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Bounded-Error Quantum State Identification and

Exponential Separations in Communication Complexity

Dmitry Gavinsky∗ Julia Kempe† Oded Regev‡ Ronald de Wolf§

Abstract

We consider the problem of bounded-error quantum state identification: given either state
α0 or state α1, we are required to output ‘0’, ‘1’ or ‘?’ (“don’t know”), such that conditioned
on outputting ‘0’ or ‘1’, our guess is correct with high probability. The goal is to maximize the
probability of not outputting ‘?’. We prove a direct product theorem: if we’re given two such
problems, with optimal probabilities a and b, respectively, and the states in the first problem
are pure, then the optimal probability for the joint bounded-error state identification problem
is O(ab). Our proof is based on semidefinite programming duality and may be of wider interest.

Using this result, we present two exponential separations in the simultaneous message pass-
ing model of communication complexity. Both are shown in the strongest possible sense. First,
we describe a relation that can be computed with O(log n) classical bits of communication in
the presence of shared randomness, but needs Ω(n1/3) communication if the parties don’t share
randomness, even if communication is quantum. This shows the optimality of Yao’s recent
exponential simulation of shared-randomness protocols by quantum protocols without shared
randomness. Second, we describe a relation that can be computed with O(log n) classical bits
of communication in the presence of shared entanglement, but needs Ω((n/ logn)1/3) communi-
cation if the parties share randomness but no entanglement, even if communication is quantum.
This is the first example in communication complexity of a situation where entanglement buys
you much more than quantum communication does.
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1 Introduction

1.1 Bounded-error quantum state identification

Suppose we are given one of two mixed quantum states, α0 or α1, each with probability 1/2. We
know what α0 and α1 are. Our goal is to identify which one we are given. It is well known that
we can output the correct answer (0 or 1) with probability 1/2+ ‖α0 − α1‖tr/2, where ‖ · ‖tr is the
trace norm (the sum of the singular values, divided by 2). This is optimal. In particular, if α0 and
α1 are very close in trace norm, the best measurement will do little better than a fair coin flip. In
some situations, however, we cannot afford to output the wrong answer with such high probability,
and would rather settle for a measurement that sometimes claims ignorance, but that is usually
correct in the case where it does give an output.

To illustrate this, suppose the states involved are the following pure states:

|α0〉 =
√
a|0〉+

√
1− a|2〉

|α1〉 =
√
a|1〉+

√
1− a|2〉

If we cannot afford to make a mistake at all, it is clear what measurement we should apply: measure
in the computational basis, and if the outcome is 0 the state must have been α0; if the outcome is
1 the state must have been α1; if the outcome is 2 we claim ignorance. Note that the probability
of getting an answer (0 or 1) for the identification problem is now only a. We have thus increased
our confidence in the answer, at the expense of decreasing the probability of getting an answer at
all. Now consider a slightly more “fudged” example, for some small ε:

|α0〉 =
√

(1− ε)a|0〉+√
εa|1〉+

√
1− a|2〉

|α1〉 =
√
εa|0〉+

√

(1− ε)a|1〉+
√
1− a|2〉

If we apply the same procedure as before, we have now a small probability of error: on both states
our measurement outputs a guess (0 or 1) with probability a, and if we output a guess, then that
guess is wrong with probability only ε. If ε is sufficiently small, this may still be acceptable for
many applications.

More generally, let A be some classical random variable, and B be another random variable
whose range includes the special symbol ‘?’. We call B an (a, ε)-predictor for A if Pr[B 6= ?] ≥ a
and Pr[A = B | B 6= ?] ≥ 1 − ε. For example, the above measurement applied to state αX where
X is a random bit, gives us an (a, ε)-predictor for X if we interpret output 2 as ‘?’. Motivated by
the above examples—and by our applications in later sections—we define the bounded-error state
identification problem:

Given a register containing αX , with X a uniformly random bit, and an ε > 0, what
is the maximal a for which there exists a quantum measurement on the register whose
outcome is an (a, ε)-predictor for X?

We use Dε(α0, α1) to denote the maximal value a. We stress again that the error probability is
a conditional probability, conditioned on actually outputting a guess for the bit (0 or 1). Unlike
the straightforward distinguishing problem, where the optimal success probability is determined
by the trace distance ‖α0 − α1‖tr, we do not know of any simple metric on density matrices that
determines the value Dε(α0, α1). However, as was also noted by Eldar [11], one can easily express
quantities like this as the optimal value of a semidefinite program, as we will do in Section 3.2.

Now suppose we are given another identification problem in a second register, quantum state
βY for a random bit Y , and suppose b = Dε(β0, β1) is the largest value for which we can obtain a
(b, ε)-predictor for Y . We now want to determine the optimal probability with which we can identify
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(again with error at most ε or something related) both states simultaneously. That is, what is the
maximal probability p = Dε(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) such that a joint measurement on
αX ⊗ βY gives us a (p, ε)-predictor for XY ? Since the two registers are completely independent, it
seems there is nothing much better we can do except applying the optimal measurement for both
registers separately.1 Thus our intuition suggests that p ≤ ab, or at least p ≤ O(ab). This problem
has a flavor similar to “direct product theorems” in computational complexity theory, where one
is usually interested in k ≥ 2 independent instances of some computational problem, and the aim
is to show that the overall success probability of some algorithm for the k-fold problem is close to
the product of the k individual success probabilities. Another problem with a similar flavor is the
notoriously hard quantum information theory issue of multiplicativity of norms of superoperators
under tensor product [16].

Proving our intuition actually turned out to be quite a hard problem, and we indicate some
reasons why in Section 3.1. In an earlier preprint [13] we were only able to prove it for ε = 0, which
was then used by us in [13] and [12] to obtain various zero-error separations in communication
complexity. The present paper supersedes all of these unpublished results and gives in Section 3
the first proof of the p ≤ O(ab) bound for the case where at least one of the two sides is pure (i.e.,
α0 and α1 are both pure, or β0 and β1 are both pure). More precisely, we show

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) ≤ O(Dε(α0, α1) ·Dε(β0, β1)). (1)

Notice that because of the ε/2 on the left hand side, this bound is slightly weaker than what we
have promised; as we indicate in Section 3.1, this modification is (somewhat surprisingly) necessary.
Our proof relies heavily on a semidefinite programming formulation for the quantities involved and
on an analysis of their duals.

1.2 Exponential separations in communication complexity

Apart from being an interesting information theoretic problem in its own right, the bounded-error
state identification problem and our direct product theorem have interesting applications. We
give two new exponential separations, both in the simultaneous message passing (SMP) model
of communication complexity. The area of communication complexity deals with the amount of
communication required for solving computational problems with distributed input. This area is
interesting for its own sake, but also has many applications to lower bounds on circuit size, data
structures, etc. The simultaneous message passing (SMP) model involves three parties: Alice, Bob,
and a referee. Alice gets input x, Bob gets input y. They each send one message to the referee,
to enable him to compute something depending on both x and y, such as a Boolean function or
some relational property. The cost or complexity of a communication protocol is the length of the
total communication for a worst-case input, and the complexity of a problem is the cost of the best
protocol that solves our problem with small error probability.

The SMP model is arguably the weakest setting of communication complexity that is still in-
teresting. Even this simple setting is not well understood. In the case of deterministic protocols,
the optimal communication is determined by the number of distinct rows (and columns) in the
communication matrix, which is a simple property. However, as soon as we add randomization to
the model things become much more complicated. For one, we can choose to either add shared
(a.k.a. public) or private randomness. In other communication models this difference affects the
optimal communication by at most an additive O(log n) [22], but in the SMP model the difference
can be huge. For example, the equality function for n-bit strings requires about

√
n bits of com-

munication if the parties have only private randomness [1, 23, 2], but only constant communication
1This actually gives slightly worse error 2ε− ε2 for the prediction of XY , so potentially it could be that p ≪ ab.
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with shared randomness! No simple characterization of SMP communication complexity with either
private or shared randomness is known.2

The situation becomes more complicated still when we throw in quantum communication.
Buhrman et al. [8] exhibited a quantum protocol for the equality function with O(log n) qubits
of communication. This is exponentially better than classical private-randomness protocols, but
slightly worse than shared-randomness protocols. Roughly speaking, their quantum fingerprinting
technique may be viewed as replacing the shared randomness by a quantum superposition.

1.2.1 Shared randomness beats quantum communication

The fingerprinting idea of [8] was generalized by Yao [28], who showed that every classical shared-
randomness protocol with c-bit messages for a Boolean function can be simulated by a quantum
fingerprinting protocol that uses O(24c log n) qubits of communication. This has since been im-
proved to O(22c log n) qubits [13, 14]. In particular, every O(1)-bit shared-randomness protocol
can be simulated by an O(log n)-qubit quantum protocol. Again, quantum superposition replaces
shared randomness in this construction.

This raises the question whether something similar always holds in the SMP model: can every
classical shared-randomness protocol be efficiently simulated by some protocol that sends qubits
but shares neither randomness nor entanglement? Since the appearance of Yao’s paper, quite a
number of people have tried to address this. Our first result, presented in Section 4, gives a neg-
ative answer to this question. Suppose Alice receives inputs x, s ∈ {0, 1}n with the property that
s has Hamming weight n/2 and Bob receives input y ∈ {0, 1}n. The referee should output, with
probability at least 1 − ε, a triple (i, xi, yi) for an i satisfying si = 1. We prove that protocols
where Alice and Bob share randomness can solve this task with O(log n) classical bits of commu-
nication, while every bounded-error quantum protocol without shared randomness needs Ω(n1/3)
qubits of communication. The quantum lower bound relies crucially on our direct product theorem
for bounded-error state identification. This shows for the first time that the resource of shared
randomness cannot be efficiently traded for quantum communication.

Yao’s exponential simulation can be made to work for relations as well, and our quantum lower
bound shows that it is essentially optimal, since the required quantum communication is expo-
nentially larger than the classical shared-randomness complexity for our relational problem. We
expect a similar gap to hold for (promise) Boolean functions as well. Our separation complements
a separation in the other direction: Bar-Yossef et al. [3] exhibited a relation where quantum SMP
protocols are exponentially more efficient than classical SMP protocols even with shared random-
ness (also in their case it is open whether there is a similar gap for a Boolean function). Accordingly,
the quantum SMP model is incomparable with the classical shared-randomness SMP model.

1.2.2 Shared entanglement beats quantum communication with shared randomness

The second application of our state identification result is again in the SMP model. While the
previous application separated classical protocols with shared randomness from quantum protocols
without shared randomness, this one separates classical protocols with entanglement (EPR-pairs,
2-qubit states of the form 1

2(|00〉 + |11〉)) from quantum protocols with shared randomness.
The additional power that prior entanglement gives is one of the most fundamental questions in

quantum communication complexity. This additional power is not well understood. We basically
know two ways in which entanglement can help: it can be used for teleportation (where one

2Kremer et al. [18] claimed a characterization of shared-randomness complexity as the largest of the two one-way
complexities, but Bar-Yossef et al. [4, Section 4] exhibited a function where their characterization fails.
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EPR-pair and two classical bits of communication replace one qubit of communication) and it
can be used for shared randomness (if Alice and Bob each measure their side of their shared
EPR-pair in the computational basis, they get the same random bit). Neither saves very much
communication, and it has in fact been conjectured for the standard two-party one-round and
many-round protocols that the model of classical communication with entanglement [9] and the
model of quantum communication without entanglement [27] are essentially equivalent.

Our second separation shows that the situation is very different in the simultaneous message
passing model. We show that the qubit-communication model cannot efficiently simulate the entan-
glement model. In Section 5 we exhibit a relational problem, inspired by the problem of Bar-Yossef
et al. mentioned above, that can be solved with log n EPR-pairs shared between Alice and Bob
and O(log n) classical bits of communication. In contrast, if only shared randomness is available
instead of entanglement, every bounded-error SMP protocol needs Ω((n/ log n)1/3) quantum bits
of communication. Again, our direct product theorem is crucial for proving the quantum lower
bound. This is the first example of a communication problem where entanglement is much more
useful than quantum communication.

2 Preliminaries

2.1 Quantum computing

The essentials needed for this paper are quantum states and their measurement. First, an m-qubit
pure state is a superposition |φ〉 =

∑

z∈{0,1}m αz|z〉 over all classical m-bit states. The αz’s are

complex numbers called amplitudes, and
∑

z |αz|2 = 1. Hence a pure state |φ〉 is a unit vector
in C

2m. Its complex conjugate (a row vector with entries conjugated) is denoted 〈φ|. The inner
product between |φ〉 and |ψ〉 =∑z βz |z〉 is the dot product 〈φ| · |ψ〉 = 〈φ|ψ〉 =∑z α

∗
zβz. The norm

of a vector v is ‖v‖ =
√

〈v|v〉. Second, a mixed state ρ =
∑

i pi|φi〉〈φi| corresponds to a probability
distribution over pure states, where |φi〉 is given with probability pi. A k-outcome positive operator-
valued measurement (POVM) is given by k positive semidefinite operators E1, . . . , Ek with the
property that

∑k
i=1Ei = I. When this POVM is applied to a mixed state ρ, the probability of the

i-th outcome is given by the trace Tr[Eiρ]. We refer to Nielsen and Chuang [24] for more details.

2.2 Communication complexity

We now give a somewhat informal description of the simultaneous message passing model discussed
in our two applications. For a more formal description, we refer to Kushilevitz and Nisan [19] for
classical communication complexity and to the surveys [17, 6, 26] for the quantum variant. In the
simultaneous message passing model, Alice receives input x, Bob receives input y, they each send
a message to a referee who should then output either f(x, y) in the case of a functional problem,

or an element from some set R(x, y) in the case of a relational problem. We use R
‖
ε(P ), R

‖,pub
ε (P ),

R
‖,ent
ε (P ) to denote, respectively, the optimal communication complexity of classical protocols that

solve problem P with worst-case error probability ε, using, respectively, private randomness, shared
randomness between Alice and Bob, and shared entanglement between Alice and Bob (EPR pairs).
The number of shared coin flips or shared EPR-pairs is unlimited and does not count towards the

communication cost of the protocol. We use Q
‖
ε(P ), Q

‖,pub
ε (P ), Q

‖,ent
ε (P ) for the variety that allows

quantum communication.
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2.3 The random access code argument

Here we will describe a slight extension of a quantum information theory argument due to Ashwin
Nayak [21] that we will apply several times in our communication complexity lower bounds. We
call this the “random access code argument”. In the following, we assume familiarity with basic
classical information theory [10] and quantum information theory [24].

Lemma 1 [“Random Access Code Argument”] Let X = X1 . . . Xn be a classical random variable
of n uniformly distributed bits. Suppose for each instantiation X = x we have a quantum state Mx

of q qubits. Suppose also that for each i ∈ [n] of our choice we can apply a quantum measurement
to MX whose outcome is a (λi, εi)-predictor for Xi. Then

n
∑

i=1

λi(1−H(εi)) ≤ q.

Before giving the proof, notice the following special case: if we can predict each Xi with bias ηi
(i.e., we have a (1, 1/2 − ηi)-predictor), then the above bound becomes

n
∑

i=1

(1−H(1/2− ηi)) ≤ q.

Since 1−H(1/2 − ηi) = Θ(η2i ), the left hand side is essentially the sum of squares of the ηi.

Proof: First, let Y be a classical random variable corresponding to a uniformly distributed bit.
Let B be another random variable that is a (λ, ε)-predictor of Y . Using H(Y | B,B 6= ?) ≤ H(ε)
and Pr[B 6= ?] ≥ λ, we can upper bound the entropy of Y given B:

H(Y | B) = Pr[B = ?] ·H(Y | B,B = ?) + Pr[B 6= ?] ·H(Y | B,B 6= ?)

≤ (1− Pr[B 6= ?]) · 1 + Pr[B 6= ?] ·H(ε) ≤ 1− λ(1−H(ε)),

and hence lower bound the mutual information between Y and B:

I(Y : B) = H(Y )−H(Y | B) ≥ λ(1−H(ε)).

Now let Bi be the outcome of the measurement corresponding to i applied to MX . We have

S(Xi :MX) ≥ I(Xi : Bi) ≥ λi(1−H(εi))

by Holevo’s theorem [15] (the left hand side is equal to the Holevo χ-quantity).
Using [24, Theorem 11.8.5] we have

S(X :MX) = S(X) + S(MX)− S(X,MX ) = S(MX)− 1

2n

∑

x∈{0,1}n
S(Mx) ≤ S(MX) ≤ q.

Abbreviating X1:i−1 = X1 . . . Xi−1, a chain rule for mutual information gives

S(X :MX) =
n
∑

i=1

S(Xi :MX | X1:i−1).

Using strong subadditivity and the fact that S(Xi | X1:i−1) = S(Xi) we get

S(Xi :MX | X1:i−1) = S(Xi | X1:i−1)− S(Xi |MXX1:i−1) ≥ S(Xi)− S(Xi |MX) = S(Xi :MX).

Combining our inequalities gives the desired lower bound on q.
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3 Bounded-error quantum state identification: Direct product

3.1 Why this is delicate and non-trivial

We briefly recall the 2-register state identification problem from the introduction. In the first
register we are given a quantum state αX , with X a random bit, and the optimal probability with
which we can get an ε-predictor for X is a. In the second register we’re given βY , with Y a random
bit, and the optimal probability with which we can get an ε-predictor for Y is b. We now want to
know the optimal probability p with which a joint measurement on both registers can obtain an
ε-predictor for XY . As mentioned in the introduction, intuition suggests that p ≤ O(ab). Before
proceeding to prove a slightly weaker form of this statement (namely the special case where α0

and α1 are pure), we will pause to sketch two variants of the problem where the same intuition
is provably false, even for pure states! This points to the subtleness of the state identification
problem: seemingly small changes to the setup change everything.

First, suppose that instead of an ε-predictor for XY we want an ε-predictor for the parity X⊕Y
of the two bits. This might be slightly easier than getting both bits separately, but intuition still
suggests that because both registers are independent, the best we can do is predict both registers
separately and output their parity if both measurements gave an answer. So we expect p ≤ O(ab).
However, this intuition is false. Consider the following counterexample, with δ very small:

|α0〉 = |β0〉 = |0〉
|α1〉 = |β1〉 =

√
1− δ2|0〉+ δ|1〉

It is not hard to convince oneself3 that for any fixed ε < 1/2, the optimal a and b are Θ(δ2),
so our intuition suggests p ≤ O(ab) = O(δ4) for the parity problem. However, if we apply the
measurement with operator E0 that projects onto the state 1√

2+δ2
(δ|00〉− |01〉− |10〉), E1 = 0, and

E? = I − E0, then on the parity-0 inputs α0 ⊗ β0 and α1 ⊗ β1 the measurement gives outcome 0
with probability roughly δ2, while on the parity-1 inputs it gives outcome 0 with probability only
about δ6 ≪ εδ2. Thus, in this example p is of the same order as a and b instead of their product.

In our second example, we return to the original setting where we want to obtain a predictor
for XY (not their parity). We consider the case where in the left hand side of Eq. (1) from the
introduction we replace ε/2 with a slightly larger error parameter. Surprisingly, we show that in
this case the bound p ≤ O(ab) is false. Choose ε to be, say, 0.49, and replace ε/2 in the left
hand side of (1) with something slightly larger, say, 0.251.4 To construct this example, we use
the same states as in the previous example. For our choice of ε, we still have a, b = Θ(δ2). Now
consider the measurement where operator E00 projects onto the state 1√

8/9+δ2
(δ|00〉− 2

3 |01〉− 2
3 |10〉),

E01 = E10 = E11 = 0, and E? = I − E00. Then on the state α0 ⊗ β0 we get outcome 00 with
probability roughly 9δ2/8, while on each of the other three states this probability is roughly δ2/8.
Conditioned on outputting an answer, our error probability is roughly (3/8)/(9/8 + 3/8) = 1/4, so
we obtain a 0.251-predictor for XY . We see that again, contrary to our intuition, p is of the same
order as a and b.

Finally, to get a better feel for this problem and for why it is non-trivial, let us consider the
classical case. This is the special case of the problem in which all states involved are classical
probability distributions. In other words the density matrices α0, α1 are diagonal in the same basis
and similarly for β0, β1.

5 In this case, one can give a characterization of the optimal measurement.
Let α0 (resp., α1) correspond to some probability distribution on n elements with probabilities

3A rigorous proof can be obtained from the SDP formulation of this problem.
4With some effort, this example can be generalized to other values of ε.
5This is related to optimal detector design, see e.g. [25], Section 7.3.
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p1, . . . , pn (resp., q1, . . . , qn). Assume without loss of generality that the n elements are sorted by
non-increasing order of max{pi/(pi + qi), qi/(pi + qi)}. For any k ≥ 1, consider the measurement
that maps the outcome i for 1 ≤ i ≤ k to either 0 if pi > qi or 1 otherwise, and maps any outcome
i > k to ‘?’. This means that for each i ≤ k we output the guess (α0 or α1) that is more likely,
conditioned on i. Note that max{pi/(pi+ qi), qi/(pi+ qi)} represents the probability that our guess
is correct, given i. Then, for any error parameter ε, one can show that the best measurement is
obtained by taking k as large as possible while still keeping the error probability of the resulting
measurement below ε.6

Now assume we have probability distributions α0, α1, β0, β1 (equivalently, diagonal matrices) and
we want to predict XY based on a sample from αX ⊗βY (the tensor can be described classically as
one sample from αX together with one independent sample from βY ). The optimal measurement
in the two-register case can be obtained by a straightforward generalization of the measurement
we have described in the single register case. As mentioned in the introduction, one might expect
the optimal measurement to use the first register to predict X and the second register to predict Y
separately, i.e., to be a tensor product measurement. It is perhaps somewhat surprising that this
is not true in general, as can be seen using some simple examples. The intuitive reason for this is
that if a sample (i, j) from αX ⊗ βY is such that i gives a very strong indication of (say) α0, then
we might be willing to predict the state α0 ⊗ β0 even if j gives only a weak indication of β0.

Nevertheless, the direct product theorem of Eq. (1) does hold in the classical case, even when
we replace ε/2 with ε. One proof of this is based on a similar approach to the one we will take in
the quantum case: first, formulate the problem in terms of linear programs (which are very similar
to the semidefinite programs that arise in the quantum case) and then bound the dual solution of
the joint system. Bounding the dual solution is the most demanding step technically, and amounts
to solving some inequalities on real numbers. In the general quantum case, this step involves some
(rather nasty) matrix inequalities that seem quite difficult to solve. In the special case that we
consider below, these matrix inequalities turn out to have a sufficiently nice form to be analyzed.

3.2 Proof of the direct product theorem

In this section we prove our main results about the 2-register quantum state identification problem.
We use the powerful technique of semidefinite programming duality. For details on semidefinite
programming, see e.g. [20, 25]. We will actually prove two bounds. First, for the case where α0,
α1 are pure and β0, β1 are unrestricted, our Theorem 1 implies

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) ≤ O(Dε(α0, α1) ·Dε(β0, β1)). (2)

Second, if we allow all of α0, α1, β0, β1 to be mixed states then our Corollary 1 gives

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) ≤ O(‖α0 − α1‖tr ·Dε(β0, β1)).

The second bound will follow from the first by purifying the mixed states α0 and α1.
Let us first characterize Dε(α0, α1). Recall that any measurement whose outcome is an (a, ε)-

predictor outputs the correct answer with probability at least 1 − ε conditioned on outputting a
guess (0 or 1, but not ?). Denote the three measurement operators by E0, E1, E?. Then we require

ε ≥ Pr[wrong guess | guess] = Pr[wrong guess]

Pr[guess]
=

1
2Tr[E0α1] +

1
2Tr[E1α0]

Tr [(E0 + E1)α]
, (3)

6To be precise, we should also allow non-integer k in the sense that when the outcome is ⌈k⌉, one should output
either 0 or 1 (depending on whether p⌈k⌉ > q⌈k⌉) with probability k − ⌊k⌋ and ‘?’ otherwise.
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where α = 1
2 (α0 + α1) is the average state. To our knowledge there is no simple expression for

Dε(α0, α1) in terms of α0 and α1. However, one can easily express it as a solution to a semidefinite
program (SDP). For fixed density matrices α0, α1 and fixed ε ∈ [0, 1/2), the optimal value a =
Dε(α0, α1) is given by the following SDP:

maximize Tr[(E0 + E1)α]
subject to 0 � E0, E1,

E0 + E1 � I,
1
2Tr[E0α1] +

1
2Tr[E1α0] ≤ εTr[(E0 +E1)α].

(4)

The first two constraints state that the operators E0, E1 together with a third operator E? =
I −E0 −E1 form a valid quantum measurement. The last constraint bounds the conditional error
probability, as in Eq. (3). An analogous SDP can be written for b = Dε(β0, β1).

Similarly we can write the primal SDP that optimizes p = Dε(α0⊗β0, α0⊗β1, α1⊗β0, α1⊗β1):

maximize Tr[(E00 + E01 +E10 +E11)α⊗ β]
subject to 0 � E00, E01, E10, E11,

E00 + E01 + E10 + E11 � I,
1
4Tr [(E01 + E10 + E11)α0 ⊗ β0 + (E00 + E10 + E11)α0 ⊗ β1+

(E00 + E01 + E11)α1 ⊗ β0 + (E00 + E01 + E10)α1 ⊗ β1]
≤ εTr[(E00 + E01 + E10 + E11)α⊗ β].

(5)

Here α⊗ β = 1
4(α0 ⊗ β0 + α0 ⊗ β1 + α1 ⊗ β0 + α1 ⊗ β1) is the average state.

Theorem 1 Let 0 ≤ ε < 1
2 and α0, α1, β0, β1 be density matrices, where α0, α1 correspond to pure

states |α0〉, |α1〉. Let b = Dε(β0, β1) and p = Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1). Then

p ≤ 16(1 − |〈α0|α1〉|2) · b.

Since α0 and α1 are pure, a = Dε(α0, α1) ≥ D0(α0, α1) ≥ 1
2 (1−|〈α0|α1〉|2), where the last inequality

follows by considering the projective measurement on |α0〉 and |α⊥
0 〉. Hence this theorem implies

Eq. (2).

Proof: The idea behind our proof is the following. As we observed before, both b and p are the
solution of an SDP and so any feasible solution of the corresponding dual SDP yields an upper
bound to b resp. p. We will show that a feasible solution with value db ≥ b for the dual for b can
be used to construct a feasible solution with value 16(1 − |〈α0|α1〉|2) · db for the dual for p. This
value then upper bounds p. The dual SDP for b is strictly feasible in our case, which means that
we can make db as close to b as we want. This implies the theorem.

Let δ :=
√

1− |〈α0|α1〉|2. Then we want to show p ≤ 16δ2b. The dual SDP for b is

minimize Tr[Xb]
subject to Xb � 0, zb ≥ 0,

Xb � 1
2 ((1 + εzb)β0 + (1− (1− ε)zb)β1) =: X1,

Xb � 1
2 ((1 + εzb)β1 + (1− (1− ε)zb)β0) =: X2.

(6)

This SDP is strictly feasible, for example, zb =
1
2 ,Xb = 2I is a strictly feasible solution. Hence by

strong duality its optimal value is exactly b.
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The dual SDP for p is

minimize Tr[X]
subject to X � 0, z ≥ 0,

X � 1
4

({

(1 + ε
2z)α0 + (1− (1− ε

2 )z)α1

}

⊗ β0 + (1− (1− ε
2)z)(α0 + α1)⊗ β1

)

=: X ′
1,

X � 1
4

({

(1 + ε
2z)α0 + (1− (1− ε

2 )z)α1

}

⊗ β1 + (1− (1− ε
2)z)(α0 + α1)⊗ β0

)

=: X ′
2,

X � 1
4

({

(1 + ε
2z)α1 + (1− (1− ε

2 )z)α0

}

⊗ β0 + (1− (1− ε
2)z)(α0 + α1)⊗ β1

)

=: X ′
3,

X � 1
4

({

(1 + ε
2z)α1 + (1− (1− ε

2 )z)α0

}

⊗ β1 + (1− (1− ε
2)z)(α0 + α1)⊗ β0

)

=: X ′
4.

(7)
For what follows we need to define the positive part of a Hermitian matrix. Any Hermitian matrix
A can be written uniquely as A = A+ −A−, where A+, A− are positive semidefinite (A+, A− � 0)
and have orthogonal support. Then define Pos(A) = A+. We need the following simple properties:

Claim 1 1. If A � B then A � Pos(B).

2. If A � 0 then Pos(A⊗B) = A⊗ Pos(B).

3. If A � B then Tr[Pos(A)] ≤ Tr[Pos(B)].

Note that it is not true that if A � B then Pos(A) � Pos(B).

Proof: The first part follows from B � Pos(B). The second part can be seen by diagonalizing the
matrices (note that the non-zero eigenvalues of Pos(B) are exactly the positive eigenvalues of B).
The third part can be seen for instance by using majorization (see e.g. [5]). If A � B, then the
vector of eigenvalues of A is submajorized by the vector of eigenvalues of B ([5], Eq. (II.16), Ky Fan
Maximum Principle). This means that if we order the eigenvalues of A (resp. B) as λ1 ≥ λ2 ≥ . . .
(resp. µ1 ≥ µ2 ≥ . . .) then for all k ≥ 1,

∑k
i=1 λi ≤

∑k
i=1 µi. Together with the fact that the trace

of Pos(A) is the sum of the positive eigenvalues of A, the property follows.

We also need the following technical claim, which we will prove afterwards:

Claim 2 Let 0 ≤ ε < 1/2 and σ0, σ1, ρ0, ρ1 be density matrices, where ρ0 and ρ1 are 2-dimensional
of rank 1 (i.e., pure states). Denote by ρ⊥1 = I − ρ1 the rank 1 density matrix whose support is
orthogonal to that of ρ1. Then for all zb ≥ 0 there exists z = z(ε, zb) ≥ 0 such that

4δ2ρ⊥1 ⊗
1

2
{(1 + εzb)σ0 + (1− (1− ε)zb)σ1}

� 1

4

({

(1 +
ε

2
z)ρ0 + (1− (1− ε

2
)z)ρ1

}

⊗ σ0 + (1− (1− ε

2
)z)(ρ0 + ρ1)⊗ σ1

)

.

Fix a dual solution (Xb, zb) for (6). Our goal is to find a feasible solution (X, z) to (7) such that
Tr[X] ≤ 16δ2Tr[Xb]. Since |α0〉 and |α1〉 are pure states, we can assume without loss of generality
that they are in a two dimensional space, and therefore we can apply Claim 2 with ρ0 = α0, ρ1 = α1,
σ0 = β0 and σ1 = β1. Let

Y1 = 4δ2α⊥
1 ⊗ 1

2
{(1 + εzb)β0 + (1− (1− ε)zb)β1} = 4δ2α⊥

1 ⊗X1.

Claim 2 gives a z = z(ε, zb) such that Y1 � X ′
1 (see (7) for the definition of X ′

1). Note that because
α⊥
1 � 0 we can use Claim 1.2:

Pos(Y1) = 4δ2α⊥
1 ⊗ Pos

1

2
{(1 + εzb)β0 + (1− (1− ε)zb)β1} = 4δ2α⊥

1 ⊗ Pos(X1).
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Because α⊥
1 � 0, Tr[Pos(Y1)] = 4δ2Tr[Pos(X1)]. Moreover, X1 � Xb by definition (see (6)) and

Xb = Pos(Xb), hence Tr[Pos(Y1)] ≤ 4δ2Tr[Pos(Xb)] = 4δ2Tr[Xb] (using Claim 1.3).
However, Pos(Y1) is not a solution of the dual SDP in (7) because it need not satisfy the

last three inequalities. We construct three more matrices Y2, Y3 and Y4 such that Yi � X ′
i for

the same z as before. For this we apply Claim 2 three more times (for Y2 = 4δ2α⊥
1 ⊗ X2 with

(ρ0, ρ1, σ0, σ1) = (α0, α1, β1, β0), for Y3 = 4δ2α⊥
0 ⊗X1 with (ρ0, ρ1, σ0, σ1) = (α1, α0, β0, β1) and for

Y4 = 4δ2α⊥
0 ⊗X2 with (ρ0, ρ1, σ0, σ1) = (α1, α0, β1, β0)). Because z depends only on zb and ε, which

are the same in all four applications, we obtain each time the same z. Now defineX =
∑4

i=1 Pos(Yi).
Clearly (X, z) is a feasible solution to the SDP (7) since X � 0 by definition and X � Pos(Yi) � X ′

i

for i = 1 . . . 4 (using Claim 1.1). But Tr[X] =
∑4

i=1 Tr[Pos(Yi)] ≤ 16δ2Tr[Xb]. As Tr[X] is an upper
bound on p, and Tr[Xb] can be made arbitrarily close to b, this implies the theorem.

Proof of Claim 2: Because σ0 and σ1 are positive semidefinite, it suffices to find a z ≥ 0 for
which the equations

4δ2ρ⊥1
1

2
(1 + εzb) �

1

4

{

(1 +
ε

2
z)ρ0 + (1− (1− ε

2
)z)ρ1

}

(8)

and

4δ2ρ⊥1
1

2
(1− (1− ε)zb) �

1

4
(1− (1− ε

2
)z)(ρ0 + ρ1) (9)

are true.
Let |ρ0〉, |ρ1〉 and |ρ⊥1 〉 be pure states whose density matrices are ρ0, ρ1 and ρ⊥1 . We choose their

global phase such that |ρ0〉 =
√
1− δ2|ρ1〉+ δ|ρ⊥1 〉. Then, in the basis given by |ρ1〉, |ρ⊥1 〉, Eqs. (8)

and (9) become

(

−(1 + ε
2z)(1 − δ2)− (1− (1− ε

2 )z) −δ
√
1− δ2(1 + ε

2z)

−δ
√
1− δ2(1 + ε

2z) 8δ2(1 + εzb)− δ2(1 + ε
2z)

)

=

(

z(1 − ε+ δ2 ε
2 ) + δ2 − 2 −δ

√
1− δ2(1 + ε

2z)

−δ
√
1− δ2(1 + ε

2z) δ2(7 + 8εzb − ε
2z)

)

� 0 (10)

and
(

−(1− (1− ε
2)z)(2 − δ2) −δ

√
1− δ2(1− (1− ε

2)z)

−δ
√
1− δ2(1− (1− ε

2)z) 8δ2(1− (1− ε)zb)− δ2(1− (1− ε
2 )z)

)

=

(

((1 − ε
2)z − 1)(2− δ2) δ

√
1− δ2((1 − ε

2 )z − 1)

δ
√
1− δ2((1 − ε

2)z − 1) δ2(7− 8(1− ε)zb + (1− ε
2 )z)

)

� 0 (11)

To show that a 2 × 2 Hermitian matrix is positive semidefinite it suffices to show that both its
determinant and at least one of its diagonal entries are positive. We choose

z = 16
1− ε

1 − ε/2
zb +

4

1− ε
.

Since z ≥ 4, the upper diagonal entries of the matrices in Eqs. (10) and (11) are positive. Moreover,
if δ = 0 these matrices are trivially positive. If δ > 0 then we can cancel δ2 > 0 from both terms
that appear in their determinants. Hence, for Eqs. (10) and (11) to be true it suffices to show

(

z(1 − ε)− 2
)

(7 + 8εzb −
ε

2
z)− (1 +

ε

2
z)2 > 0 (12)
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and

(2− δ2)((1− ε

2
)z − 1)(7 − 8(1 − ε)zb + (1− ε

2
)z)− (1− δ2)((1− ε

2
)z − 1)2 > 0. (13)

To derive Eq. (12) we have replaced the term z(1 − ε + δ2 ε
2) + δ2 − 2 by the smaller positive

term z(1 − ε) − 2, which is legal because this equation is only true if 7 + 8εzb − ε
2z > 0. Using

(2− δ2)/(1 − δ2) ≥ 2 and (1− ε
2)z − 1 > 0, Eq. (13) is implied by

2(7 − 8(1− ε)zb + (1− ε

2
)z) > (1− ε

2
)z − 1

which is equivalent to

z > 16zb
1− ε

1− ε
2

− 15

1− ε
2

.

This inequality is true for our choice of z. It remains to show that our z satisfies Eq. (12).
Substituting for z we see that the quadratic term in zb cancels and we obtain

(

17− 4

(1− ε)2

)

+ 16zb

( 7

1− ε
2

− 17ε
)

> 0.

This linear inequality is satisfied (for zb ≥ 0) because both its constant coefficient and the coefficient
of zb are positive for 0 ≤ ε < 1

2 .

Using this result, we can as a corollary also prove a second, “asymmetric” direct product theorem
when α0, α1 and β0, β1 are all mixed states:

Corollary 1 Let 0 ≤ ε < 1
2 and α0, α1, β0, β1 be density matrices. Let a = ‖α0 − α1‖tr, b =

Dε(β0, β1), and p = Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1). Then p ≤ 32 a · b.

Proof: The idea is to work with purifications of α0 and α1. By Uhlmann’s theorem [24, p.410] there
exist purifications |α̃0〉 and |α̃1〉 that preserve the fidelity, i.e., F (α0, α1) = F (|α̃0〉, |α̃1〉) = |〈α̃0|α̃1〉|.
Using known properties of the fidelity [24, Section 9.2.3], we have

F (α0, α1) ≥ 1− ‖α0 − α1‖tr = 1− a.

This implies 1− |〈α̃0|α̃1〉|2 ≤ 2a. Let α̃i = |α̃i〉〈α̃i|. Then,

p = Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) ≤ Dε/2(α̃0 ⊗ β0, α̃0 ⊗ β1, α̃1 ⊗ β0, α̃1 ⊗ β1)

because one can obtain α0, α1 by tracing out the purification degrees of freedom of α̃0, α̃1. Theo-
rem 1 now gives p ≤ 16(1 − |〈α̃0|α̃1〉|2) · b ≤ 32 a · b.

4 Shared randomness can be exponentially stronger than quan-

tum communication

4.1 The problem

In this section we analyze the following communication problem P1 in the SMP model:
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Alice’s input: strings x, s ∈ {0, 1}n, with Hamming weight |s| = n/2
Bob’s input: a string y ∈ {0, 1}n
Goal: the referee should output (i, xi, yi) for some i such that si = 1

We allow the referee some small constant error probability ε < 1/8. In the next two subsections we
show that this problem is easy if we have classical communication and shared randomness, and hard
if we have quantum communication without shared randomness. More precisely, we will prove:

Theorem 2 For the relational problem P1 defined above we have

R‖,pub
ε (P1) ≤ O(log n) and Q‖

ε(P1) ≥ Ω(n1/3).

4.2 Upper bound with classical communication and shared randomness

Shared randomness gives the parties enough coordination to easily solve this problem. Alice and
Bob just send (i, xi, si) and (i, yi), respectively, to the referee for log(1/ε) public random i’s. With
probability 1 − ε, si = 1 for at least one of those i’s and the referee outputs the corresponding
(i, xi, yi). With probability ε he doesn’t see an i for which si = 1, in which case he outputs

something random. Hence R
‖,pub
ε (P ) ≤ O(log n log(1/ε)).

4.3 Lower bound for quantum communication with private randomness

Consider some quantum protocol that solves our problem with error probability ε < 1/8, and where
the messages that Alice and Bob send to the referee are at most q qubits long. Our goal is to show
q ≥ Ω(n1/3).

First consider the mixed state message βy that Bob sends given input y. For i ∈ [n], let

βi0 =
1

2n−1

∑

y:yi=0

βy

be the uniform mixture of all βy with yi = 0 and define βi1 similarly. Let bi = D4ε(βi0, βi1). Then
by the random access code argument (Lemma 1) we have

n
∑

i=1

bi(1−H(4ε)) ≤ q.

By Markov’s inequality, there is a set S of n/2 i’s such that bi ≤ 2q/n(1−H(4ε)) ≤ O(q/n) for all
i ∈ S. We now fix Alice’s input s to be the n-bit string with support corresponding to S.

We now analyze Alice’s message. Let αx be the mixed state she sends given input x and
our fixed s. Define αi0 as the uniform mixture of all αx with xi = 0, similarly define αi1, and
ai = ‖αi0 − αi1‖tr. The optimal probability with which we can distinguish αi0 from αi1 is 1

2 + ai
2 .

The random access code argument gives

n
∑

i=1

a2i ≤ O(q).

Now we look at the protocol’s behavior. Let X = X1 . . . Xn and Y = Y1 . . . Yn be uniformly
distributed random variables giving Alice’s first and Bob’s only input, and I, B1, B2 be the random
variables describing the referee’s output. We call an index i ∈ [n] good, if the protocol is correct
with high probability when it outputs (i, ∗, ∗):
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i is good iff i ∈ S and Pr[B1 = Xi, B2 = Yi | I = i] ≥ 1− 2ε.

The index is called bad otherwise. Define pi = Pr[I = i] to be the probability that the referee
outputs something of the form (i, ∗, ∗). Because the protocol is correct with probability at least
1− ε, a Markov argument shows that the good indices must together have most of the probability:

1− ε ≤
∑

good i

pi +
∑

bad i

(1− 2ε)pi = 1− 2ε+ 2ε
∑

good i

pi,

hence
1

2
≤
∑

good i

pi.

Notice that for each good i we can use the protocol to get a (pi, 2ε)-predictor for XiYi: just run the
protocol and return ‘?’ if the protocol’s output is not of the form (i, ∗, ∗), and otherwise return the
last two bits of the protocol’s output. Therefore Corollary 1 implies pi ≤ O(aibi). Also, bi ≤ O(q/n)
for all good i so we can bound

1

2
≤
∑

good i

pi ≤
∑

good i

O(aibi) ≤ O

(

q

n

n
∑

i=1

ai

)

≤ O





q

n

√

√

√

√n
n
∑

i=1

a2i



 ≤ O

(

q3/2

n1/2

)

,

where we applied Cauchy-Schwarz in the fourth step. This implies q ≥ Ω(n1/3).

Remark: The best no-shared-randomness protocol we know for P1 communicates O(
√
n) bits.

The idea is to arrange the n-bit inputs in a
√
n × √

n matrix. Alice picks a random row index
in [

√
n], and then sends that index and the indexed row of x and of s to the referee. Bob picks

a random column index in [
√
n], and then sends that index and the indexed column of y to the

referee. The row and the column intersect in exactly one (uniformly random) point i ∈ [n]. With
probability 1/2, si = 1 and we are done. Repeating this a few times in parallel reduces the error
probability to a small constant. A matching lower bound would follow from the general direct
product theorem p ≤ O(ab), for the case of the 2-register identification problem where both sides
are allowed to be mixed.

5 Entanglement can be exponentially stronger than quantum com-

munication with shared randomness

5.1 The problem

For n a power of 2, consider the following relational problem P2, inspired by a one-way communi-
cation problem due to Bar-Yossef et al. [3]:

Alice’s input: a perfect matching M ⊂
(

[n]
2

)

and a string x ∈ {0, 1}n/2 containing a
bit xe for each edge e ∈M
Bob’s input: a string y ∈ {0, 1}n
Goal: the referee should output (i, j, x(i,j), yi ⊕ yj) for some edge (i, j) ∈M

Below we show that this problem is easy if we have classical communication and prior entanglement,
and hard if we have quantum communication without entanglement:

Theorem 3 For the relational problem P2 defined above we have

R‖,ent
ε (P2) ≤ O(log n) and Q‖,pub

ε (P2) ≥ Ω((n/ log n)1/3).
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5.2 Upper bound with classical communication and entanglement

The following protocol solves the problem with success probability 1, using O(log n) classical bits
of communication and log n EPR-pairs shared between Alice and Bob. It is a modification of an
unpublished protocol due to Harry Buhrman [7], which is in turn based on a one-way protocol
from [3]. The starting state of Alice and Bob is

1√
n

∑

i∈{0,1}log n

|i〉|i〉.

Bob adds his bits as phases:
1√
n

∑

i

|i〉(−1)yi |i〉.

Alice measures with the n/2 projectors Eij = |i〉〈i| + |j〉〈j| induced by the n/2 pairs (i, j) ∈ M .
This gives her a random (i, j) ∈M and the resulting joint state of Alice and Bob is

1√
2
(|i〉(−1)yi |i〉+ |j〉(−1)yj |j〉) .

Now both players apply a Hadamard transform to each of the log n qubits of their part of the state,
which becomes (ignoring normalization)

∑

k,ℓ

(

(−1)yi+(k+ℓ)·i + (−1)yj+(k+ℓ)·j
)

|k〉|ℓ〉.

Note that |k〉|ℓ〉 has non-zero amplitude iff yi + (k + ℓ) · i = yj + (k + ℓ) · j mod 2, equivalently

(k + ℓ) · (i+ j) = yi ⊕ yj.

Alice and Bob both measure their part of the state in the computational basis, obtaining some k
and ℓ, respectively, satisfying the above equality. Alice sends i, j, k, and x(i,j) to the referee, Bob
sends ℓ; a total of O(log n) bits of communication. The referee calculates yi ⊕ yj from i, j, k, ℓ and
outputs (i, j, x(i,j), yi ⊕ yj) as required.

5.3 Lower bound for quantum communication without entanglement

We make use of some ideas from the classical lower bound of Bar-Yossef et al. [3]. For k ∈
{0, . . . , n/2− 1}, let Mk denote the matching {(i, (i+ k− 1 mod n/2)+n/2+1}n/2i=1. For example,
M1 = {(1, n/2 + 2), (2, n/2 + 3), (3, n/2 + 4), . . . , (n/2 − 1, n), (n/2, n/2 + 1)}. We will prove our
lower bound for the special case where Alice’s matching is one of the Mk. Consider a quantum
protocol where Alice and Bob share randomness but no entanglement, each communicates at most
q qubits to the referee, and they solve problem P2 with error probability ε < 1/16 for each input.
Our goal is to show q ≥ Ω((n/ log n)1/3).

We consider the following input distribution. Let K be a uniformly random number between 0
and n/2−1, MK be Alice’s first input, and X ∈ {0, 1}n/2 and Y ∈ {0, 1}n be uniformly distributed
random variables for Alice’s second and Bob’s only input. Since the protocol has error at most
ε for all inputs, we can (and will) fix a value for the shared randomness such that the resulting
protocol has average error at most ε under the above input distribution.

Let αkx be Alice’s message on inputMk, x. For edge e = (i, j) ∈Mk, define αke0 as the uniform
mixture of all αkx with xe = 0, similarly define αke1, and ake = ‖αke0 − αke1‖tr. The optimal
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probability with which we can distinguish αke0 from αke1 is 1/2 + ake/2. Hence for every k, the
random access code argument (Lemma 1) gives

∑

e∈Mk

a2ke ≤ O(q).

Let βy be Bob’s message on input y. For any e = (i, j) (not necessarily part of any matching),
define βe0 as the uniform mixture over all βy with yi ⊕ yj = 0 and similarly define βe1. Let
be = D8ε(βe0, βe1). We now prove two claims upper bounding sums of these be.

Claim 3 For any forest (i.e., acyclic graph) F on [n] we have
∑

e∈F
be ≤ O(q).

Proof: Denote by |F | the number of edges in F . For every e = (i, j) ∈ F we can obtain a (be, 8ε)-
predictor for the bit Yi ⊕ Yj given the q-qubit state βY . Intuitively, since F is a forest, these |F |
bits are independent and therefore represent |F | bits of information. To make this formal, define
for each w ∈ {0, 1}|F | the set

Tw = {y ∈ {0, 1}n | ∀e = (i, j) ∈ F, yi ⊕ yj = we}.

Since F is a forest, {Tw}w∈{0,1}|F | is a partition of {0, 1}n into 2|F | sets of size 2n−|F | each.

For any bit string w ∈ {0, 1}|F | we define ξw as the uniform mixture of βy over all y ∈ Tw. For
each e ∈ F , define ξe0 as the uniform mixture of ξw over all w with we = 0 and similarly define ξe1.
Then, it is easy to see that ξe0 = βe0 and ξe1 = βe1. Hence, D8ε(ξe0, ξe1) = be and by applying the
random access code argument to the encoding of w as the q-qubit state ξw, we get

∑

e∈F
be(1−H(8ε)) ≤ q.

Claim 4

n/2−1
∑

k=0

∑

e∈Mk

b2e ≤ O(q2 log n).

Proof: By construction all our Mk’s are disjoint, hence the set M = ∪kMk contains each edge in
the above sum exactly once. Making some bijection between edges in M and numbers ℓ ∈ [|M |],
we order the be in non-increasing order as

b1 ≥ b2 ≥ · · · ≥ b|M |.

Now consider the graph consisting of the first ℓ edges in this ordering. This graph must contain
at least

√
2ℓ non-isolated vertices, since v vertices give only

(v
2

)

≤ v2/2 distinct edges. Let F be
a forest consisting of a spanning tree for each connected component of this graph. This F has at
least

√
2ℓ/2 =

√

ℓ/2 edges, and for each of those edges e we have be ≥ bℓ. Now we can use Claim 3:

√

ℓ

2
· bℓ ≤

∑

e∈F
be ≤ O(q).

Hence for all ℓ ≤ |M | we have
bℓ ≤ O(q/

√
ℓ).
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Summing over all ℓ gives

∑

e∈M
b2e =

|M |
∑

ℓ=1

b2ℓ ≤
n2/4
∑

ℓ=1

O(q2/ℓ) ≤ O(q2 log n).

Since the protocol has average error at most ε, by Markov’s inequality there is a set M of
at least n/4 of our matchings Mk such that the protocol has error at most 2ε for that Mk and
uniformly random X and Y . Since M contains at least n/4 elements, Claim 4 implies there is a
matching Mk ∈ M such that

∑

e∈Mk

b2e ≤ O

(

q2 log n

n

)

.

We now fix this matching on Alice’s side. Let I, J,B1, B2 be the random variables giving the
referee’s output. Suppose we run the protocol with Mk, and uniformly random x and y as input.
We call an edge (i, j) good, if the protocol is correct with high probability when it outputs (i, j, ∗, ∗):

e = (i, j) is good iff e ∈Mk and Pr[B1 = Xe, B2 = Yi ⊕ Yj | I = i, J = j] ≥ 1− 4ε.

The edge is called bad otherwise. Let pe = Pr[I = i, J = j] be the probability that the protocol
outputs edge e. Since Mk ∈ M, the success probability (averaged over x and y) is at least 1− 2ε,
so by a Markov argument, the good edges must have most of the probability:

1− 2ε ≤
∑

good e

pe +
∑

bad e

pe(1− 4ε) = 1− 4ε+ 4ε
∑

good e

pe,

hence
1

2
≤
∑

good e

pe.

For every good edge e, we can construct a (pe, 4ε)-predictor for (Xe, Yi⊕Yj). Hence, by Corollary 1,
pe ≤ O(akebe). Using Cauchy-Schwarz:

1

2
≤
∑

good e

pe ≤
∑

good e

O(akebe) ≤ O





√

∑

good e

a2ke ·
∑

good e

b2e



 ≤ O

(
√

q3 log n

n

)

.

This implies the promised lower bound q ≥ Ω((n/ log n)1/3).

Remark: Our bound is tight up to log n factors. To see this, we briefly sketch a protocol which
uses O(n1/3 log n) qubits of communication: Alice and Bob use their shared randomness to fix a
subset S ⊂ [n] of size n2/3. With high probability the number of edges from M contained in S × S
is roughly n1/3. For each of the edges (i, j) ∈ M ∩ S × S, Alice sends (i, j, x(i,j)) to the referee,

which is O(n1/3 log n) bits of communication. Bob prepares n1/3 copies of the state

1
√

|S|
∑

i∈S
(−1)yi |i〉 (14)

and sends them to the referee. This gives a total of O(n1/3 log n) qubits of communication. On
each of the copies, the referee measures with the projectors Eij = |i〉〈i| + |j〉〈j| induced by the
edges in S that Alice has sent, completed by Egarbage = I −∑Eij . Given the state in Eq. (14),
the probability to not measure “garbage” is roughly n−1/3. This means that with some constant
probability the referee will measure one of the edges Eij on one of the states Bob sent. This state
then collapses to 1√

2
((−1)yi |i〉+ (−1)yj |j〉), and a measurement in the basis |i〉 ± |j〉 gives yi ⊕ yj.
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6 Conclusion and future work

We studied the bounded-error quantum state identification problem and proved a direct prod-
uct theorem for two independent instances of this problem (one involving pure states) using SDP
duality. We applied our direct product theorem to obtain two exponential separations in the
simultaneous message passing model of communication complexity. These two separations nicely
complement each other: the first shows that shared randomness is much more powerful than private
randomness, the second shows that prior entanglement is much more powerful than shared random-
ness. Moreover, both separations are shown in the strongest possible sense: the stronger model is
restricted to classical communication while the weaker model is allowed quantum communication.

We identify some interesting problems left open by our work. First, for the bounded-error
quantum state identification problem, prove the direct product theorem p ≤ O(ab) in the general
case where both sides have mixed states instead of one side pure and one side mixed. That result
would lift, for instance, our quantum communication lower bound for the problem P1 to the optimal
Ω(

√
n). Second, show similar communication complexity separations for decision problems (Boolean

functions, possibly with a promise on the input) instead of for relational problems. Finally, we hope
our direct product theorem will be useful for other applications as well.
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