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Abstract

One of the major tasks of evolutionary biology is the reconstruction of phylogenetic trees from
molecular data. This problem is of critical importance in almost all areas of biology and has a very
clear mathematical formulation. The evolutionary model isgiven by a Markov chain on the true evolu-
tionary tree. Given samples from this Markov chain at the leaves of the tree, the goal is to reconstruct the
evolutionary tree. It is crucial to minimize the number of samples, i.e., the length of genetic sequences,
as it is constrained by the underlying biology, the price of sequencing etc.

It is well known that in order to reconstruct a tree onn leaves, sequences of lengthΩ(log n) are
needed. It was conjectured by M. Steel that for the CFN evolutionary model, if the mutation probability
on all edges of the tree is less thanp∗ = (

√
2−1)/23/2 than the tree can be recovered from sequences of

lengthO(log n). This was proven by the second author in the special case where the tree is “balanced”.
The second author also proved that if all edges have mutationprobability larger thanp∗ then the length
needed isnΩ(1). This “phase-transition” in the number of samples needed isclosely related to the phase
transition for the reconstruction problem (or extremalityof free measure) studied extensively in statistical
physics and probability.

Here we complete the proof of Steel’s conjecture and give a reconstruction algorithm using optimal
(up to a multiplicative constant) sequence length. Our results further extend to obtain optimal recon-
struction algorithm for the Jukes-Cantor model with short edges. All reconstruction algorithms run in
time polynomial in the sequence length.

The algorithm and the proofs are based on a novel combinationof combinatorial, metric and proba-
bilistic arguments.
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tor.
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1 Introduction

Phylogenies are used in evolutionary biology to model the stochastic evolution of genetic data on the ances-
tral tree relating a group of species. The leaves of the tree correspond to (known) extant species. Internal
nodes represent extinct species while the root of the tree represents the most recent ancestor to all species in
the tree. Following paths from the root to the leaves, each bifurcation indicates a speciation event whereby
two new species are created from a parent. We refer the readerto [8] for an excellent introduction to Phy-
logeny.

The underlying assumption is that genetic information evolves from the root to the leaves according
to a Markov model on the tree. This genetic information may consist of DNA sequences, proteins etc.
Suppose for example that the genetic data consists of (aligned) DNA sequences and lets follow the evolution
of the first letter in all sequences. This collection, named the firstcharacter, evolves according to Markov
transition matrices on the edges. The root is assigned one ofthe four lettersA,C,G andT . Then this letter
evolves from parents to descendants according to the Markovmatrices on the edges connecting them.

The vector of thei’th letter of all sequences is called thei’th character. It is further assumed that
the character are i.i.d. random variables. In other words, each site in a DNA sequence is assumed to
mutate independently from its neighbors according to the same mutation mechanism. Naturally, this is an
over-simplification of the underlying biology. Nonetheless, the model above may be a good model for the
evolution of some DNA subsequences and is the most popular evolution model in molecular biology, see
e.g. [8]. One of the major tasks in molecular biology, thereconstruction of phylogenetic trees, is to infer the
topology of the (unknown) tree from the characters (sequences) at the leaves (extant species).

One of the simplest mutation model is given by the Cavender-Farris-Neyman (CFN) model [3, 7, 20].
In this model the character states are0 and1 and their a priori probability at the root is1/2 each (the0 and
1 originally correspond to the Purine and Pyrimidine groups). To each edgee there corresponds a mutation
parameterp(e) which is the probability that the character mutates along the edgee. In this paper we will be
mostly interested in the CFN model.

A problem that is closely related to the Phylogenetic problem is that of inferring theancestral state, i.e.,
the character state at the root of the tree, given the character at the leaves. This problem was studied earlier
in statistical physics, probability and computer science under the title of thereconstruction problem, or the
“extremality of the free Gibbs measure”, see [21, 10, 9]. Thereconstruction problem for the CFN model
was analyzed in [2, 6, 11, 1, 13].

Roughly speaking, the reconstruction problem issolvablewhen the correlation between the root and the
leaves persists no matter how large the tree is. When it is unsolvable, the correlation decays to0 for large
trees. The results of [2, 6, 11, 1, 13] show that for the CFN model, if for all e, it holds thatp(e) ≤ pmax < p∗

then the reconstruction problem is solvable, where

p∗ =

√
2 − 1√

8
.

If, on the other hand, for alle it holds thatp(e) ≥ pmin > p∗ and the tree is balanced in the sense that all
leaves are at the same distance from the root, then the reconstruction problem is unsolvable. Moreover in
this case, the correlation between the root state and any function of the character states at the leaves decays
asn−Ω(1).

M. Steel [22] conjectured that when0 < pmin ≤ p(e) ≤ pmax < p∗ for all edgese, one can reconstruct
with high probability the phylogenetic tree fromO(log n) characters. Steel’s insightful conjecture suggests
that there are deep connections between the reconstructionproblem and phylogenetic reconstruction.
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This conjecture has been proven to hold for trees where all the leaves are at the same distance from the
root in [16]. It is also shown there that the number of characters needed whenp(e) ≥ pmin > p∗ for all e
is nΩ(1). The second result intuitively follows from the fact that the topology of the part of the tree that is
close to the root is essentially independent of the character at the leaves if the number of characters is not at
leastnΩ(1).

The basic intuition behind Steel’s conjecture is that sincein the regime wherep(e) < pmax < p∗, there
is no decay of the quality of reconstructed sequences, it should be as easy to reconstruct deep trees as it is
to reconstruct shallow trees. In [5] (see also [17]) it is shown that “shallow” trees can be reconstructed from
O(log n) characters if all mutation probabilities are bounded away from 0 and1/2. The same high-level
reasoning has also yielded a complete proof thatO(log n) characters suffice for a homoplasy-free mutation
model when all edges are short [19].

Here we give a complete proof of Steel’s conjecture. We show that if 0 < pmin ≤ p(e) ≤ pmax < p∗

for all edgese of the tree then the tree can be reconstructed fromO(c(pmin, pmax, δ) log n) characters with
error probability at mostδ. This result implies that sequences of logarithmic length suffice to reconstruct
the tree also for the Jukes-Cantor model when all the edges are sufficiently short.

1.1 Definitions and results

Let T be a tree. WriteV(T ) for the nodes ofT , E(T ) for the edges ofT andL(T ) for the leaves ofT . If
the tree is rooted, then we denote byρ(T ) the root ofT . Unless stated otherwise, all trees are assumed to be
binary (all internal degrees are3) and it is further assumed thatL(T ) is labeled.

Let T be a tree equipped with a path metricd : E(T ) → R+. d will also denote the induced metric on
V(T ):

d(v,w) =
∑

{d(e) : e ∈ pathT (v,w)}, (1)

for all v,w ∈ V(T ), wherepathT (x, y) is the path (sequence of edges) connectingx to y in T .

We will further assume below that the length of all edges is bounded betweenf andg for all e ∈ E. In
other words, for alle ∈ E(T ),

f ≤ d(e) ≤ g. (2)

We now define the evolution process on a rooted tree equipped with a path metricd. The process is
determined by a rooted treeT = (V,E) equipped with a path metricd and amutation rate matrixQ. We
will be mostly interested in the case whereQ =

(
−1 1
1 −1

)
corresponding to the CFN model and in the case

whereQ is a4× 4 matrix given byQi,j = 1− 4δ(i = j) corresponding to the Jukes-Cantor model. To edge
e of lengthd(e) we associate the mutation matrixMe = exp(d(e)Q).

In the mutation model on the treeT rooted atρ each vertex iteratively chooses its state from the state at
its parent by an application of the Markov transition ruleMe. We assume that all edges inE are directed
away from the root. Thus the probability distribution on thetree is the probability distribution on{0, 1}V

({A,C,G, T}V ) is given by
µ[σ] = π(σ(ρ))

∏

(x→y)∈E

Me
σ(x),σ(y), (3)

whereπ is given by the uniform distribution at the root, so thatπ(0) = π(1) = 1/2 for the CFN model and
π(A) = π(C) = π(G) = π(T ) = 1/4 for the JC model.

We let the measureµ denote the marginal ofµ on the set of leaves which we identify with[n]. Thus

µ(σ) =
∑

{µ(τ) : ∀i ∈ [n], τ(i) = σ(i)}.

2



The measureµ defines the probability distribution at the leaves of the tree.

We note that both for the CFN model and for the JC model, the mutation matricesM e are in fact
very simple. For the CFN model, with probabilityp(e) = (1 − exp(−2d(e)))/2, there is a mutation and,
otherwise, there is no mutation. Similarly for the JC model with probabilityp(e) = (1 − exp(−4d(e)))/4
each of the three possible mutations occur. In particular writing

g∗ =
log 2

4
, (4)

we may formulate the result on the reconstruction problem for the phase transition of the CFN model as
follows:

If d(e) ≤ g < g∗ for all e then the reconstruction problem is solvable.

We will be interested in reconstructing phylogenies in thisregime. The objective here is to reconstruct
the underlying treeT whose internal nodes are unknown from the collection of sequences at the leaves.
Let T represent the set of all all binary trees onn leaves andM represent a family of mutation matrices
corresponding to edgese whose lengthd satisfies:

0 < f ≤ d ≤ g < g∗, (5)

whereg∗ is given in (4) andf is an arbitrary positive constant. LetT ⊗M denote the set of all phylogenetic
trees, where the underlying treeT is in T and all mutation matrices on the edges are inM. Under mild
conditions [4], different elements inT ⊗ M correspond to different measuresµ. Below, we identify the
measureµ with the corresponding element ofT ⊗M. We are interested in finding an efficiently computable
map Ψ such thatΨ(σ1

∂ , . . . , σk
∂) ∈ T . Moreover, we require that for every distributionµ ∈ T ⊗ M

which is defined on a treeT , if σ1
∂ , . . . , σk

∂ are generated independently fromµ, then with high probability
Ψ(σ1

∂ , . . . , σk
∂) = T . In [5], it is shown there exists a polynomial time algorithmthat reconstructs the

topology fromk = poly(n, 1/δ) characters. Here, we prove the following.

Theorem 1 Letf > 0 andg < g∗. Consider the CFN model on binary trees. Then there exists a polynomial
time algorithm that reconstructs the topology of the tree from k = c(f, g, δ) log n characters with error
probability at mostδ.

Corollary 1 Consider the JC model on binary trees where all edges satisfy

0 < f ≤ d(e) ≤ g < g∗/2.

Then there exists a polynomial time algorithm that reconstructs the topology of the tree fromc(f, g, δ) log n
characters with error probability at mostδ.

1.2 Properties of the majority function

In this subsection we quote some of the results we are using from [17]. The results of [17] are stated
assuming that the character values are±1 instead of0/1. Further instead of using the mutation probability
0 ≤ p(e) ≤ 1/2 it usesθ(e) = 1 − 2p(e) which satisfies0 ≤ θ(e) ≤ 1. Note that in terms ofθ we have
reconstruction solvability wheneverθ(e) ≥ θ > θ∗ for all e where2θ2

∗ = 1.

For the CFN model both the majority algorithm [10] and recursive majority algorithms [14] are effective
in reconstructing the root value (for other models in general, most simple reconstruction algorithms are not
effective all the way to the reconstruction threshold [15, 18, 12]).

We now define formally the function Maj. Note that when the number of inputs is even, this function is
randomized.

3



Definition 1 LetMaj : {−1, 1}d → {−1, 1} be defined as:

Maj(x1, . . . , xd) = sign(
d∑

i=1

xi + 0.5ω),

whereω is an unbiased±1 variable which is independent of thexi. Thus whend is odd,

Maj(x1, . . . , xd) = sign(
d∑

i=1

xi).

Whend is even,

Maj(x1, . . . , xd) = sign(
d∑

i=1

xi),

unless
∑d

i=1 xi = 0, in which caseMaj(x1, . . . , xd) is chosen to be±1 with probability1/2.

Definition 2 Let T = (V,E) be a tree rooted atρ with leaf set∂T . For functionsθ′ : E → [0, 1] and
η′ : ∂T → [0, 1], let CFN(θ′, η′) be the CFN model onT where

• θ(e) = θ′(e) for all e which is not adjacent to∂T , and

• θ(e) = θ′(e)η′(v) for all e = (u, v), with v ∈ ∂T .

Let
M̂aj(θ′, η′) = E[+Maj(σ∂T )|σρ = +1] = E[−Maj(σ∂T )|σρ = −1],

whereσ is drawn according toCFN(θ′, η′).

For functionsθ andη as above, we abbreviate by writingmin θ for minE θ(e), max η for maxv∈∂T η(v),
etc. The function̂Maj measures how well majority calculates the color at the root of the tree.

Theorem 2 [17] Let

a(d) = 21−d⌈d

2
⌉
(

d

⌈d
2⌉

)
. (6)

For all ℓ integer,θmin ∈ [0, 1] and0 ≤ α < a(bℓ)θℓ
min, there existsβ = β(b, ℓ, θmin, α) > 0 such that the

following hold. LetT be anℓ-level balancedb-ary tree, and consider theCFN(θ, η) model onT , where
min θ ≥ θmin andmin η ≥ ηmin. Then

M̂aj(θ, η) ≥ min{αηmin, β}. (7)

In particular, givenb and θmin such thatbθ2
min > h2 > 1, there existℓ(b, θmin), α(b, θmin) > hℓ and

β(b, θmin) > 0, such that anyCFN(θ, η) model on theℓ-level b-ary tree satisfyingmin θ ≥ θmin and
min η ≥ ηmin must also satisfy (7)
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2 The Algorithm

2.1 Cherry Oracle

At a high level, our reconstruction algorithm proceeds froma simple idea: it builds the tree one level of
cherries at a time. In a binary tree, acherry is a pair of leaves at graph distance2. To see how this would
work, imagine that we had access to a “cherry oracle”, i.e. a functionC(u, v, T ) that returns the parent of
the pair of leaves{u, v} if the latter form a cherry in the treeT (and say0 otherwise). Then, we could
perform the following “cherry picking” algorithm:

• Current tree:T ′ := T ;

• Repeat untilT ′ is empty,

– For all (u, v) ∈ L(T ′) × L(T ′), if w := C(u, v, T ′) 6= 0, setParent(u) := Parent(v) := w;

– Remove fromT ′ all cherries uncovered at the previous step;

Unfortunately, the cherry oracle cannot be simulated from short sequences at the leaves. Indeed, short
sequences provide only local metric information on the structure of the tree. For instance, consider a short
linear tree attached to the root of a deep complete binary tree. From local metric information, it is impossible
to tell which “end” of the linear tree is attached to the complete binary tree.

2.2 Blindfolded Cherry Picking

Nevertheless, the above scheme can be roughly followed by making a simple modification: at every level,
pick not only true cherries but also “local” cherries; and add a procedure that cleans up “fake” cherries
when more information becomes available. We call this new algorithm, detailed in Figure 1 (see subsequent
figures for subroutines), BLINDFOLDED CHERRY PICKING (BCP). A further issue tackled by BCP is that
the true sequences at internal nodes are unknown. For this, BCP reconstructs biased estimates of the internal
sequences as in [17] and uses these biased sequences to obtain local information deeper inside the tree. The
description of the algorithm uses the following notation and conventions:

• TChild
≤w is the tree made of the children ofw as defined by the functionChild.

• For sequencesσu, σv ∈ {±1}k,

D̂ist (σu, σv) = −1

2
log

[(
1

k

k∑

t=1

σt
uσt

v

)

+

]
.

• A g-cherry is a cherry where both edges have length less or equal tog.

• Let M > 0. Let T be a tree andF be the subforest ofT where we keep all the leaves and only those
nodes with the following property: they are on a path of length at mostM between two leaves ofT .
We say that a pair of leaves{u, v} is anM -local g-cherry in T if {u, v} is ag-cherry inF .

• ε2 is a constant to be determined in section 3.

• The variablesi, j, L̂i, Ĉi, d̂i, γ̂, σ̂ are global.

• A pseudoleafis a current active node.

5



Algorithm BLINDFOLDED CHERRY PICKING (BCP)
Input: samples at the leaves;
Output: estimated topology;

• Step 0: Initialization

– Iteration counter:i := 0; Node counter:j := n;

– Active pseudoleaf set:̂L0 := [n];

– Leaf sequences:∀i ∈ [n], σ̂i := σi;

• Step 1: Distance Estimation

– For all (u, v) ∈ L̂i × L̂i, setd̂i(u, v) := DISTEST(u, v);

• Step 2: Cherry Identification

– Parent pseudoleaf set:̂Li+1 := L̂i;

– Resolved cherries:̂Ci := ∅;

– For all (u0, v0) ∈ L̂i × L̂i such thatu0 < v0, apply CHERRYID (u0, v0);

• Step 3: Sequence Reconstruction

– For all (u, w, v) ∈ Ĉi, setσ̂w := SEQREC(u, w, v);

• Step 4: Fake Cherry Detection

– For all (u0, u1) ∈ L̂i+1 × L̂i+1 with u0 < u1, perform FAKECHERRY(u0, u1);

• Step 5: Termination

– If |L̂i+1| ≤ 3, compute the length of the missing edges; Output the reconstructed tree.

– Else, seti := i + 1, and go to Step 1.

Figure 1: Algorithm BLINDFOLDED CHERRY PICKING.

Algorithm FOURPOINT

Input: Four nodes and distances between them;
Output: quartet split (if four input nodes) and edge weights;

• Perform four point method to find the right split and estimatethe internal edge of the quartet;

• Do at most 4 applications of the four point method to estimateall other edge lengths (using a scheme similar
to that in routine DISTEST; see proof of Lemma 7).

Figure 2: Subroutine FOURPOINT.
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Algorithm DISTEST

Input: pair of pseudoleaves(u, v); Output: estimated distance betweenu andv;

• If u andv are leaves,

– Computed̂i(u, v) := D̂ist(σ̂u, σ̂v);

• If one ofu, v is a leaf (sayu),

– Let v′, v′′ be the children ofv;

– Compute the correlation distances betweenu, v′, v′′ and use four point method to deduce the distance
betweenu andv;

• If none ofu, v is a leaf,

– Let u′, u′′ (resp.v′, v′′) be the children ofu (resp.v);

– Compute the correlation distances betweenu′, u′′, v′, v′′ and use four point method to deduce the
distance betweenu andv;

Figure 3: Subroutine DISTEST.

Algorithm CHERRYID
Input: pair of pseudoleaves(u0, v0);

• IsCherry := TRUE;

• Test 1 [Distance less than2g + ε2]: If d̂i(u0, v0) > 2g + ε2, thenIsCherry := FALSE;

• Test 2 [Local cherry]:LetR5g be the set of all(u1, v1) ∈ L̂i×L̂i such thatu1 < v1, {u0, v0}∩{u1, v1} = ∅,
and

max
{
d̂i(x0, x1) : xι ∈ {uι, vι}

}
≤ 5g + ε2.

Then:

– If R5g is empty, thenIsCherry := FALSE;

– Otherwise, perform FOURPOINT(u0, v0, u1, v1); If (u0, v0) is not a(g+ε2)-cherry in{u0, v0, u1, v1},
then setIsCherry := FALSE;

• If IsCherry = TRUE,

– Setj := j + 1 andw := j;

– Add w to L̂i+1, add(u, w, v) to Ĉi, and removeu, v from L̂i+1; Update parenting relationships;

– Let γ̂(u0, w) andγ̂(u1, w) be the edge lengths computed above (from one of the “witness”pair).

Figure 4: Subroutine CHERRYID.
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Algorithm SEQREC

Input: cherry(u, w, v) ∈ Ĉi; Output: reconstructed sequence atw;

• Let l be the required number of levels from Theorem 2;

• Consider the subtreeT (l)
w consisting of all the nodes inT Child

≤w at topological distance at mostl from w;

• Let L(l)
w be the leaf set ofT (l)

w ;

• For each nodex in L
(l)
w ,

– Let Top(x) be its topological distance fromw in T
(l)
w ;

– Set theweight ofw to beh(x) := 2l−Top(x);

• Returnσ̂w := Majh
(
σx; x ∈ L

(l)
w

)
(sitewise weighted majority with uniform breaks);

Figure 5: Subroutine SEQREC.

Algorithm FAKECHERRY

Input: pseudoleavesu0, u1;

• For ι = 0, 1, setTι := T Child
≤uι

and denoteCι the set of cherries inTι;

• Compute all pairwise distanceŝd betweenT0 andT1 using DISTEST (some of these distances are actually
wrong);

• ∀(κ0, κ1) ∈ C0 × C1 with κι = (xι, zι, yι), setd̂M (κ0, κ1) = max{d̂(v0, v1) : vι ∈ {xι, yι}};

• For ι = 0, 1, unlessuι is not in aĈi or u1−ι is a leaf, do

– Let κr = (xr, uι, yr) be the cherry includinguι;

– SetC′ := {κ ∈ C1−ι : d̂M (κr, κ) ≤ 25g} (break if empty);

– SetStop := FALSE;

– While C′ 6= ∅ andStop = FALSE,

∗ Let κ = (x, z, y) be the lowest cherry inC′;

∗ [Collision Test 1]Let w be the (possibly new) node at the intersection of the triplet{xr, x, y},
use the four point method on{xr, x, y} to compute the distance betweenx andw, sayh (using
a scheme similar to that in routine DISTEST), check whetherh 6= γ̂(x, z) (up to2ε2);

∗ [Collision Test 2]Perform the previous step again withyr rather thanxr;

∗ If in both testsh 6= γ̂(x, z), then setStop := TRUE and setw1−ι := w; otherwise removeκ
from C′.

• For ι = 0, 1, perform BUBBLE(wι, uι).

Figure 6: Subroutine FAKECHERRY.
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Algorithm BUBBLE

Input: nodex, pseudoleafw′;

• Let (u, y) be the edge on whichx is located withy = Parent(u);

• Add u to L̂i+1;

• Setz := u;

• While z 6= w′,

– Add Sister(z) to L̂i+1;

– Setz := Parent(z).

• Removew′ from L̂i+1;

Figure 7: Subroutine BUBBLE.
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3 Analysis

In this section, we establish that BCP reconstructs the phylogeny correctly. There are two main technical
aspects to the proof. The probabilistic part follows [17]. We focus rather on the combinatorial part where the
novelty and complexity of BCP lies. There, we first establisha number of combinatorial properties of the
current forestF̂i grown by BCP. We then prove that the “correctly reconstructed subforest” ofF̂i increases
in size at every iteration.

3.1 Preliminaries

The following notation is used in the proofs.

• T is the phylogenetic tree that produced the data.

• s = c log n is the number of samples available at the leaves. The constant c is to be determined later.

• δ = 1/nγ is the probability of error in every application of lemma 3. Since we use a union bound
at the end of the argument, we neednγ to be much bigger than the total number of applications of
lemma 3. Thusγ is some large constant independent ofn.

• 0 < f < g < +∞ are lower and upper bounds on the length of every edge inT .

• ε > 0 is a fixed constant.

In the following discussion, asubtreerefers to a subgraph of a tree induced by a subset of the nodes.(We
sometimes apply this definition to a directed tree, in which case we actually refer to the undirected version
of the tree.) We borrow the following notions from [16].

Definition 3 (Edge Disjointness)LetpathT (x, y) be the path (sequence of edges) connectingx to y in T .
We say that two subtreesT1, T2 of T are edge disjointif

pathT (u1, v1) ∩ pathT (u2, v2) = ∅,

for all u1, v1 ∈ L(T1) andu2, v2 ∈ L(T2). We say thatT1, T2 areedge sharingif they are not edge disjoint.
(If T1 andT2 are directed, we take this definition to refer to their underlying undirected version.)

Finally, we define the notion of acollision between two trees.

Definition 4 (Collisions) Suppose thatT1 and T2 are edge disjoint subtrees ofT . We say thatT1 andT2

collide at distanced, if the pathpathT (ρ(T1), ρ(T2)) has non-empty intersection withE(T1) ∪ E(T2) and
the length of the shortest path betweenT1 andT2 is at mostd.

In other words,T1 andT2 collide at distanced, if the shortest path betweenT1 andT2 is of length at
mostd and this path does not contain eitherρ(T1) or ρ(T2).

3.2 Probabilistic Lemmas

Assume thatg satisfies the inequality2e−2g > 1, which defines the space of values ofg for which full
reconstruction withO(log n) samples at the leaves is not forbidden by [17]. Also, fix the constantε < f/2
such that ifg′ = g + ε theng′ satisfies2e−2g′ > 1. The following lemmas are key to our proof.
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Definition 5 (Bias) Supposev is the root of a treeT . LetΨ be an antisymmetric function on{±1}V(T ) to
{±1} (i.e, Ψ(−x) = −Ψ(x)). Letσ be a character generated by the CFN model onT . Then, the random
variableτv = σ(v)Ψ(σ) is called thereconstruction biasof Ψ at v onT .

Lemma 1 (Reconstruction Bias)∃ε1 = ε1(g
′) > 0 such that if the following hold:

• T ′ is a binary tree rooted atv with edges of length at mostg′,

• σ : V(T ′) → {±1} is generated according to the CFN model of evolution onT ′,

then we can reconstruct a statêσ(v) at the root ofT ′ so thatCorr(σ(v), σ̂(v)) ≥ ε1. In other words if
σ|L : L(T ′) → {±1} denotes the value of the character at the leaves, then there exists a randomized
functionΨ : {±1}L(T ′) → {±1} such that it’s biasτv satisfiesE[τv] ≥ ε1. Moreover,E[τv|σ(v) = 1] =
E[τv|σ(v) = −1].

Proof: The proof follows from Theorem 2 by recursively applying themajority function. Letρ be the root
of the tree. Consider the set of all nodes that are either leaves at distance at mostℓ from ρ or internal nodes
at distance exactlyℓ from ρ. By induction, we may assume that we have reconstructed the characters at
these nodes with correlation at leastη. Then the majority of these values (where nodes at distancer < ℓ are
taken with multiplicity2ℓ−r) will also give correlation at leastη with the original character at the root.

The second claim follows from the fact that the majority function (and therefore all functions we apply) is
antisymmetric.�

Lemma 2 (Distance Estimation 1)∀γ > 1,∀ε2 > 0,∃c1 = c1(γ, g′, ε2) > 0 such that if the following
hold. Let

• u, v is a pair of nodes,

• {σ̂t
u}k

t=1, {σ̂t
v}k

t=1 are reconstructed sequences of lengthk = c log n, c > c1, with the following
properties:

– For all t andw ∈ {u, v}, σ̂t
w is of the formσt

wτ t
w whereσt

w is the value generated by the CFN
model andτ t

w (the reconstruction bias) is i.i.d. on{±1} with bias at leastε1 as in lemma 1,

– The variables{τ t
u}k

t=1, {τ t
v}k

t=1 are all independent.

Then, there is a reconstruction algorithm such that the following hold with probability at least1 − n−γ :

• If thed(u, v) ≤ 1001g in T thend(u, v) is estimated up to an additive error ofε2,

• If the d(u, v) > 1001g in T then the algorithm outputs an estimated distance ford(u, v) that is
≥ 1000g.

Proof: This proof follows from standard concentration inequalities.�

Lemma 3 (Distance Estimation 2)∀γ > 1,∀ε2 > 0,∃c1 = c1(γ, g′, ε2) > 0 such that if the following
hold:

• uv|xy is a quartet of width≤ 1000g in T (the width is the maximal distance between any pair in the
quartet),
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Figure 8: The internal edge is not affected by the bias at the leaves, here represented as extra (dashed) edges.

• {σ̂t
u}k

t=1, {σ̂t
v}k

t=1, {σ̂t
x}k

t=1, and{σ̂t
y}k

t=1 are reconstructed sequences of lengthk = c log n, c > c1,
with the following properties:

– For all t andw ∈ {u, v, x, y}, σ̂t
w is of the formσt

wτ t
w whereσt

w is the value generated by the
CFN model andτ t

w (the reconstruction bias) is i.i.d. on{±1} with bias at leastε1 as in lemma
1,

– The variables{τ t
u}k

t=1, {τ t
v}k

t=1 are all independent.

Then, there is a reconstruction algorithm such that, with probability at least1 − n−γ , the internal edge of
the quartet can be estimated within additive errorε2.

Proof: Apply the “four point condition” and note that independent biases are equivalent to extra edges in
the Markov model. See Figure 8.�

From here on, we assume thatε1 is the constant defined by Lemma 1 and the number of samples available
at the leaves of the phylogenetic tree iss = c1 log n, wherec1 is determined by Lemma 3 if we fixγ = 10
andε2 < ε/8. Our last lemma bounds the error on estimated distances between pseudoleaves. In particular,
it accounts for the effect of collisions. We start with a technical observation.

Lemma 4 (Correlation of Antisymmetric Functions) LetT1 andT2 be edge disjoint subtrees ofT whose
distance is at leastαg. For i = 1, 2, let ϕi : {−1, 1}V(Ti) → {−1, 1} be an antisymmetric function. Ifσ is
a character generated by the CFN model, then

Corr(ϕ1(σ|T1
), ϕ2(σ|T2

)) ≤ exp(−2αg).

Proof: We use the random cluster representation of the model. In this representation, an edgee acts as
follows:

• with probabilityexp(−2d(e)) the two endpoints of the edge are identical,

• with probability1 − exp(−2d(e)) the two endpoints are independent.

It is now easy to see that ifr is the length of the path connecting the two trees, then with probability1−e−2r

the measures on the two trees are independent. This contributes0 to the correlation. In the other case, we
get a contribution of at most1. Thus the correlation is bounded bye−2r as needed.�
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This gives immediately:

Lemma 5 (Distance Estimation 3)SupposeF = {T1, T2, . . . , Tα} is a forest of rooted trees with the fol-
lowing properties:

• {T1, T2, . . . , Tα} is an edge disjoint subforest ofT ,

• all trees ofF have edges of length at mostg′,

• there is no collision at distance20g in F ,

• we reconstruct sequences at the roots of the trees inF using the samples at the leaves of the corre-
sponding tree.

Then, if we use routineDISTEST to estimate the distances between every pair of roots of trees in F , the
following property is satisfied by the estimated distanced̂ with probability at least1 − n−γ :

d̂(u, v) ≤ 12g ∨ d(u, v) ≤ 12g ⇒ |d(u, v) − d̂(u, v)| < ε2.

3.3 Combinatorial Analysis

The following proposition establishes a number of properties of the forest grown by BCP.

Proposition 1 (Properties ofF̂i) The following properties hold at the beginning ofBCP’s i-th iteration,
∀i ≥ 1:

1. [Edge Disjointness] F̂i =
{

TChild
≤u : u ∈ L̂i

}
is an edge disjoint subforest ofT .

2. [Edge Lengths] ∀u ∈ L̂i, TChild
≤u is a rooted full binary tree with edge lengths at mostg′.

3. [Weight Estimation] The estimated lengths of the edges inF̂i are withinε2 from their right values.

4. [Collisions] There is no collision at distance20g.

Proof:

i = 0: The active set consists of the leaves ofT . The claims are therefore trivially true.

i > 1: Assume the claims are true at the beginning of thei-th iteration. By doing a step-by-step analysis
of the i-th iteration, we show that the claims are still true at the beginning of the(i + 1)-st iteration. The
following lemma follows from Lemma 5.

Lemma 6 (Correctness of DISTEST) After the completion of step 1, for allu, v ∈ L̂i:

d̂i(u, v) ≤ 12g ∨ d(u, v) ≤ 12g ⇒ |d(u, v) − d̂i(u, v)| < ε2.

Proof: From the induction hypothesis (Claim 4), it follows that in the beginning of thei-th iteration there
is no collision at distance20g. So the claim follows from Lemma 5. (A small detail to note is that the
sequences at the nodes of the forest were reconstructed in different steps of the algorithm. However, the
subtrees that were used for the reconstruction of each node are exactly those in the statement of Lemma 5.)
�
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Next, we analyze the routine CHERRYID.

Lemma 7 (Correctness of CHERRY ID) Let u, v be the input pair of pseudoleaves toCHERRYID. Let
T ′ = T − F̂i (keeping the nodes in̂Li) at the beginning of thei-th iteration. Then we have the follow-
ing.

• If {u, v} is a5g-local g-cherry inT ′, then it passes all screening tests inCHERRYID.

• If {u, v} is not a(5g + 2ε2)-local (g + 2ε2)-cherry inT ′, then it is rejected by at least one of the tests
in CHERRYID.

Proof: This result is implied by the following claim. Every time FOURPOINT is called by CHERRYID,
say on the four nodesu, v, u′, v′ where{u, v} is the candidate cherry and{u′, v′} is the witness, then the
following hold.

• The trees rooted atu, v, u′, v′ do not collide.

• The split returned by FOURPOINT is the correct split of the nodes.

• All edge weights of the quartet joiningu, v, u′, v′ are estimated withinε2 of their correct value.

(This holds also whenu′ = v′.) We now prove this claim.

The subroutine FOURPOINT is called by CHERRYID when the following assumptions are satisfied.

• d̂i(u, v) ≤ 2g + ε2,

• max
{
d̂i(u, u′), d̂i(u, v′), d̂i(v, u′), d̂i(v, v′)

}
≤ 5g + ε2.

From Lemma 6, it follows that the above estimated distances are within ε2 of their correct values. An
application of the triangle inequality givesd(u′, v′) < 11g so that|d̂i(u

′, v′) − d(u′, v′)| < ε2 as well. In
fact, all pairwise distances of nodes in the set{u, v, u′, v′} are smaller than11g. Hence, by the induction
hypothesis (Claim 4), the four trees rooted atu, v, u′, v′ do not collide. Therefore, from Lemma 3 and the
fact that the quartet joiningu, v, u′, v′ has width at most11g, the split of nodesu, v, u′, v′ is found correctly
by the four point method and the length of the internal edge ofthe quartet is estimated withinε2 of its correct
value.

It remains to show that all other edges of the quartet are estimated withinε2 of their correct value.
Above, we have established that the quartet split computed for the nodesu, v, u′, v′ is correct. Also, by
the induction hypothesis (Claim 1) the trees rooted atu, v, u′, v′ are edge disjoint subtrees ofT . Suppose
the quartet joiningu, v, u′, v′ is as depicted in Figure 9 where we are estimatingd(u, z). Without loss of
generality, assume the algorithm applies the four point method to the set of nodes{u1, u2, v, v′}. It is easy
to see that every pair of nodes in the set{u1, u2, v, v′} has distance< 7g and so the width of the quartet is
< 7g. Thus, Lemma 3 can be applied and the internal edge of the quartet, i.e.(u, z), is estimated withinε2

of its correct value.

A similar argument applies to the caseu′ = v′. �

We are now in a position to prove claims 1, 2, and 3.
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Figure 9: Estimating distanced(u, z).

Lemma 8 (Claims 1, 2, and 3)At the beginning of the(i+1)-st iteration, claims 1, 2, and 3 of the induction
hypothesis hold.

Proof: Since FAKECHERRY only removes edges from the current forest, it is enough to prove that after the
completion of Step 3 the resulting forest satisfies claims 1,2, and 3.

Claim 1. Suppose the resulting forest is not edge disjoint. Also, suppose that, along the execution of Step
2, the forest stopped being edge disjoint when cherry(x, z, y) was added tôCi. Then one of the following
must be true:

1. There is a pseudoleafz′ ∈ L̂i ∩ L̂i+1 (where L̂i+1 is taken at the end of iterationi) such that
pathT (x, y) is edge sharing withTChild

≤z′ . But then it is not hard to see that there is a collision in{
TChild
≤u : u ∈ L̂i

}
at distance3g which contradicts the induction hypothesis (Claim 4).

2. There is a pseudoleafz′ ∈ L̂i+1 \ L̂i such thatpathT (x, y) is edge sharing withTChild
≤z′ . We can

distinguish the following subcases.

• (x′, z′, y′) ∈ Ĉi andpathT (x, y) is edge sharing withpathT (x′, y′): in this casexy|x′y′ is
not the correct split and, by Lemma 7, it is not hard to see thatCHERRYID rejects{x, y} when
performing Test 2. (Note that because both{x, y} and{x′, y′} pass Test 1, andpathT (x, y) and
pathT (x′, y′) are edge-sharing, it follows that{x′, y′} serves as a “witness” to{x, y} in this
case.)

• Otherwise, it is not hard to see that there is a collision at distance3g in
{

TChild
≤u : u ∈ L̂i

}
,

which contradicts the induction hypothesis (Claim 4).

Claim 2. Follows directly from the description of the algorithm: a cherry (u, x, v) is added toĈi only if
d(u, x) andd(v, x) are estimated to be at mostg + ε2, so that the true edge lengths are less thang′ by
Lemma 6 and the choice ofε2.

Claim 3. This follows from Lemma 7.�

It remains to prove Claim 4. This follows immediately from the following analysis of FAKECHERRY.
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Lemma 9 (Collision Removal) Let u0, u1 ∈ L̂i+1. SupposeTChild
≤u0

and TChild
≤u1

collide at distance20g.
ThenFAKECHERRY finds the collision.

Proof: From Claim 4 of the induction hypothesis, it follows that at least one ofu0 or u1, sayu0 without loss
of generality, is such that(xr, u0, yr) ∈ Ĉi for somexr, yr, and that moreover the path betweenT0 = TChild

≤u0

andT1 = TChild
≤u1

starts on(xr, u0) or (yr, u0). Suppose thate is the edge ofT1 where the collision is located.
Consider the set

A0→1 = {v ∈ V(T1) : the subtree ofT1 rooted atv does not contain edgee}

It is not hard to see that for allv ∈ A0→1 the reconstructed sequence at nodev is positively correlated
with the true sequence and the bias is independent of the biases of the reconstructed sequences atxr and
yr. Thus, from Lemma 3 and Claim 2 of the induction hypothesis, it follows that∀v ∈ A0→1 : d(u0, v) ≤
25g ⇒ |d̂i+1(u0, v) − d(u0, v)| < ε2. Call A′

0→1 ⊆ A0→1 the set that contains the nodesv ∈ A0→1 such
that d̂i+1(u0, v) ≤ 25g. Since the collision is at distance20g it follows thatA′

0→1 is nonempty and in fact
contains at least the lower endpoint of edgee and its sibling inT1. The routine FAKECHERRY scans the
cherries inT1 starting from the lowest cherry and going up. Therefore, it is easy to see that FAKECHERRY

only considers nodes inA′
0→1 and that, by the proof of Lemma 7 (correctness of weight estimations), it

stops when it reaches the lower endpoint ofe and its sibling. See Figure 10 for an illustration.�

This concludes the proof of Proposition 1.�

We now show that, in a precise sense, the algorithm makes progress at every iteration. For this, we
consider the following definitions.

Definition 6 (Fixed Subforest) Let F be a rooted directed edge disjoint subforest ofT with implicit de-
scendance relationshipChild. Let u ∈ V(F). We say thatu is fixed if TChild

≤u is fully reconstructed (or
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in other words,TChild
≤u can be obtained fromT by removing (at most) one edge adjacent tou). Note that

descendants of a fixed node are fixed themselves. We denoteF∗ the (directed) subforest ofF made of all
fixed nodes ofF . We say thatF∗ is themaximal fixed subforestof F .

Definition 7 (Bundle) A bundleis a group of four leaves such that:

• Any two leaves are at topological distance at most5;

• It includes at least one cherry.

Proposition 2 (Progress) Let

F̂i =
{
TChild
≤u : u ∈ L̂i

}

(whereL̂i is taken at the beginning of iterationi) for all i ≥ 0 with corresponding maximal fixed subforest
F̂∗

i . Then for alli ≥ 0 (before the termination step),̂F∗
i ⊆ F̂∗

i+1 and |V(F̂∗
i+1)| > |V(F̂∗

i )|.
Proof: We first argue that̂F∗

i ⊆ F̂∗
i+1. Note that the only routine that removes edges is BUBBLE when

called by FAKECHERRY. BecauseF̂∗
i is fully reconstructed, it suffices to show that collisions identified

by FAKECHERRY are actual collisions or lie “above” an actual collision—i.e. are on a cherry located on
the path between the actual collision and the root. Indeed, since BUBBLE removes only edges “above”
presumed collisions, this would then imply that no edge inF̂∗

i can be removed. We now prove the claim by
analyzing the behavior of FAKECHERRY. We use the notation defined in the routine. Consider the collision
tests in FAKECHERRY. The key point is to observe the following:

• if κ is in F̂∗
i , then at least one ofxr or yr has a reconstruction bias that is independent from the bias

at bothx andy; therefore this “correct” witness cannot find a collision (using Lemma 2 and the fact
that d̂M (κr, κ) ≤ 25g);

• if κ is not inF̂∗
i , all the cherries aboveκ (on the path tou1−ι) cannot be inF̂∗

i and therefore applying
BUBBLE to κ does not modifyF̂∗

i .

This proves the first claim.

For the second claim, assumêFi = {T1, . . . , Tα} andF ′ ≡ T − F̂i = {T ′
1, . . . , T

′
β}. F ′ is the forest

obtained fromT by removing all the edges in the union of the treesT1, . . . , Tα. The nodes ofF ′ are all
the endpoints of the remaining edges. Since the treesT1, . . . , Tα are edge disjoint, the setF ′ is in fact a
subforest ofT .

Each leafv in F ′ satisfies exactly one of the following:

• Collision Node: v a leaf ofF ′ that belongs to a path connecting two vertices inTa ∈ F̂i but is not the
root ofTa (it lies in the “middle” of an edge ofTa).

• Fixed Pseudoleaf:v is a root of a fully reconstructed treeTa ∈ F̂i (i.e. Ta is also inF̂∗
i );

• Colliding Pseudoleaf:v is a root of a treeTa ∈ F̂i that is not inF̂∗
i (the treeTa contains a collision).

A fixed bundleis a bundle inF ′ whose leaves are fixed pseudoleaves. We now prove thatF ′ contains at least
one fixed bundle. This immediately implies the second claim.Indeed, it is not hard to see that the cherry in
the fixed bundle is found by CHERRYID during the(i + 1)-st iteration.
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Lemma 10 (Fixed Bundle) Assume Proposition 1 holds at the end of thei-th iteration and letF ′ as above
have at least two internal nodes. Then,F ′ contains at least one fixed bundle.

Proof: We first make a few easy observations:

1. A tree with4 or more leaves contains at least one bundle. (To see this: merge all cherries into leaves;
repeat at most twice.)

2. Because of Claim 4 in Proposition 1, collision nodes are atdistance at least20g from any other leaf
in F ′. Therefore, if a tree inF ′ contains a collision, then it has≫ 4 nodes and, from the previous
observation, it contains at least one bundle. Moreover, this bundle cannot contain a collision node
(since in a bundle all leaves are close).

3. From the previous observations, we get the following: if atree inF ′ contains a collision, then either
it has a fixed bundle, or it has at least one colliding pseudoleaf.

It is then easy to conclude. Assume there is no collision nodein F ′. Then, there cannot be any colliding
pseudoleaf either and it is easy to see thatF ′ is actually composed of a single tree all of which leaves are
fixed. Then there is a fixed bundle by Observation 1 above.

Assume on the contrary that there is a collision node. LetT ′
b be a tree inF ′ with such a node. Then by

Observation 3,T ′
b either has a fixed bundle, in which case we are done, or it has a colliding pseudoleaf, say

v. In the latter case, letTa be the tree in̂Fi whose root isv. The treeTa contains at least one collision node
which it shares with a tree inF ′, sayT ′

b′ . Repeat the argument above onT ′
b′ , and so on.

Note that in each step we “exit” a treeTc ∈ F̂i via a node that is not the root ofTc ∈ F̂i and enter a
new treeTd ∈ F̂i at its root. SinceT is a tree, this process cannot continue forever, and we eventually find a
fixed bundle.�

�

Proof of Theorem 1: By Proposition 1, the current forest is correctly reconstructed. By Proposition 2,
after O(n) iterations, there remains at most three nodes inL̂i. It is easy to see that the termination step
correctly reconstructs any missing edge. So when the BCP algorithm terminates, it outputs the treeT (as an
undirected tree) with high probability and all estimated edges are withinε2 of their correct value.�

18



Acknowledgments

S.R. thanks Martin Nowak and the Program for Evolutionary Dynamics at Harvard University where part
of this work was done. C. D. and E. M. thank Satish Rao for interesting discussions. E.M. thanks M. Steel
for his enthusiastic encouragement for studying the connections between the reconstruction problem and
phylogeny.

References

[1] N. Berger, C. Kenyon, E. Mossel, and Y. Peres. Glauber dynamics on trees and hyperbolic graphs.
Probab. Theory Related Fields, 131(3):311–340, 2005. Extended abstract by Kenyon, Mossel and
Peres appeared in proceedings of 42nd IEEE Symposium on Foundations of Computer Science (FOCS)
2001, 568–578.

[2] P. M. Bleher, J. Ruiz, and V. A. Zagrebnov. On the purity ofthe limiting Gibbs state for the Ising
model on the Bethe lattice.J. Statist. Phys., 79(1-2):473–482, 1995.

[3] J. A. Cavender. Taxonomy with confidence.Math. Biosci., 40(3-4), 1978.

[4] J. Chang. Full reconstruction of markov models on evolutionary trees: identifiability and consistency.
Math. Biosci., 137(51–73), 1996.
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