples from this Markov chain at thedsaf the tree, the goal is to reconstruct the
evolutionary tree. It is crucial to minimize the number ofrgdes, i.e., the length of genetic sequences,
as it is constrained by the underlying biology, the priceegfieencing etc.

It is well known that in order to reconstruct a tree ereaves, sequences of lendttlogn) are
needed. It was conjectured by M. Steel that for the CFN eiariaty model, if the mutation probability
on all edges of the tree is less thein= (/2 — 1)/23/? than the tree can be recovered from sequences of
lengthO(log n). This was proven by the second author in the special caseavttetree is “balanced”.
The second author also proved that if all edges have mutptmiability larger thamp* then the length
needed i$:2(1). This “phase-transition” in the number of samples needetbiely related to the phase
transition for the reconstruction problem (or extrematditjree measure) studied extensively in statistical
physics and probability.

Here we complete the proof of Steel’s conjecture and giveangtruction algorithm using optimal
(up to a multiplicative constant) sequence length. Ourltedurther extend to obtain optimal recon-
struction algorithm for the Jukes-Cantor model with shaiges. All reconstruction algorithms run in
time polynomial in the sequence length.

The algorithm and the proofs are based on a novel combinatioombinatorial, metric and proba-
bilistic arguments.
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tor.
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1 Introduction

Phylogenies are used in evolutionary biology to model thetsistic evolution of genetic data on the ances-
tral tree relating a group of species. The leaves of the eegpond to (known) extant species. Internal
nodes represent extinct species while the root of the tigesents the most recent ancestor to all species in
the tree. Following paths from the root to the leaves, eafthidation indicates a speciation event whereby
two new species are created from a parent. We refer the réa{frfor an excellent introduction to Phy-
logeny.

The underlying assumption is that genetic information w®lfrom the root to the leaves according
to a Markov model on the tree. This genetic information magsist of DNA sequences, proteins etc.
Suppose for example that the genetic data consists of éal)gDNA sequences and lets follow the evolution
of the first letter in all sequences. This collection, nantexifirstcharacter evolves according to Markov
transition matrices on the edges. The root is assigned otte dbur lettersA, C', G andT'. Then this letter
evolves from parents to descendants according to the Mamlatrices on the edges connecting them.

The vector of thei'th letter of all sequences is called thigh character It is further assumed that
the character are i.i.d. random variables. In other wordshesite in a DNA sequence is assumed to
mutate independently from its neighbors according to timeesmutation mechanism. Naturally, this is an
over-simplification of the underlying biology. Nonethedethe model above may be a good model for the
evolution of some DNA subsequences and is the most poputdntean model in molecular biology, see
e.g. [8]. One of the major tasks in molecular biology, tbeonstruction of phylogenetic treds to infer the
topology of the (unknown) tree from the characters (sege®nat the leaves (extant species).

One of the simplest mutation model is given by the Cavenderig=Neyman (CFN) model[8] 7, 20].
In this model the character states &rand1 and their a priori probability at the root i5/2 each (the) and
1 originally correspond to the Purine and Pyrimidine groufg) each edge there corresponds a mutation
parametep(e) which is the probability that the character mutates aloegettigee. In this paper we will be
mostly interested in the CFN model.

A problem that is closely related to the Phylogenetic pnobig that of inferring theincestral statgi.e.,
the character state at the root of the tree, given the claratthe leaves. This problem was studied earlier
in statistical physics, probability and computer sciencdeu the title of theeconstruction problemor the
“extremality of the free Gibbs measure”, s€el[21],[10, 9]. Témonstruction problem for the CFN model

was analyzed ir(JZ] 6, LI I,113].

Roughly speaking, the reconstruction problersabsablewhen the correlation between the root and the
leaves persists no matter how large the tree is. When it islvaisle, the correlation decays @dor large
trees. The results dfi[2] 6,11,[1] 13] show that for the CFNehatifor all ¢, it holds thaip(e) < pmax < p*
then the reconstruction problem is solvable, where

= V2-1
V8
If, on the other hand, for al it holds thatp(e) > pnin > p* and the tree is balanced in the sense that all
leaves are at the same distance from the root, then the teactitn problem is unsolvable. Moreover in

this case, the correlation between the root state and awyidarof the character states at the leaves decays
-Q(1)
asn :

M. Steel [22] conjectured that wheén< p.,;, < p(e) < pmax < p* for all edgese, one can reconstruct
with high probability the phylogenetic tree fro@(log n) characters. Steel’s insightful conjecture suggests
that there are deep connections between the reconstryortiblem and phylogenetic reconstruction.



This conjecture has been proven to hold for trees wherealetives are at the same distance from the
root in [16]. It is also shown there that the number of cha@cheeded whep(e) > pp,i, > p* for all e
is (1), The second result intuitively follows from the fact thaé ttopology of the part of the tree that is
close to the root is essentially independent of the charatthe leaves if the number of characters is not at
leastnf2(1),

The basic intuition behind Steel’s conjecture is that sindbe regime where(e) < pmax < p*, there
is no decay of the quality of reconstructed sequences, iildhme as easy to reconstruct deep trees as it is
to reconstruct shallow trees. I [5] (see alsd [17]) it ishahat “shallow” trees can be reconstructed from
O(log n) characters if all mutation probabilities are bounded awaynfo and1/2. The same high-level
reasoning has also yielded a complete proof ¢hdbg n) characters suffice for a homoplasy-free mutation
model when all edges are shdrf]19].

Here we give a complete proof of Steel’s conjecture. We sh@at/it 0 < ppin < p(e) < pmax < p*
for all edges of the tree then the tree can be reconstructed 0@ puin, Pmax, 0) log n) characters with
error probability at mosé. This result implies that sequences of logarithmic lengiffice to reconstruct
the tree also for the Jukes-Cantor model when all the edgesudficiently short.

1.1 Definitions and results

Let T" be a tree. Write/(T") for the nodes of’, £(T') for the edges of and £(T') for the leaves ofl. If
the tree is rooted, then we denote#{") the root of7". Unless stated otherwise, all trees are assumed to be
binary (all internal degrees a® and it is further assumed th&{(T') is labeled.

Let 7" be a tree equipped with a path metilic £(7') — R.. d will also denote the induced metric on
V(T):
d(v,w) =Y {d(e) : ¢ € pathy (v, w)}, 1)

for all v,w € V(T'), wherepath(z,y) is the path (sequence of edges) conneciirigy in T'.

We will further assume below that the length of all edges israt®ed betweerf andg forall e € E. In
other words, for alk € £(T),
f<de) <g. (2)

We now define the evolution process on a rooted tree equipjhdavpath metricd. The process is
determined by a rooted tréé = (V, E) equipped with a path metri¢ and amutation rate matrix). We
will be mostly interested in the case whepe= (3! ;) corresponding to the CFN model and in the case
whereQ) is a4 x 4 matrix given byQ; ; = 1 —44(i¢ = j) corresponding to the Jukes-Cantor model. To edge

e of lengthd(e) we associate the mutation matfi® = exp(d(e)Q).

In the mutation model on the tr&érooted atp each vertex iteratively chooses its state from the state at
its parent by an application of the Markov transition rdl&. We assume that all edges ihare directed
away from the root. Thus the probability distribution on thee is the probability distribution of0, 1}V
({A,C,G, T}V) is given by

ol =7(c(0) I Miw.ow: 3)
(z—y)eE

wherer is given by the uniform distribution at the root, so thd@t) = (1) = 1/2 for the CFN model and
m(A) =7(C) =n(G) = =n(T) = 1/4 for the IC model.

We let the measurg denote the marginal ¢f on the set of leaves which we identify with]. Thus
ulo) =Y {n(r) : Vi € [n],7(i) = o(i)}.
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The measure defines the probability distribution at the leaves of the.tre

We note that both for the CFN model and for the JC model, theatimut matricesM ¢ are in fact
very simple. For the CFN model, with probabilipfe) = (1 — exp(—2d(e)))/2, there is a mutation and,
otherwise, there is no mutation. Similarly for the JC modehvrobability p(e) = (1 — exp(—4d(e)))/4
each of the three possible mutations occur. In particul@mgr

log 2
* — 4
T (4)
we may formulate the result on the reconstruction problenttfe phase transition of the CFN model as
follows:

If d(e) < g < g* for all e then the reconstruction problem is solvable.

We will be interested in reconstructing phylogenies in tieigime. The objective here is to reconstruct
the underlying tred” whose internal nodes are unknown from the collection of eeges at the leaves.
Let 7 represent the set of all all binary trees oreaves and\ represent a family of mutation matrices
corresponding to edgeswhose lengthi satisfies:

0<f<d<g<yg’, (5)

whereg* is given in [4) andf is an arbitrary positive constant. L&tz M denote the set of all phylogenetic
trees, where the underlying trééis in 7 and all mutation matrices on the edges arevih Under mild
conditions [4], different elements i ® M correspond to different measurgs Below, we identify the
measureg: with the corresponding element df® M. We are interested in finding an efficiently computable
map ¥ such that\I/(acl,, e ,ag) € 7. Moreover, we require that for every distribution ¢ T @ M
which is defined on a tre€, if aé, . ,ag are generated independently framthen with high probability
\Il(a},, . ,o’g) = T. In [5], it is shown there exists a polynomial time algorittihat reconstructs the

topology fromk = poly(n, 1/§) characters. Here, we prove the following.

Theorem 1 Letf > 0andg < g*. Consider the CFN model on binary trees. Then there existdyampmial
time algorithm that reconstructs the topology of the tremfik = c(f,g,0)logn characters with error
probability at mos#.

Corollary 1 Consider the JC model on binary trees where all edges satisfy
0< f<d(e)<g<g/2

Then there exists a polynomial time algorithm that recarss the topology of the tree froaif, g, d) log n
characters with error probability at most

1.2 Properties of the majority function

In this subsection we quote some of the results we are usorg [L4]. The results of[[17] are stated
assuming that the character values#aifieinstead of0/1. Further instead of using the mutation probability
0 < p(e) < 1/2itusesf(e) = 1 — 2p(e) which satisfied) < f(e) < 1. Note that in terms of we have
reconstruction solvability whenevéte) > 6 > 6, for all e where26? = 1.

For the CFN model both the majority algorithm[10] and retugrsnajority algorithms[[14] are effective
in reconstructing the root value (for other models in geh@nast simple reconstruction algorithms are not
effective all the way to the reconstruction threshald [18/12]).

We now define formally the function Maj. Note that when the emof inputs is even, this function is
randomized



Definition 1 LetMaj: {—1,1}¢ — {—1,1} be defined as:

d
Maj(z1,. .., zq) = signd_ z; + 0.5w),
i=1

wherew is an unbiasedt1 variable which is independent of thg. Thus whenl is odd,

d
Maj(z1, ..., zq) = signy _ z;).
i=1

Whend is even,
d

Maj(z1,. .., zq) = sign)_ ),
=1

unlesszfz1 x; = 0, in which caseMaj(x1, ..., z4) is chosen to be-1 with probability 1/2.

Definition 2 LetT = (V, E) be a tree rooted ap with leaf seto7T". For functions¢’ : E — [0,1] and
n' 0T — [0,1], let CFN(#',n') be the CFN model off’ where

e f(e) = 0'(e) for all e which is not adjacent t07, and

e O(e) =0'(e)n (v) forall e = (u,v), withv € 9T

Let
Maj(¢’,n) = E[+Maj(osr)|o, = +1] = E[-Maj(oar)|o, = —1],

whereo is drawn according ta@” F N (¢, 1/).

For functionsf andn as above, we abbreviate by writimgin 6 for ming 6(e), max n for max,cgr 7(v),
etc. The functiorMaj measures how well majority calculates the color at tlat of the tree.

Theorem 2 [L7] Let

2

d.( d
a(d) =279 = < ) (6)
For all ¢ integer, Oy € [0,1] and0 < a < a(b%)0’, , there exists? = B(b, £, Omin, ) > 0 such that the
following hold. Letl" be an/-level balanced-ary tree, and consider thé€' F'N (6,n) model on7’, where
min 6 > 0, andminn > Nyi,. Then

“7'5](9, 77) > min{anmina 6} (7)

In particular, givenb and 6,,,;,, such thath?. > h% > 1, there exist/(b, Omin), (b, Omin) > h* and

B(b, 0min) > 0, such that anyCF N (6,n) model on the/-level b-ary tree satisfyingmin > 6,,;, and
min 7 > N, Must also satishl7)



2 The Algorithm

2.1 Cherry Oracle

At a high level, our reconstruction algorithm proceeds frarsimple idea: it builds the tree one level of
cherries at a time. In a binary treecherryis a pair of leaves at graph distanZeTo see how this would
work, imagine that we had access to a “cherry oracle”, i.aungtion C'(u, v, T') that returns the parent of
the pair of leavequ, v} if the latter form a cherry in the tre€ (and say0 otherwise). Then, we could
perform the following “cherry picking” algorithm:

e CurrenttreeI” :=T;
e Repeat untill” is empty,

— Forall (u,v) € L(T") x L(T"), if w := C(u,v,T") # 0, setParent(u) := Parent(v) := w;
— Remove fronil” all cherries uncovered at the previous step;

Unfortunately, the cherry oracle cannot be simulated frbortssequences at the leaves. Indeed, short
sequences provide only local metric information on thecstne of the tree. For instance, consider a short
linear tree attached to the root of a deep complete binagy Eeom local metric information, itis impossible
to tell which “end” of the linear tree is attached to the coet@lbinary tree.

2.2 Blindfolded Cherry Picking

Nevertheless, the above scheme can be roughly followed ljnga simple modification: at every level,
pick not only true cherries but also “local” cherries; andladprocedure that cleans up “fake” cherries
when more information becomes available. We call this ngerithm, detailed in Figurd 1 (see subsequent
figures for subroutines), BNDFOLDED CHERRY PICKING (BCP). A further issue tackled by BCP is that
the true sequences at internal nodes are unknown. For R rBconstructs biased estimates of the internal
sequences as in[17] and uses these biased sequences ndadztbinformation deeper inside the tree. The
description of the algorithm uses the following notationl @onventions:

o TCMM s the tree made of the children afas defined by the functio@hild.

For sequences,, o, € {+1}*,

k
Dist (o4, 04) = 5 log [(E Zafpi) ] .
t=1 +

A g-cherryis a cherry where both edges have length less or equal to

Let M > 0. LetT be a tree and’ be the subforest df’ where we keep all the leaves and only those
nodes with the following property: they are on a path of largjtmost)M between two leaves df.
We say that a pair of leavds:, v} is anM-local g-cherryin T' if {u,v} is ag-cherry inF.

€9 iS a constant to be determined in secfibn 3.

The variables, j, L;, C. d;, 4, & are global.

A pseudolealfis a current active node.



Algorithm BLINDFOLDED CHERRY PICKING (BCP)
Input: samples at the leaves;
Output: estimated topology;

e Step 0: Initialization

— lteration counteri := 0; Node counterj := n;
— Active pseudoleaf sett., := [n];
— Leaf sequence$t € [n], 6; := oy;

Step 1: Distance Estimation

— Forall (u,v) € L; x L;, setd;(u,v) := DISTEST(u, v);

Step 2: Cherry Identification
— Parent pseudoleaf sdAL;L-H = fi;
— Resolved cherries; := 0;
— Forall (ug, vp) € fi X Zi such thatuy < v, apply GHERRYID (ug, vo);

Step 3: Sequence Reconstruction

— For all (u,w,v) € C, Seté,, := SEQREC(u, w, v);

Step 4: Fake Cherry Detection
— Forall (ug,u1) € Lit1 X Lis1 With ug < uy, perform RKECHERRY(ug, u1);
e Step 5: Termination

—If |Ei+1| < 3, compute the length of the missing edges; Output the reanst tree.
— Else, set := i+ 1, and go to Step 1.

Figure 1: Algorithm B.INDFOLDED CHERRY PICKING.

Algorithm FOURPOINT
Input: Four nodes and distances between them;
Output: quartet split (if four input nodes) and edge weights;

e Perform four point method to find the right split and estintheinternal edge of the quartet;

e Do at most 4 applications of the four point method to estinaditether edge lengths (using a scheme sim
to that in routine DSTEST; see proof of LemmEl 7).

Figure 2: Subroutine ®URPOINT.
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Algorithm DISTEST
Input: pair of pseudoleaves:, v); Output: estimated distance betweerandv;

e If ©w andv are leaves,
— Computed; (u, v) := ]ji;‘t(ﬁu,(%v);
e If one ofu, v is a leaf (say),

— Letv’,v” be the children of;

— Compute the correlation distances betweel, v and use four point method to deduce the dista
betweernu andv;

e If none ofu, v is a leaf,

— Letu/,u” (resp.v’,v"”) be the children of: (resp.v);

— Compute the correlation distances betweén:”, v',v"” and use four point method to deduce f
distance between andv;

nce

he

Figure 3: Subroutine BTEST.

Algorithm CHERRYID
Input: pair of pseudoleaves:, vo);

e IsCherry := TRUE;
e Test 1 [Distance less thaly + e]: If Ji(Umvo) > 2¢g + €9, thenIsCherry := FALSE;

e Test2[Local cherry]:Let R, be the setof allu;, v1) € L;xL; suchthat,, < vy, {ug, vo N{uy,v1} =0,
and

max{di(aro,:zrl) tx, € {uL,vL}} < 5¢g+ éea.
Then:
— If Rs, is empty, thedsCherry := FALSE;

— Otherwise, perform BURPOINT (ug, vo, u1,v1); If (ug,vg) isnota(g+es)-cherry in{ug, vo, uy, v1},
then seflsCherry := FALSE;

e If IsCherry = TRUE,
— Setj :=j+ 1 andw := j;
— Addw to Ziﬂ, add(u, w,v) to CA'Z-, and remove, v from Ziﬂ; Update parenting relationships;
— Letd(ug, w) and¥(u1,w) be the edge lengths computed above (from one of the “witrezss).

Figure 4: Subroutine GERRYID.



Algorithm SEQREC R
Input: cherry(u,w,v) € C;; Output: reconstructed sequencewt

e Let/ be the required number of levels from Theoldm 2;

e Consider the subtreE!"” consisting of all the nodes ingy'd at topological distance at mastrom w;

o Let L%) be the leaf set dfu(f);

e For each node in L%),

— Let Top(z) be its topological distance from in T

— Set theweight ofw to beh(z) := 2!~ Tor();

Returng,, := Maj,, (am; T € L%)) (sitewise weighted majority with uniform breaks);

Figure 5: Subroutine BQREC.

Algorithm FAKECHERRY
Input: pseudoleaves, u1;

e For.=0,1, setT, := TS} and denote, the set of cherries iff;

e Compute all pairwise distancesbetweerl, andT using DSTEST (some of these distances are actuglly
wrong);

e V(ko, k1) € Cy x Cy with k, = (z,, 2,,v.), SetCZ]u(Iio,FLl) = max{ci(vo,vl) s, €{x,uth
e For.=0,1, unlessu, is notin a@ orui_, is aleaf, do

- Letk, = (a,,u,,y,) be the cherry including,;

- SetC’ :={r € Ci_, : du(kr, k) < 259} (break if empty);

— SetStop := FALSE;

— While C’" # () andStop = FALSE,

x Letxk = (x, z,y) be the lowest cherry i6”;

x [Collision Test 1]Let w be the (possibly new) node at the intersection of the triptet z, y},
use the four point method ofx,., z, y} to compute the distance betweemndw, sayh (using
a scheme similar to that in routine &rEsT), check whetheh # 4(z, z) (up to2¢e,);

x [Collision Test 2]Perform the previous step again wighrather thane,;

x If in both testsh # 4(z, z), then setStop := TRUE and setw;_, := w; otherwise remove
from C".

e For.=0,1, perform BUBBLE(w,, u,).

Figure 6: Subroutine &KE CHERRY.



Algorithm BuBBLE
Input: nodex, pseudoleafy’;

Let (u,y) be the edge on which is located withy = Parent(u);

Add wu to zi+1;

e Setz = u;
While z # w/,

— Add Sister(z) to ZiJrl;
— Setz := Parent(z).

Removew’ from L;11;

Figure 7: Subroutine BBBLE.




3 Analysis

In this section, we establish that BCP reconstructs theqgeyly correctly. There are two main technical

aspects to the proof. The probabilistic part folloivs [17] Tcus rather on the combinatorial part where the
novelty and complexity of BCP lies. There, we first estabashumber of combinatorial properties of the

current forestF; grown by BCP. We then prove that the “correctly reconsticigbforest” ofF; increases

in size at every iteration.

3.1 Preliminaries

The following notation is used in the proofs.

e T'is the phylogenetic tree that produced the data.
e s = clogn is the number of samples available at the leaves. The cdnsigio be determined later.

e = 1/n" is the probability of error in every application of lemida 3n& we use a union bound
at the end of the argument, we needto be much bigger than the total number of applications of
lemmalB. Thusy is some large constant independent.of

e 0 < f < g < +oo are lower and upper bounds on the length of every edge in

e = > (s a fixed constant.

In the following discussion, subtreerefers to a subgraph of a tree induced by a subset of the n(\fes.
sometimes apply this definition to a directed tree, in whigbecwe actually refer to the undirected version
of the tree.) We borrow the following notions from]16].

Definition 3 (Edge Disjointness) Letpath,(x,y) be the path (sequence of edges) connectitgy in 7'.
We say that two subtred§, 75 of T" are edge disjointf

pathy(uy, v1) Npathy(ug,ve) = 0,

for all uy,v; € L£(T1) andug, vo € L(T3). We say thaf}, T, are edge sharingf they are not edge disjoint.
(If 77 andT; are directed, we take this definition to refer to their ungliamy undirected version.)

Finally, we define the notion of eollision between two trees.

Definition 4 (Collisions) Suppose thal} and 7, are edge disjoint subtrees @f. We say thafl; and7s
collide at distancel, if the pathpath,(p(71), p(T2)) has non-empty intersection wit(7;) U £(1%) and
the length of the shortest path betwégnand 75 is at mostd.

In other words, T} and T collide at distancel, if the shortest path betweéhl and 75 is of length at
mostd and this path does not contain eithe{77) or p(73).

3.2 Probabilistic Lemmas

Assume thay satisfies the inequalit@e =29 > 1, which defines the space of valuesgfor which full
reconstruction withO(log n) samples at the leaves is not forbidden byl [17]. Also, fix thestant: < f/2
such that ify’ = g + ¢ theng’ satisfie2e =29 > 1. The following lemmas are key to our proof.
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Definition 5 (Bias) Suppose is the root of a tre€l’. Let¥ be an antisymmetric function o[ntl}V(T) to
{£1} (i.e, ¥(—z) = —¥(x)). Leto be a character generated by the CFN modelZlanThen, the random
variabler, = o(v)¥ (o) is called thereconstruction biasf U atv onT'.

Lemma 1 (Reconstruction Bias) 31 = £1(¢’) > 0 such that if the following hold:

e T’ is a binary tree rooted at with edges of length at mogt,

e 0:V(T'") — {£1} is generated according to the CFN model of evolutiorftn

then we can reconstruct a stafév) at the root of7” so thatCorr(o(v),5(v)) > 1. In other words if
olc : L(T") — {£1} denotes the value of the character at the leaves, then theésésea randomized
functionW : {+1}4(T") — {41} such that it's biasr, satisfiesE[r,] > ;. MoreoverE[r,|o(v) = 1] =
E[ry|o(v) = —1].

Proof: The proof follows from Theoreild 2 by recursively applying thajority function. Letp be the root
of the tree. Consider the set of all nodes that are eitheeteavdistance at moéfrom p or internal nodes
at distance exactly from p. By induction, we may assume that we have reconstructedhtheacters at
these nodes with correlation at legstThen the majority of these values (where nodes at distarcé are
taken with multiplicity2¢=") will also give correlation at least with the original character at the root.

The second claim follows from the fact that the majority fiime (and therefore all functions we apply) is
antisymmetricll

Lemma 2 (Distance Estimation 1)Vy > 1,Ves > 0,3¢; = ¢1(7,9’,e2) > 0 such that if the following
hold. Let

e u, v is a pair of nodes,

o {6tk |, {6!}F_, are reconstructed sequences of length= clogn, ¢ > ¢;, with the following
properties:

— Forall t andw € {u,v}, 6, is of the formo! 7., wherec!, is the value generated by the CFN
model andr!, (the reconstruction bias) is i.i.d. oft-1} with bias at least; as in lemmdl,

— The variables{7.}¥_,, {r!}¥_, are all independent.
Then, there is a reconstruction algorithm such that theof@ihg hold with probability at least — n="7:

e Ifthed(u,v) < 1001g in T thend(u, v) is estimated up to an additive error of,

e If the d(u,v) > 1001g in T then the algorithm outputs an estimated distancedar, v) that is
> 1000g.

Proof: This proof follows from standard concentration inequesitill

Lemma 3 (Distance Estimation 2)Vy > 1,Vey > 0,3¢1 = ¢1(7,4’,e2) > 0 such that if the following
hold:

e wv|xy is a quartet of width< 1000g in 7" (the width is the maximal distance between any pair in the
quartet),

11
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Figure 8: The internal edge is not affected by the bias atg&reds, here represented as extra (dashed) edges.

o {60}, {65}, {6L}F,, and {5} }}_, are reconstructed sequences of length: clogn, ¢ > c1,
with the following properties:

— Forall t andw € {u,v,x,y}, &', is of the forms!, 7. wherecs!, is the value generated by the

CFN model and, (the reconstruction bias) is i.i.d. oftt1} with bias at least; as in lemma
D,

— The variables{7.}¥_,, {r!}*_, are all independent.

Then, there is a reconstruction algorithm such that, witbhability at leastl — n~7, the internal edge of
the quartet can be estimated within additive ersor

Proof: Apply the “four point condition” and note that independeiddes are equivalent to extra edges in
the Markov model. See Figuié B

From here on, we assume thatis the constant defined by Lemida 1 and the number of samplédatdea
at the leaves of the phylogenetic tressis- ¢, log n, wherec; is determined by Lemnid 3 if we fix = 10
andey < /8. Our last lemma bounds the error on estimated distancesebatpseudoleaves. In particular,
it accounts for the effect of collisions. We start with a teicll observation.

Lemma 4 (Correlation of Antisymmetric Functions) Let7} and7s be edge disjoint subtrees dfwhose
distance is at leastrg. Fori = 1,2, letp; : {—1,1}Y(T) — {11} be an antisymmetric function. dfis
a character generated by the CFN model, then

Corr(p1 (ol ), p2(0|n)) < exp(—2ag).

Proof: We use the random cluster representation of the model. $nrépresentation, an edgeacts as
follows:

¢ with probability exp(—2d(e)) the two endpoints of the edge are identical,

e with probability 1 — exp(—2d(e)) the two endpoints are independent.
It is now easy to see thatifis the length of the path connecting the two trees, then withability 1 — e=2"

the measures on the two trees are independent. This cdesibto the correlation. In the other case, we
get a contribution of at modt Thus the correlation is bounded by?" as neededi

12



This gives immediately:

Lemma 5 (Distance Estimation 3) SupposeF = {11,75,...,T,} is a forest of rooted trees with the fol-
lowing properties:

o {11,T>,...,T,} is an edge disjoint subforest &f,
e all trees of 7 have edges of length at magt
e there is no collision at distancg)g in F,

e We reconstruct sequences at the roots of the trees ursing the samples at the leaves of the corre-
sponding tree.

Then, if we use routin®ISTEST to estimate the distances between every pair of roots of fre&, the
following property is satisfied by the estimated distasi@ath probability at leastl — n™7:

d(u,v) <129V d(u,v) <129 = |d(u,v) — d(u,v)| < 3.

3.3 Combinatorial Analysis
The following proposition establishes a number of propertf the forest grown by BCP.

Proposition 1 (Properties of]?l-) The following properties hold at the beginning BICP's i-th iteration,
Vi > 1:

=

. [Edge Disjointness] F; = {ngﬂd fue IA,Z} is an edge disjoint subforest ®F

2. [Edge Lengths] Vu € L;, TS s arooted full binary tree with edge lengths at mg'st

w

. [Weight Estimation| The estimated lengths of the edgeg?;-rare withines from their right values.

4. [Collisions| There is no collision at distanc&)g.

Proof:
1 = 0: The active set consists of the leaves/ofThe claims are therefore trivially true.

i > 1: Assume the claims are true at the beginning ofititie iteration. By doing a step-by-step analysis
of the i-th iteration, we show that the claims are still true at thgilveing of the(i + 1)-st iteration. The
following lemma follows from Lemmfl5.

Lemma 6 (Correctness of DSTEST) After the completion of step 1, for all v € L

di(u,v) <129 Vd(u,v) <129 = |d(u,v) — d;(u,v)| < es.

Proof: From the induction hypothesis (Clalth 4), it follows that iretbeginning of the-th iteration there

is no collision at distanc@0g. So the claim follows from Lemm@d 5. (A small detail to note hstt the
sequences at the nodes of the forest were reconstructeffaredt steps of the algorithm. However, the
subtrees that were used for the reconstruction of each medexactly those in the statement of Lemitha 5.)
|
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Next, we analyze the routineHERRYID.

Lemma 7 (Correctness of GHERRY D) Let u,v be the input pair of pseudoleaves @HERRYID. Let
T' = T — F; (keeping the nodes ih;) at the beginning of the-th iteration. Then we have the follow-

ing.
e If {u,v} is abg-local g-cherry inT”, then it passes all screening testsGAERRYID.

o If {u,v}isnota(5g+ 2e5)-local (g + 2e5)-cherry inT”, then it is rejected by at least one of the tests
in CHERRYID.

Proof: This result is implied by the following claim. Every timeobRPOINT is called by GHERRYID,
say on the four nodes, v, v/, v where{u, v} is the candidate cherry afd/, v'} is the witness, then the
following hold.

e The trees rooted at, v, u’, v' do not collide.
e The split returned by 8URPOINT is the correct split of the nodes.

e All edge weights of the quartet joining v, «’, v" are estimated withia, of their correct value.

(This holds also when’ = v'.) We now prove this claim.
The subroutine BURPOINT is called by GiERRYID when the following assumptions are satisfied.

o di(u,v) <29+ ¢,

A~

e max {di(u,u/),Ji(u,v’),di(v,u’),di(v,v’)} < 5¢g + es.

From LemmdD, it follows that the above estimated distancesndthin =, of their correct values. An
application of the triangle inequality giveu’,v') < 11g so that|d;(v/,v') — d(u/,v')| < &5 as well. In
fact, all pairwise distances of nodes in the Setv,«’,v'} are smaller tharilg. Hence, by the induction
hypothesis (Clairfil4), the four trees rooteduat, u’, v’ do not collide. Therefore, from Lemnd 3 and the
fact that the quartet joining, v, «’, v" has width at most1g, the split of nodes:, v, v/, v’ is found correctly
by the four point method and the length of the internal edgh@fuartet is estimated within of its correct
value.

It remains to show that all other edges of the quartet arenagtd withine, of their correct value.
Above, we have established that the quartet split compuiethe nodes:, v, v/, v’ is correct. Also, by
the induction hypothesis (Claifd 1) the trees rooted.at, v’, v’ are edge disjoint subtrees ©f Suppose
the quartet joining:, v, v/, v’ is as depicted in Figudd 9 where we are estimatifig, z). Without loss of
generality, assume the algorithm applies the four pointwetto the set of nodeguy, ug, v, v'}. It is easy
to see that every pair of nodes in the §ef, us, v, v’} has distance< 7¢ and so the width of the quartet is
< 7g. Thus, Lemm&l3 can be applied and the internal edge of theeguiee. (u, z), is estimated withirz,
of its correct value.

A similar argument applies to the case=+'. B
We are now in a position to prove claifad1, 2, &hd 3.
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Figure 9: Estimating distancu, z).

Lemma 8 (Claims[1[2, andB)At the beginning of thé+1)-st iteration, claim§l]2, arid 3 of the induction
hypothesis hold.

Proof: Since RKECHERRY only removes edges from the current forest, it is enoughduethat after the
completion of Step 3 the resulting forest satisfies cldthB andB.

Claim [l Suppose the resulting forest is not edge disjoint. Alsopeap that, along the execution of Step
2, the forest stopped being edge disjoint when cheérry, y) was added t@;. Then one of the following
must be true:

1. There is a pseudoleaf < f,- N Ziﬂ (Wheref,-H is taken at the end of iteratiof) such that
pathy(z,y) is edge sharing with’Clild, But then it is not hard to see that there is a collision in

{ngﬂd ue EZ} at distanceg which contradicts the induction hypothesis (CIdIm 4).

2. There is a pseudoleaf € L;.; \ L; such thatpath(z,y) is edge sharing with’C%d, We can
distinguish the following subcases. -

e (,7,y) € C; and path,(z,y) is edge sharing witlpath,(2’,y'): in this casery|z'y’ is
not the correct split and, by Lemrih 7, it is not hard to see@&RRYID rejects{z, y} when
performing Test 2. (Note that because bgthy} and{2’,y'} pass Test 1, anghth(z, y) and
path;(2/,y’) are edge-sharing, it follows thdt’, v’} serves as a “witness” tfx, y} in this
case.)

o Otherwise, it is not hard to see that there is a collision atagice3g in {ngﬂd DU € Zi},
which contradicts the induction hypothesis (Cléim 4).

Claim Bl Follows directly from the description of the algorithm: aecty (u, z,v) is added to@- only if
d(u,z) andd(v,z) are estimated to be at mogtt £2, so that the true edge lengths are less tifahy
Lemmd® and the choice of.

Claim B This follows from Lemm&l7m

It remains to prove Claifil4. This follows immediately fronetfollowing analysis of EKE CHERRY.

15



To

Figure 10: Illustration of routine A&KE CHERRY.

Lemma 9 (Collision Removal) Let ug, u1 € Lii1. Suppose’Zhild and 71 collide at distance20g.
ThenFAKECHERRY finds the collision.

Proof: From Claini3 of the induction hypothesis, it follows thateast one ofiy or u;, sayuo without loss
of generality, is such thatz,., uo, y,) € C; for somez,, y,, and that moreover the path betweln= T}
andT = TS0 starts on(z,., ug) or (y,, uo). Suppose thatis the edge of'; where the collision is located.

Consider the set
Ap—1 ={v e V(T1) : the subtree of rooted atv does not contain edge

It is not hard to see that for all € Ay_.; the reconstructed sequence at nede positively correlated
with the true sequence and the bias is independent of thesh@fsthe reconstructed sequences,aand
yr. Thus, from Lemm@&l3 and Claild 2 of the induction hypothesifgliows thatvv € A1 : d(ug,v) <
259 = |diy1(u,v) — d(ug,v)| < 2. Call A}, C Ag_.; the set that contains the nodes A,_.; such
thathHl(uo,v) < 25¢. Since the collision is at distan@®g it follows that A;,_,; is nonempty and in fact
contains at least the lower endpoint of edgand its sibling in7;. The routine RKECHERRY scans the
cherries inl} starting from the lowest cherry and going up. Therefores @asy to see thaiAKeE CHERRY
only considers nodes id},_,; and that, by the proof of Lemniad 7 (correctness of weight estons), it
stops when it reaches the lower endpoint aihd its sibling. See FiguEell0 for an illustratidii.

This concludes the proof of Propositibh M.

We now show that, in a precise sense, the algorithm makesga®@t every iteration. For this, we
consider the following definitions.

Definition 6 (Fixed Subforest) Let F be a rooted directed edge disjoint subforest7ofvith implicit de-
scendance relationshi@hild. Letu € V(F). We say that: is fixed if 7' is fully reconstructed (or
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in other words, TS can be obtained frorf” by removing (at most) one edge adjacentjo Note that
descendants of a fixed node are fixed themselves. We deéndite (directed) subforest of made of all
fixed nodes aofF. We say thatF* is themaximal fixed subforesif F.

Definition 7 (Bundle) A bundleis a group of four leaves such that:

e Any two leaves are at topological distance at nigst

e Itincludes at least one cherry.

Proposition 2 (Progress) Let
]?Z- = {Tgi‘ﬂd U € EZ}

(whereIAJi is taken at the beginning of iteratiai for all 7 > 0 with corresponding maximal fixed subforest
J?i*. Then for alli > 0 (before the termination stepﬁ* C 7?511 and |V( Ai*H)] > W(J?Z-*)].

Proof: We first argue thaﬂ?i* - AZ-*H. Note that the only routine that removes edges iBBLE when
called by AKECHERRY. Becausefi* is fully reconstructed, it suffices to show that collisiodentified
by FAKECHERRY are actual collisions or lie “above” an actual collisione-i.are on a cherry located on
the path between the actual collision and the root. Indeiade BuBBLE removes only edges “above”
presumed collisions, this would then imply that no edgéA“ZTncan be removed. We now prove the claim by
analyzing the behavior ofAKE CHERRY. We use the notation defined in the routine. Consider thésamil
tests in RKECHERRY. The key point is to observe the following:

e if kisin ]?Z* then at least one af,. or y,. has a reconstruction bias that is independent from the bias
at bothz andy; therefore this “correct” witness cannot find a collisiorsi(g LemmdXR and the fact
thath(/{T, K) < 25¢);

e if kisnot inj?i*, all the cherries above (on the path ta:;_,) cannot be irﬂ?i* and therefore applying
BUBBLE to « does not modifyF;.

This proves the first claim.

For the second claim, assumie = {T1,...,T,} andF' = T — F; = {T},... , T4}, F'is the forest
obtained fromI’ by removing all the edges in the union of the tré&s...,T,,. The nodes of” are all
the endpoints of the remaining edges. Since the tfges ., T, are edge disjoint, the sét’ is in fact a
subforest off".

Each leafv in I satisfies exactly one of the following:

e Collision Node: v a leaf of F that belongs to a path connecting two verticegjne F; but is not the
root of T, (it lies in the “middle” of an edge df,).

e Fixed Pseudoleaf:v is a root of a fully reconstructed trédg, < J?Z (i.e. T, is also inj?l-*);

e Colliding Pseudoleaf: v is a root of a tred, F, that is not inﬁ* (the tre€T, contains a collision).
A fixed bundlés a bundle inf” whose leaves are fixed pseudoleaves. We now provétraintains at least

one fixed bundle. This immediately implies the second cldideed, it is not hard to see that the cherry in
the fixed bundle is found by @=RRYID during the(i + 1)-st iteration.
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Lemma 10 (Fixed Bundle) Assume Propositiddl 1 holds at the end of ik iteration and letF” as above
have at least two internal nodes. Théfi,contains at least one fixed bundle.

Proof: We first make a few easy observations:

1. Atree with4 or more leaves contains at least one bundle. (To see thigienafircherries into leaves;
repeat at most twice.)

2. Because of Clairl4 in Propositi@h 1, collision nodes amisiance at leastOg from any other leaf
in F’. Therefore, if a tree id"’ contains a collision, then it has- 4 nodes and, from the previous
observation, it contains at least one bundle. Moreoves, llndle cannot contain a collision node
(since in a bundle all leaves are close).

3. From the previous observations, we get the following: tife@ in 7’ contains a collision, then either
it has a fixed bundle, or it has at least one colliding psewdole

It is then easy to conclude. Assume there is no collision iod€. Then, there cannot be any colliding
pseudoleaf either and it is easy to see thats actually composed of a single tree all of which leaves are
fixed. Then there is a fixed bundle by Observation 1 above.

Assume on the contrary that there is a collision node.Tdie a tree inF” with such a node. Then by
Observation STI; either has a fixed bundle, in which case we are done, or it haBidimg pseudoleaf, say
v. In the latter case, léf, be the tree irﬁ whose root is. The tre€l,, contains at least one collision node
which it shares with a tree iR, say7},. Repeat the argument abovefs, and so on.

Note that in each step we “exit’ a trde € F; via a node that is not the root Gf. € F; and enter a
new tre€l, € F; atits root. Sincd’ is a tree, this process cannot continue forever, and we @igntind a
fixed bundle.l

Proof of Theorem [l By Proposition[dL, the current forest is correctly recoredgd. By Propositiof]2,
after O(n) iterations, there remains at most three nodes;inlt is easy to see that the termination step
correctly reconstructs any missing edge. So when the BGRitlgn terminates, it outputs the trég(as an
undirected tree) with high probability and all estimatedeslare withire, of their correct valuel
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