

A Model-checking Approach to Analysing Organisational Controls
in a Loan Origination Process

Andreas Schaad, Volkmar Lotz
SAP Labs France, Security & Trust Group

805, Avenue du Dr Maurice Donat
06250 Mougins, FRANCE

{andreas.Schaad, volkmar.Lotz}@sap.com

Karsten Sohr

Universität Bremen, Technologie-Zentrum Informatik
Bibliothekstraße 1

28359 Bremen, Germany

sohr@tzi.de

ABSTRACT
Demonstrating the safety of a system (ie. avoiding the undesired

propagation of access rights or indirect access through some

other granted resource) is one of the goals of access control

research, e.g. [1-4]. However, the flexibility required from

enterprise resource management (ERP) systems may require the

implementation of seemingly contradictory requirements (e.g.

tight access control but at the same time support for discretionary

delegation of workflow tasks and rights).

To aid in the analysis of safety problems in workflow-based ERP

system, this paper presents a model-checking based approach for

automated analysis of delegation and revocation functionalities.

This is done in the context of a real-world banking workflow

requiring static and dynamic separation of duty properties.

We derived information about the workflow from BPEL

specifications and ERP business object repositories. This was

captured in a SMV specification together with a definition of

possible delegation and revocation scenarios. The required

separation properties were translated into a set of LTL-based

constraints. In particular, we analyse the interaction between

delegation and revocation activities in the context of dynamic

separation of duty policies.

Categories & Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access

controls

General Terms
Security

Keywords
Model-checking, organisational control, separation, delegation,

revocation

1 INTRODUCTION
Within some of our earlier research we focused on modelling and

achieving “organisational control” [5] by integrating new and

already existing work on workflow based systems [6], the

required access rights [7, 8], the definition of separation of duty

policies [9, 10] and the delegation and revocation of access

right/authorisations and tasks/obligations [11, 12]. This led to the

partial implementation of such concepts in the SAP Research

workflow stack [13]. In particular, we implemented a security

enforcement point for a workflow tasklist manager, automated

support for delegation and revocation schemes [14] and

specification and enforcement of separation of duty policies using

the JESS and iLog rule systems.

This further confirmed our already obtained insights into the

possibly existing unwanted relationships between such

components.

In particular, we had already observed at a formal level [5] that

delegation and revocation features may be used to “circumvent”

separation of duty properties, thus providing potentially undesired

access to resources. However, “Enterprise Resource

Management” means providing people with the ability to perform

their work according to economic principles. It is thus a partially

contradictory aim to build systems that provide flexibility (e.g.

delegating tasks and possibly required access rights) at the same

time aiming to strictly preserve safety. We believe that only a mix

of a well-designed access control system and a set of

(compensating) controls at configuration, deploy and run-time can

allow us to achieve an acceptable level of organisational control

and flexibility. Analysis tools at the various stages and system

levels are required to assist us.

Accordingly, this paper presents a model-checking based

approach for automated analysis of delegation and revocation

functionalities in the context of a workflow requiring static and

dynamic separation of duty properties. We derived information

about the workflow from BPEL specifications and business object

repositories. This was captured in a SMV specification together

with a definition of possible delegation and revocation scenarios.

The required separation properties were translated into a set of

LTL-based constraints. The results appear to be promising enough

to further continue the automated translation of workflow and

other context-relevant policies and information for a model-

checking based analysis.

The rest of the paper will provide some more required background

information on separation of duties as well as delegation and

revocation of tasks and rights (Section 2). We then instantiate

such properties within the context of a real-world loan origination

process and informally discuss constraints that need to be

maintained (Section 3). After a brief summary of the current state

of the art in the area of model-checking (Section 4) we then

specify the banking workflow in SMV together with a defined

subset of the constraints in LTL (Section 5). We then discuss

some results of our analysis (Section 6) and provide some

conclusions and future research directions (Sections 7 and 8).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SACMAT'06, June 7–9, 2006, Lake Tahoe California, USA.

ACM 1-59593-354-9/06/0006.

2 BACKGROUND AND RELATED

WORK

2.1 SoD - General introduction and overview
Separation controls are probably the so far best understood type of

application-level constraint, as indicated by the variety of existing

work. Specifically research in the areas of role-based access

control, e.g. [15] and distributed systems management, e.g. [16]

has led to the definition of taxonomies and frameworks, that will

be reviewed in the course of this section. Although the origins of

this principle cannot be clearly identified, it is obvious that the

development of organisational theory, e.g. [17, 18], and internal

control and accountancy frameworks helped in their definition and

possible ways of implementation. Application areas are the

prevention of fraud due to the misuse of powers and the

preservation of integrity.

One classic example when talking about separation controls is that

of preventing fraud committed by the purchasing officer in a

company. If he could perform all the necessary steps of creating

and authorising an order, recording the arrival of the item,

recording the arrival of the invoice and finally authorising the

payment, it would be easy for him to place an order with a

fictitious company he owns, record a non-existing arrival, pay to

the company, and add the non-existing goods to the books. Only

the end-of-the-year inventory would reveal the discrepancy

between the books and the physical stock. Enforcing a separation

control in this context may be to not let a principal have all the

necessary authorisations for each required step in this process. A

more relaxed variation may be to not allow him to perform all the

steps on his own. This is sometimes referred to as a dual control

since two or more people are needed for the execution of a critical

process.

Often, the term “separation of duties” is used in the context of

examples like the above. Although commonly used, we believe

that it does in many cases not really reflect its actual

interpretation. This is because in its most general definition the

separation of duties may be best described as a means of

preventing (in)advertent error and fraud through the general or

context-dependent limitation of a principal’s authority. Thus,

“separation of authority” may be a more precise term. It has

already been realised by others that there is still a gap in the

support of current workflow / ERP systems for supporting

separation of duty properties [19].

We now provide a more specific review over the development of

separation controls in information systems. This will reveal that

there are various ways of specifying separation controls (e.g.

exclusive roles or rights or tasks) at different conceptual levels

(e.g. application, middleware, database level). The actual choice

will be clearly dependent on the organisational context.

Separation of duties (initially “Separation of privilege”) as a

design principle for the protection of information in computer

systems, was first referred to by Saltzer and Schroeder [20]. Clark

and Wilson [21] then introduced the separation of duties as a

mechanism to control fraud and error and ensure the consistency

of the data objects. They later describe two distinct types of

separation of duty called the static and dynamic separation of

duty.

Transaction control expressions are a notation for the description

and implementation of static and dynamic separation of duty

controls [22]. An information object is associated with the

transaction control expression. The execution of operations on the

object causes each transaction control expression to be converted

into history. A partial history for transient objects (which have a

short lifetime, such as a cheque) and complete history for

persistent objects (with a long lifetime such as an account) is

maintained. One possible separation of duty is enforced by the

rule that for transient objects different transactions must be

executed by distinct users. This approach is later extended in [23],

discussing more refined dynamic separation controls, the presence

of role hierarchies and the possibility of substituting the

attribution for a principal and a task. Later criticism by Nash and

Poland [24] addresses the fact that Sandhu did initially not

consider the possibility of overlapping assignments of roles to

transactions. They further discuss the object-based separation of

duty where every transaction against an object must be performed

by a different user. Using Sandhu’s transaction control

expressions they show how to maintain a history of object access.

Parallel to this, named protection domains (NPD) are presented as

a different approach to expressing separation of duty controls

[25]. Instead of grouping individuals, privileges are grouped in a

NPD. Such privileges might be all the operations needed to run

the accounts-receivable portion of a general-ledger application.

Only one NPD can be activated at a time, avoiding conflicting

privileges or their misuse and making it possible to express

separation of duties. It is further suggested to group individuals on

the basis of the tasks they perform and not according to

organisational hierarchies, an approach which may be seen as a

precursor to current role-based approaches.

It was soon realised that organisational roles could be used as a

suitable concept for expressing more elaborate and fine-grained

separation controls. Thus, it is not surprising that work on the

separation of duties received particular attention with the progress

made in role-based access control [10]. One main reason for this

is the established concept of mutually exclusive roles as initially

discussed. These are any roles that for some organisational reason

have been declared to be exclusive, which may then have an effect

on their relation to principals and assignment with policies.

In [9] the separation of duties is defined as a multi-person control

policy requiring that two or more different people are responsible

for the completion of a task. This is done by spreading authority

and responsibility for an action or task over multiple people.

However, choosing a role concept similar to RBAC96 as the basis

for the definition of a set of separation of duty controls, they

effectively consider authority only. The underlying mechanism

they use for implementing separation controls is the mutual

exclusion of roles. Constraining the role membership, role

activation and role use, leads to two main dimensions along which

separation controls can be specified. These are referred to as static

separation of duties (strong exclusion) and dynamic separation of

duties (weak exclusion), where a further distinction is made

between several kinds of dynamic separation. Two of these

dynamic controls are of importance in our later banking example,

namely the object-based and operational separation. These

identified separation controls are listed informally in Figure 1.

These observed controls are further formalised in [26]. Here,

separation controls or policies are seen in the form of conjunctions

of constituent properties of system states and state transitions. A

distinction is made between three types of general policy

properties called access-attribute (e.g. user-group membership

invariants); access-authorisation (e.g. evaluation of access

queries); and access-management (e.g. granting of access right).

1. Static Separation of Duties

• (Simple) Static Separation of Duties (SSSoD)

 A principal may not be a member of any two exclusive roles.

2. Dynamic Separation of Duties

• (Simple) Dynamic Separation of Duties (SDSoD)

A principal may be a member of any two exclusive roles but

must not activate them at the same time.

• Object-based Separation of Duties (ObjSoD)

A principal may be a member of any two exclusive roles and

may also activate them at the same time, but he must not act

upon the same object through both.

• Operational Separation of Duties (OpSoD)

A principal may be a member of some exclusive roles as

long as the set of authorisations acquired over these roles

does not cover an entire workflow.

• History-based Separation of Duties (HistSoD)

A principal may be a member of some exclusive roles and

the complete set of authorisations acquired over these roles

may cover an entire workflow, but a principal must not use

all authorisations on the same object(s).

Figure 1: Separation Taxonomy (I)

These properties show dependencies, and any omission or

incorrect modification of dependent properties may result in

ineffective separation policies. Based on these observations

eleven types of separation of duty controls are identified. These

are formalised and extended variations of those listed in [9] and

earlier work reported in [21, 24, 27]. It is further shown how these

relate to each other and may be composed if, for example, static or

dynamic separation of duties is enforced. Parallel to this work, a

more formal framework for implementing separation of duty

controls is presented in [28]. As in [9] the chosen underlying

mechanism is the mutual exclusion of roles. However, the

discussion is taken further by analysing relationships between

different types of separation controls; properties of mutual

exclusion of roles; and constraints on possible role hierarchies

forbidding the existence of a ‘root’ role containing all other

system roles, which may be compared with the activation

hierarchies described in [15] and the role graph approach outlined

in [29].

In earlier work we have provided a more detailed, unifying

specification of existing separation taxonomies approaches,

showing possible composition dependencies using a constraint

satisfaction approach [5].

2.2 Contextual information required to

define and maintain SoD properties
Having clarified the general background and various conceptual

interpretations of separation of duty properties, these can be

expressed and enforced at different technical layers. What is

commonly required as contextual information is the following:

1. A notion of roles and maintenance of exclusive relationships.

2. A notion of authorisations and maintenance of exclusive

relationships.

3. A reference to a business object (its type as well unique

identification at runtime).

4. A notion of a workflow and execution engine which may

provide the following data:

• Information about a workflow model

• Information about the execution path within an in-

 stance of the model

• Information about the time of manipulation of an object

• Information about future possible paths that can be

 taken (To allow for a predictive analysis and, for

 example, switching to an extended audit when a

 suspicious but not critical state is reached)

5. A monitor keeping track of delegated and revoked tasks.

2.3 Delegation of tasks and rights
Delegation may be used as a term for describing how duties and

the required authority propagate through an organisation, usually

in terms of the refinement of a high-level organisational goal into

manageable policies which eventually lead to the execution of

some task [30, 31]. This is often referred to as decentralisation or

Management by Delegation [18] where delegation considers the

passing of policy objects from one principal to another with

respect to the performance of some activity and attainment of

some common organisational goal.

However, often the term delegation is also used to describe how a

principal passes some specific object on to some other principal,

because the current structure does not allow the achievement of a

goal one or both of these principals have [17]. If such delegation

activities occur frequently, have a regular pattern or principals

delegate some object indefinitely, then this indicates that the

current organisational structure and procedures do not reflect the

goals of the involved principals. An initially temporary and ad-

hoc delegation must now become part of the regular

administrative delegation activities shaping the formal

organisational structure. There may be different factors motivating

such general administrative delegation or ad-hoc delegation

between specific principals. We thus distinguish between two

types of delegation that need to be clarified: Administrative

delegation (administration) and ad-hoc delegation

(delegation).This distinction is often not made clear, e.g. [32].

Both cause some sort of policy object assignment to be changed,

where administration has a high degree of similarity, regularity

and repeatability, and conversely ad-hoc delegation has a low

degree of these. We argue that delegation may be seen as distinct

from administration. Three characteristics can be used to support

this distinction. These are the representation of the authority to

delegate; the specific relation of a principal to an object; and the

duration of this relation.

In [11] we have provided formal models for the delegation of

tasks (obligations) and the required rights (authorisations), based

on the conceptual models provided in [16]. We introduced the

concepts of review and supervision as obligations on delegated

general and specific obligations (tasks at the workflow model

level and specific task instances). The formalisation in a predicate

logic also showed that the delegation of authorisations, as well as

general and specific tasks can be based on one general delegation

function. This function will also maintain a history of delegation

and object access activities over a sequence of states, recording

properties such as multiple delegations of an authorisation to the

same principal by different delegating principals or the dropping a

delegated task/obligation by a delegating principal.

We noted that an explicit distinction between delegating tasks

types and their instances needs to be made. For example, a task

instance may only be delegated to some principal in a role

associated with the corresponding task type. Maintaining and

modelling such information is essential for providing revocation

functionality as we will later show in our LTL specification.

2.4 Revocation of tasks and rights
In general, revocation of an object is based on its previous

delegation and thus requires the following pieces of information

[1]: The principals involved in previous delegation(s); the time of

previous delegation(s); the object subject to previous

delegation(s).

Our SMV specification provides this information and may thus

support the various forms of revocation as described in the

revocation framework of [33]. In this framework different

revocation schemes for delegated access rights are classified

against the dimensions of resilience, propagation and dominance.

Since resilience is based on negative permissions, we do not

consider this here, as there is no corresponding concept for the

policy objects in our model. The remaining two dimensions may

be informally summarised as follows:

1. Propagation distinguishes whether the decision to revoke
affects

• only the principal directly subject to a revocation
 (local); or

• also those principals the principal subject to the
 revocation may have further delegated the object to be
revoked to (global).

2. Dominance addresses conflicts that may arise when a
principal subject to a revocation

• has also been delegated the same object from other
 principals. If such other

• delegations are independent of the revoker then this is
outside the scope of revocation.

If, however, such other delegations have been performed by
principals who, at some earlier stage, received the object to be
revoked via a delegation path stemming from the revoker, then the
revoking principal may only revoke with respect to his delegation
(weak) or revoke all such other delegations that stem from him
(strong).

Based on these two dimensions, we work on the basis of 4

different revocation schemes which, due to the absence of the

resilience property, are a subset of those described by [33],

summarised in Table 1. A full formal treatment of revoking

delegated tasks and rights is part of [12] and we will now

investigate how far these schemes can be expressed and integrated

with respect to our banking workflow.

Table 1: Revocation Taxonomy

Role Service Access Right Workflow

Step

Business

Object

Clerk

Preprocessor

Customer

Information

File

query ()

update ()

Input

Customer

Data

Customer

Data

Clerk

Preprocessor

Customer

Information

File

query () Customer

Identificati

on

Customer

Data

Clerk

Postprocessor

Credit

Bureau

prepare ()

release <100k

post ()

Check

Credit

Worthiness

Rating

Report

Supervisor Credit

Bureau

release >100k Check

Credit

Worthiness

Rating

Report

Clerk

Postprocessor

Internal

Rating

query () Check

rating

Rating

Report

Supervisor Internal

Rating

update () Bank signs

form

Rating

Report

Clerk

Postprocessor

Product

Database

query available

products ()

Choose

Bundled

Product

Product

Bundle

Clerk

Postprocessor

Pricing

Engine

modify ()

commit <100k

Price

Bundled

Product

Product

Bundle

Supervisor Pricing

Engine

commit >100k Price

Bundled

Product

Product

Bundle

Clerk

Postprocessor

Output

Manageme

nt System

post print

request ()

Print

Opening

Form

Contract

Customer - sign () Customer

signs form

Contract

Manager - sign ()

update ()

Bank signs

form

Contract

Clerk

Postprocessor

Account

Manageme

nt System

open () Open

Account

Account

Table 2: Assignments of rights, roles and tasks

3 SOD AND DELEGATION IN BANKING

WORKFLOWS
Figure 2 shows a typical loan origination process in the banking

domain, similar to that described in [34]. The supporting Table 2

summarises some of the required roles, the general service, the

required access rights and associated workflows steps and

business objects as later modelled in SMV.

The loan origination process describes a customer wanting to buy

a bundled product. If he is not an existing customer, his master

data and other identification-relevant data need to be entered into

the system. Several external and internal ratings then need to be

obtained by the processing clerk in order to check the credit

worthiness of the client (e.g. based on sums of liabilities, sums of

assets, reasons for rating etc.). The system will then propose a

preconfigured bundled product to the clerk and customer (e.g.

original price, customer segment special conditions, customer

company special conditions, asset limit for price etc.). The

customer and Bank finally come to an agreement expressed in the

signature of the client and Bank representative.

Process and Information FlowBackend-

Applications /

Service-Provider

Input Customer Master
Data

Customer

Identification

Check Credit

Worthiness

Check Rating

Choose bundled

product

Print Opening Form

Customer

signs form

Start
Process Context

Customer
Information File

End

Credit Bureau

(external)

Internal Rating
Application

Pricing Engine

Output Management

System

Customer

Collaterals

Type

Value

Segment

Product Bundle

Name

ID

Price
Details

Changes

Contract

Contract ID

Signature

Customer Data

Tax ID

Passport No.

Name

Address

Account Management
Systemxyz

L
o
o

p
L

o
o

p

Price bundled

product

Open Account
in System xyz

Preprocessing

Clerk

Postprocessing

 Clerk

Customer

Supervisor

Manager

 Bank

signs form

Rating Report

Overall Result

Collateral Rating

Figure 2: Loan Origination Workflow

Within the context of this paper we can only provide a high-level

perspective and abstract the roles and access rights required on

some external backend-application (left hand-side). Process-

context information and the specific business objects access to

which requires to be controlled are explicitly mentioned (right-

hand side). Each of the workflow steps in this process will in turn

be realised within several components (e.g. ABAP transactions)

and are mapped to system-level guided procedures and rules.

Table 3 now defines a set of possible separation of duty

properties, partially derived from the taxonomy in Figure 1. These

are subset of the properties we discussed with SAP Banking

Solution Architects.

Based on the previous descriptions and properties there are now

several questions we would like to be able to ask and later

formally specify for automated verification by the model checker.

However, we explicitly exclude workflow analysis related

questions (e.g. possible deadlocks) as this has already been

sufficiently researched [35].

1. SoD-based Safety: Given a set of static and dynamic

separation of duty policies, are these maintained over a finite

sequence of states?

- Can a desired state x not be reached due to these policies?

- Can an explicitly excluded state be reached?

2. Delegation and Revocation-based Safety: Given the ability

to delegate and revoke, can a principal obtain a certain right

at some state?

- What is the valid initial authority state to prevent a principal

p obtaining a right?

- Can a separation of duty property be "circumvented"?

- Can a principal always revoke what he delegated? (Without

blocking, e.g. an existing SoD property)

3. Task-based Safety: Given a set of tasks requiring access

rights, will a principal be able to perform these tasks?

- What is the valid initial authority state to allow a principal

to perform his tasks?

- Is it possible to have an "optimal" / least privilege system?

- What is the valid initial authority state (with respect to

assignment of the right to delegate) to allow a principal to

perform his tasks? (So he could get the right from a

colleague?)

Figure 3: Safety Properties

The general safety question considers whether given an initial

state sx (with an assignment of access rights and tasks) a defined

state sy can be reached. We would thus like to be able to check

whether a principal can obtain a specific right at some stage;

whether he can exercise this right on some object; and whether a

desired authorisation state (at reference monitor evaluation time)

cannot be reached due the initial authority state (ie. initial access

control matrix setting). We thus group the safety properties to be

verified according to the following three groups as informally

summarised in Figure 3.

We would also like to be able to perform some "critical" state

analysis, e.g. during run-time of the system a state occurs that is

alarming but not critical if there is a set of possible future paths

that introduce a mitigating factor; demonstrate that an object is not

accessed; or that a dynamic SoD is maintained. In a similar

fashion we would like to be able to perform some reverse trace

analysis to determine what initial configurations and possible

paths exist given any of the above properties and some undesired

state x? This is similar to work performed in the area of safety

critical systems analysis [36].

Customer tailored Process Product Bundling

Possible SoD property Type

(as defined in

Figure 1)

Possible required

 Contextual information

No person may be assigned

to the two exclusive roles

pre/post processor

SSSoD Role Directory vs. User

Dictory

A person may be assigned to

the two excusive roles

pre/post processor but must

not activate them

SDSoD This would mean to check for

two things: a) they are not

activated at any state, b) they

have not been activated one

after the other

If customer is industrial

customer, master data must

be verified by independent

clerk

Application

specific

This property would require

the existence of a rule linked to

the type of a customer account.

Secondly, a notion of

workflow is required to trigger

the independent verification.

If credit bureau rating is

negative then internal rating

must be performed by

another clerk

Application

specific

This is a rule that would need

to be attached to the workflow

step of receiving the result.

If internal rating is negative,

then case must be confirmed

by supervisor.

Application

specific

This is a rule that would need

to be attached to the workflow

step of receiving the result.

Clerk may only price

bundled product if he did not

perform operation “modify

()” wrt to the specific offer

ObjSoD This is an example of a

dynamic separation of duty

property that requires

contextual information about

the execution path of a

workflow and the specific

business object (bundled

product) that was manipulated.

If this is an industrial

customer, then a clerk may

perform tasks 1.-9. or 10 but

not both for the same

customer

OpSoD This is an example of a

dynamic separation of duty

property that requires

contextual information about

the execution path of a

workflow and the specific case

(customer) that was

manipulated.

A principal may be a

member of the two exclusive

roles pre/post processor and

the complete set of

authorisations acquired over

these roles may cover a

critical authorisation set, but

a principal must not use all

authorisations on the same

object(s).

HistSoD This is like ObjSoD and

OpSoD together. We require to

check the execution path and

object access versus the critical

authorisation set.

A principal p1 may be

assigned to the two

exclusive roles post

processor and supervisor. He

may also activate them but

not use them on the same

object (Product Bundle).

(Compare in detail with

section 5.3)

ObjSoD +

Application

specific

We should interpret this as two

exclusive roles not having the

same rights on a Business

Object Type (not a particular

instance).

If we check for the property

then we should get two traces:

a) at step 6 the pricing was

done for less then 100k – this

is ok no violation of property

as supervisor is not involved.

b) at step 6 the pricing was

done for more then 100k – this

is ok only if not p1 in the

supervisor role does commit

operation

Table 3: SoD properties in a loan origination process

4 MODEL CHECKING
In order to aid in the automated analysis of complex systems and

properties as described in the previous sections we apply model-

checking techniques [37]. Such techniques have already been used

and refined in other domains such as safety-critical systems

analysis, e.g., to verify the correctness of railway control systems

or aircraft controllers. Model checking is a technique for the

automated verification of finite state-based (concurrent) systems.

The proof of a property is entirely carried out by the machine. In

case the property does not hold, the model checker will construct

a counter-example suitable for failure diagnosis.

In mathematical terms, the considered (finite) systems are

represented as finite state-based transition graphs (Finite State

Machine, FSM). A Finite State Machine consists of a finite set of

states; a set of initial states (a subset of the set of states); a

transition relation (states are accessible from the current state); a

function mapping each state to the atomic propositions holding in

this state.

The aim of model checking is to automatically verify that the

FSM in question satisfies certain properties. Often those

properties can be formulated in propositional linear temporal logic

(LTL) such that the dynamic behaviour of the system can be

investigated.

Various model checking tools exist. For a reference see [37]. In

the following section, we discuss the NuSMV model checker

which will be later employed for the verification of workflow SoD

properties.

4.1 The Model Checker NuSMV
The NuSMV [38] is a symbolic model checker, which is an

extension of McMillan’s SMV system [39]. Beyond SMV’s

BDD-based model checking NuSMV now supports also model

checking techniques based upon propositional satisfiability. This

way Bounded Model Checking (BMC) [40] can also be supported.

BMC is an optimisation such that the search is restricted to a finite

time interval instead of searching the whole time bar.

The FSM can be specified by an intuitive input language. Since it

is intended to describe FSMs, the only data types are finite ones,

namely Booleans, scalars, and fixed arrays. In addition, reusable

components can be specified by modules. The primary purpose of

NuSMV’s input language is to describe the transition relation of

the FSM in question. For this purpose, next expressions can be

used. For example, if we have specified next(b):=1; for a

Boolean state variable b, this means that in the following state b

is true.

Moreover, with the help of the init function, we can also define

initial values for state variables (remember that an FSM has a set

of initial states). It is also possible to define variables which do

not change over time and variables which are completely

unrestricted. The unrestricted variables are called input variables

(keyword IVAR) and can change arbitrarily.

In order to specify asynchronous systems (e.g., distributed

systems or hardware circuits), a process statement can be used.

Due to the fact that we do not need this statement in our current

workflow model, we do not describe it here. If, however, we

intend to consider multiple workflow instances as intended in

future work, the process statement might be helpful.

4.2 Linear Temporal Logic LTL
As pointed out above, we can specify the FSM with the help of

the SMV input language. However, we also need a way to specify

the properties which the FSM should satisfy. NuSMV offers two

formalisms for this purpose, namely CTL (computation tree logic)

and propositional LTL. In the following, we will use LTL for the

specification of dynamic SoD properties. As pointed out in [41],

LTL is well-suited to specifying dynamic access control policies.

LTL [42] uses the familiar Boolean operators like ∧ and ∨. On the

other hand, special temporal operators have been introduced:

• F p (sometimes in the future holds p),

• G p (globally in the future holds p),

• p U q (p holds until q), and

• X p (p is true in the next step).

Moreover, corresponding past modalities are also available (such

as H – historically, O – once in the past, Y – one step before). To

sum up, LTL characterises each linear path induced by an FSM.

NuSMV allows specifying properties in an extra section called

LTLSPEC. It is possible to define several LTL properties for an

FSM at the same time.

5 MODEL CHECKING WORKFLOW

ACCESS CONTROL POLICIES
As indicated earlier in this paper, we often must deal with

dynamic security policies in the context of workflows. One

example are the various kinds of dynamic SoD policies as those

described in the context of the loan origination workflow. Due to

delegation and revocation the access rights available to a user may

change over time. Since workflows (for example, due to loops and

branches) can be quite complex, an automated analysis of such

policies is desirable. For example, the question arises whether a

particular workflow instance satisfies dynamic SoD policies or

certain access rights leak to unauthorised users. Specifically, due

to delegation and revocation, unwanted security properties may

arise such as the violation of dynamic SoD. Hence, model

checking tools like the NuSMV may give the policy designer the

opportunity to detect such as undesirable properties and to change

the policy appropriately.

There are other model-checking based approaches for the

verification of access control policies such as [43]. However, our

approach is tailored towards SoD, delegation and revocation

policies, specifically in the context of workflows. Due to the fact

that we would like to directly map the workflow access control

policies to an FSM we decided to use a model checker that allows

one to directly encode the workflow. The RW language described

in [43] is not primarily designed towards such needs.

In summary, our model checking-based approach for policy

verification works as follows: The workflow access control

policies (e.g. user-role assignments), the workflow and the

delegation and revocation steps are specified by means of an

FSM, and then the SoD properties are specified in LTL. In the

following, this approach is discussed in more detail.

5.1 Modelling the workflow in SMV
Due to the fact that workflows may include branches and loops

we model the workflow directly as an FSM. For this purpose, we

introduced a certain scalar state variable step with values

s1,…, sn. This variable indicates the current workflow step to

be performed.

Furthermore, we assume a RBAC96-style role-based access

control approach for workflows, i.e., if a user executes a certain

workflow task, he is assigned to an appropriate role; moreover,

this role must be activated on executing the task in question. In

addition, note that a task may consist of more than one operation

to be performed. For example, the Input Customer Data

task of our loan origination process consists of the query and

update operation on the business object Input Customer

Data. The following state variables have been introduced in

order to describe role-based access control policies for workflows:

• For each user-role assignment, a variable UA_u_r has

been introduced. UA_u_r is true iff the predicate

UA(u,r) is true for a user u and role r.

• Similar state variables are introduced for permission

assignment, i.e., PA_p_r is true iff PA(p,r) is true.

• For each role activation activate(u,r), we define a

state variable activate_u_r.

• As proposed in [41], we also express the fact that user u

actually performs operation op on object o with a state

variable exec_u_op_o.

Beyond the RBAC-related variables, we define control flow

variables which govern the execution flow. For example, we have

introduced a Boolean variable greater100k indicating that we

deal with a credit exceeding the 100k threshold. Due to the fact

that we do not want to restrict this variable in advance and that on

the other hand the variable should be constant during the whole

workflow instance, we use the following trick of specifying

next(greater100k):=greater100k without

initialisation. This means we can choose the value of

greater100k for the workflow at random, but once chosen, the

value does not change any more.

The RBAC-related state variables must be set appropriately in the

FSM. For example, if exec_u_op_o is true in a certain step,

then there must be at least one role r activated which contains the

access right PA_op_o_r at this step. Hence, the FSM must

reflect this condition correctly. Moreover, RBAC-related state

variables can be defined as unrestricted in certain cases in order to

check different scenarios at one run of the model checker.

However, this can lead to the so-called state explosion problem.

In addition, NuSMV offers a simulation functionality which

allows exploring possible executions of the system in question. By

means of this functionality, runs of the workflow can be

simulated, i.e., certain unrestricted variables (control flow

variables or RBAC-related variables) could be set. This way, the

behaviour of the access control policy can be checked.

In Figure 4 an excerpt of the loan origination workflow is given

showing how the steps 3 to 5 have been mapped to the FSM. In

order to obtain a better overview, a summary of the relevant

NuSMV variables and their meaning is given in Table 4.

NuSMV variable Meaning

step Represents the current workflow step

greater100k,ratingokcb, … Control variables for the workflow

UA_u_r UA-related variables

PA_p_r PA-related variables

activate_u_r User u activates role r

exec_u_op_o User u executes op on object o

exec_delegate_u1_r_u2 Execution of a delegation step

exec_revoke_u1_r_u2 Execution of a revocation step

Table 4: The NuSMV variables and their meaning

Figure 4: Excerpt of the NuSMV specification of the loan

origination workflow.

5.2 Modelling Delegation and Revocation in

SMV
We have also modelled delegation and revocation policies as

discussed in section 2.3. Specifically, we can handle two kinds of

delegation: We can delegate all the access rights required to

execute a task (task delegation) and secondly, we can delegate

single access rights irrespective of delegating a corresponding

task.

Delegation and revocation are carried out with the help of

temporary roles r, which are delegated from one user u1 to

another user u2. These roles contain the groups of rights to be

delegated. As a prerequisite, user u1 must clearly hold all the

access rights belonging to role r on the delegation process. Once

again, the FSM must be defined in a way that this condition holds.

Two further predicates are used for delegation and revocation:

• exec_delegation(u1,r,u2), meaning u2

obtains role r from u1 by delegation and

• exec_revocation(u1,r,u2), meaning u1

revokes role r from u2.

Similarly to the exec_u_op_o state variables, we introduce the

variables exec_delegate_u1_r_u2 and

exec_revoke_u1_r_u2 to express the aforementioned

predicates. Furthermore, delegation and revocation are regarded as

a single step within the workflow. Hence, if u1 delegates the

temporary role updatecustomerdata in step s3 of the

workflow, we can specify this in the NuSMV input language as

follows:

next(step):=

case

 …

 step=s3 &

 exec_delegate_u1_updatecustomerdata_u2:s4;

 …

esac;

If the delegation has been successfully performed, the UA relation

must be adapted appropriately:

next(UA_u2_updatecustomerdata):=

case

 exec_delegate_u1_updatecustomerdata_u2:1;

 1:0
1
;

esac;

Hence, UA is a dynamic relation changing on certain points of

time. Alternatively, we could have added a further predicate UAD

to our model, indicating the delegated user assignment. With the

help of NuSMV, it can now be checked if certain SoD properties

are violated by delegation and revocation steps. This will be

explained in Section 6.4. In addition, it can be investigated if

certain access rights leak to unauthorised persons.

5.3 Specifying SoD properties in LTL
Having outlined the FSM for the role-based access control

policies of workflows, we demonstrate now how various SoD

properties can be specified in LTL. The FSM describing the

access control policy of the workflow can then be checked against

these properties. Subsequently, we discuss several SoD properties,

arising in the context of the loan origination workflow as defined

in Figure 1 and formulate them in propositional LTL.

Simple Static SoD (SSSoD):

No user/principal may be a member of both the exclusive roles

ClerkPreProcessor and ClerkPostProcessor. In LTL,

we have then the following formulation for principal u:

G(!(UA_u_ClerkPreProcessor &

 UA_u_ClerkPostProcessor)).

Simple Dynamic SoD (SDSoD)

A principal may be a member of any two exclusive roles but must

not activate them at the same time:

!(activate_u_clerkpreproc &

activate_u_clerkpostproc).

There is a loophole with this property: The exclusive roles could

be activated one after another. Hence, a better version for SDSoD

would be, for example:

(activate_u_clerkpreproc ->

! F activate_u_clerkpostproc).

Operational Separation of Duties (OpSoD)

A principal may be a member of some exclusive roles as long as

the set of authorisations (operations) acquired over these roles

does not cover an entire workflow.

Here we need to relax “entire workflow” to steps 1.-9. of the

banking workflow only. This can theoretically be done by the two

1 The label 1 represents in the NuSMV input language the default

case, i.e., UA_u2_updatecustomerdata is false in that

default case.

step=s4 & exec_u2_prepare_ratingreport

& exec_u2_release_ratingreport

& exec_u2_post_ratingreport:s5;

step=s5 & exec_u2_query_ratingreport:s6;

step=s6

& exec_u2_queryavailableproducts_productbundle &

!greater100k:s7;

step=s6

& exec_u2_queryavailableproducts_productbundle &

greater100k:s8;
…

roles ClerkPreProcessor and ClerkPostProcessor

only (if we do not exceed the 100k thresholds). This would mean

to check for two things:

1. they are not assigned over two roles at any state,

2. they have not been delegated and revoked one after the

other over some states such that never at any state all

authorisations cover 1.-9.

Once again, the second variant – which is stronger than the first

one – prevents a principal from circumventing OpSoD by

delegation and revocation. A discussion follows in Section 6.4. In

propositional LTL, this second variant can now be expressed as

follows:

!(F auth_u_update_customerdata &

 F auth_u_query_customerdata &

 F auth_u_prepare_ratingreport &

 F auth_u_release_ratingreport &

 F auth_u_post_ratingreport &

 F auth_u_query_ratingreport &

 F auth_u_queryavailproducts_productbundle &

 F auth_u_update_productbundle &

 F auth_u_commit_productbundle);

Note that we introduced here further state variables indicating that

principal u is authorised to execute the operations in question

such as update, query, or prepare.

Object-based Separation of Duties (ObjSoD)

A principal may be a member of any two exclusive roles and may

also activate them at the same time, but he must not act upon the

same object through both.

Considering our loan origination workflow, we could introduce an

ObjSoD restriction for the Price Bundled Product task. The roles

Clerk Postprocessor and Supervisor are exclusive in

this case. Further assume that user u has activated both the

Clerk Postprocessor role and the Supervisor role.

According to ObjSoD the activation of both the roles is not

forbidden. On the other hand, no user/principal is permitted to

execute the update product bundle access right in the

Clerk Postprocessor role and the commit product

bundle access right in the Supervisor role. In LTL we can

formulate this the following way:

G ((exec_u_update_productbundle &

 activate_u_clerkpreproc) ->

! F(activate_u_supervisor &

exec_u_commit_productbundle))

We have checked for that property, and got two traces:

1. the pricing was done for less than 100k

(!greater100k) – no violation of the property as the

supervisor is not involved

2. the pricing was done for more than 100k – this is only

ok if u does not commit in the Supervisor role.

This shows that we cannot blindly check for generic separation

properties but must take application specific constraints (e.g.,

monetary thresholds) into consideration.

History-based Separation of Duties (HistSoD)

A principal may be a member of some exclusive roles and the

complete set of authorisations acquired over these roles may cover

an entire workflow, but a principal must not use all authorisations

on the same object(s). This is a combination of OpSoD and

ObjSoD and can be specified in LTL because (past) temporal

operators are available.

Other SoD Rules of the Loan Origination Process:

Similar to the previous examples, the SoD rules not mapped to the

taxonomy in Figure 1 have been specified and checked by the

NuSMV system. For example, consider the rule “If credit bureau

rating is negative, then internal rating must be performed by

different clerk.” Assuming we have introduced a flow variable

ratingokcb, indicating whether the rating is positive, we can

express this in LTL:

(!ratingokcb ->

(exec_u_post_querycreditbureau

& ! X exec_u_query_ratingreport));

6 ANALYSIS
Based on the defined separation properties and defined delegation

and revocation functions we can summarise the following results

and insights gained from our analysis.

6.1 Maintaining SSSoD
The direct delegation and revocation of authorisations will not

have a effect on an existing SSSoD property since this only looks

at mutually exclusive roles. However, from an administrative

viewpoint we would want to periodically check over the lifetime

of a system that the respective subset of the access control matrix

of a principal does not entail the same authorisations as they

would result out of computing the access control matrix for the

SSSoD property. This, however, would prove difficult if

principals also do have the ability to revoke authorisations such

that the full set would never exist. It is for this reason that we

suggest to also consider the delegation and revocation history logs

and derive whether in a given period the critical set of

authorisations was available to a principal. We had already

demonstrated a similar scenario in [5].

6.2 Maintaining SDSoD
The same observations as for the SSSoD property hold for the

SDSoD property. The only difference is that here we need to

check for the activation of roles. This would mean that if

delegation and revocation functionality is available to a principal

then we would have to periodically check that within the

activation phase of a role, the principal does not receive the set of

authorisations as defined by a mutually exclusive role. Again, the

logs for delegation and revocation activities have to be

considered.

6.3 Maintaining ObjSoD
This property differs to the previous properties as it explicitly

considers object access. This means that for maintaining the

property, two checks will have to be made. The first would need

to consider the object access history and compare the used

authorisations to the critical authorisation set resulting out of the

mutually exclusive roles. With respect to existing delegation and

revocation functionality, we would have to check whether the

principal used any delegated authorisations for the object access,

whether these were revoked, and whether these correspond to the

critical authorisation set as defined within an existing ObjSoD

property.

6.4 Maintaining OpSoD
To maintain this property requires an additional piece of

information: The underlying workflow model within a specific

instance of which objects are accessed. We then need to compare

the set of required authorisations for a workflow with the critical

set of authorisations computed from a principal’s exclusive roles.

In addition, we need to check for any delegation and revocation

activities within the duration of a workflow and whether these

resulted in the acquisition of the critical authorisation set.

During our analysis we have encountered a scenario by means of

NuSMV where the aforementioned naïve version of OpSoD (cf.

Section 5.3) can be circumvented whereas the second variant of

OpSoD cannot. In this scenario Principal u1 delegates the access

rights of his Clerk PreProcessor role to u2 one after the

other. After u2 has exercised this access right, u1 immediately

revokes it. We further assume that u2 has the role Clerk

PostProcessor. If we did not exceed the 100k limit, then the

supervisor is not involved, and u2 could execute all operations

covering the steps 1.-9. of the banking workflow. This way,

OpSoD could be violated. In our test run, the first property is

evaluated to true by NuSMV whereas the second is false. In fact,

the first constraint is satisfied at every time step: u2 never has

all the authorisations of the critical set at a point of time. NuSMV

also gives a counterexample (trace) in case of the second

(stronger) property.

In Figure 3, various safety properties have been given, which can

be checked. For example, we can verify if a principal can revoke

what he delegated or if certain SoD constraints may prevent a

delegation or revocation step from being executed (cf. [5], for

example). By our analysis, we can rule out such useless delegation

and revocation steps in advance. For example, assuming that

revocation should be executed at step s5, we can encode this

directly within the FSM:

next(step):=

case

 …

step=s5 & next(OpSoD) &

exec_revoke_u1_r_u2:s6;

 …

esac;

Note that OpSoD is only a placeholder for the concrete

operational SoD constraint (propositional expression) that must be

satisfied. In order to check now if revocation always succeeds, we

can check if step s6 can be reached. Thus, we can consider the

following LTL formula: F step=s6. Clearly, the other SoD

properties can be verified in a similar way.

6.5 Maintaining HistSoD
The same observations for the ObjSoD and OpSoD properties

hold with respect to maintaining the HistSoD property. A

combination of the required checks and comparisons of static

critical sets, object access and dynamically acquired and revoked

authorisations will need to be performed.

7 PRACTICAL IMPLICATIONS
Regarding the transformation of workflow models into an SMV

model, we envisage this to be fully automated without any

difficulties as the SMV input language is powerful enough to

capture the semantics of standardised workflow modelling

languages like BPEL.

Our delegation model is still very rudimentary and will fail once

we start to consider delegation of task types and task instances.

We will thus continue with the full adoption of the formal

delegation model as defined in [11, 12]. This point will at the

latest need to be resolved once we start to address enforcement of

separation properties over several workflow models and instances.

The most challenging area is that of mapping the system resources

at modelling- and run-time. For example, at the modelling level

concepts such as exclusive roles can be defined in a SAP system

and can be easily extracted in form of relational tables. This will

also be possible at run-time (e.g. to determine activation of

exclusive roles) but is assumed to be quite costly and thus

realistically only desirable for selected critical applications and

processes (e.g. procurement to stock and approval).

Another aspect is that of specification of rules (such as Separation

of Duties) in a declarative language at the application level and

transformation into LTL. This would allow for quantification of

generic SoD properties over, for example, business object types.

Many resource planning and access management systems like

SAP or SAM Jupiter already link to rule engines like iLog or

JESS. We have, however, not yet analysed the semantics of the

different available rule languages and first-order LTL.

8 SUMMARY AND CONCLUSION
This paper has presented a model-checking based approach for

automated analysis of delegation and revocation functionalities.

This was done in the context of a real-world banking workflow

requiring static and dynamic separation of duty properties.

As we intended to focus to a great deal on the underlying business

case, we only outlined a possible approach of how to capture the

workflow in a SMV model amended by a LTL-based specification

of the Separation of Duty properties.

The results of our analysis confirmed some of the already existing

insights into the possible unexpected use of delegation and

revocation functionality to “circumvent” dynamic separation

properties, dependent on the application context. As it is our

overall goal to provide people with the ability to perform their

work according to economic principles, the traces given by the

model-checker gave us useful insights into different scenarios

how a principal can accomplish his work.

REFERENCES
1. Samarati, P. and S. Vimercati, Access Control: Polcies,

Models and Mechanisms, in Foundations of Security

Analysis and Design, R. Focardi and R. Gorrieri, Editors.

2001, Springer Lecture Notes 2171. p. 137-196.

2. Harrison, M., W. Ruzzo, and J. Ullman, Protection in

Operating Systems. Communications of the ACM, 1976.

19(8): p. 461-471.

3. Jaeger, T. and J. Tidswell, Practical safety in flexible access

control models. ACM Transactions on Information and

System Security (TISSEC), 2001. 4(2).

4. Crampton, J. A reference monitor for workflow systems with

constrained task execution. . in 10th ACM Symposium on

Access Control Models and Technologies. 2005.

5. Schaad, A., A Framework for Organisational Control

Principles, PhD Thesis, in Department of Computer Science.

2003, University of York.

6. Atluri, V. and W. Huang, An Authorization Model for

Workflows. Lecture Notes in Computer Science, 1996. 1146:

p. 44-64.

7. Rits, A., B. deBoe, and A. Schaad. XacT: A bridge between

resource management and access control in multi-layered

applications. in Software Engineering for Secure Systems –

Building Trustworthy Applications (SESS’05). 2005. St.

Louis, MO, USA.

8. Sohr, K., L. Migge, and G. Ahn. Articulating and enforcing

authorisation policies with UML and OCL. in Software

Engineering for Secure Systems - Building Trustworthy

Applications (SESS’05). 2005. St. Louis, MO, USA.

9. Simon, R. and M. Zurko. Separation of Duty in Role-Based

Environments. in Computer Security Foundations Workshop

X. 1997. Rockport, Massachusetts.

10. Ahn, G. and R. Sandhu, Role-based authorization constraints

specification. Information and System Security Journal,

2000. 3(4): p. 207-226.

11. Schaad, A. An Extended Analysis of Delegating Obligations.

in IFIP DBSec 2004.

12. Schaad, A. Revocation of Obligation and Authorisation

Policy Objects. in IFIP DBSec 2005. 2005.

13. Schulz, K. and M. Orlowska, Facilitating cross-

organisational workflows with a workflow view approach.

Data Knowl. Eng. , 2004. 51(1): p. 109-147.

14. Frossard, A., Delegation of Tasks in Workflow Management

Systems, in School of Computer and Communication

Sciences (IC). 2005, Ecole Polytechnique Fédérale de

Lausanne (EPFL) Lausanne, Switzerland.

15. Sandhu, R., et al., Role-based access control models. IEEE

Computer, 1996. 29(2): p. 38-47.

16. Damianou, N., et al. The Ponder Policy Specification

Language. in Policies for Distributed Systems and Networks.

2001. Bristol: Springer Lecture Notes in Computer Science.

17. Pugh, D., Organization Theory: Selected Readings. 4th ed.

Penguin Business. 1997: Penguin Books.

18. Mintzberg, H., The structuring of organizations, ed. E.

Cliffs. 1979, NJ: Prentice-Hall.

19. Botha, Separation of duties for access control enforcement in

workflow environments. IBM SYSTEMS JOURNAL, 2001.

40(3).

20. Saltzer, J. and M. Schroeder. The protection of Information

in Computer Systems. in IEEE. 1975.

21. Clark, D. and D. Wilson. A Comparison of Commercial and

Military Security Policies. in IEEE Symposium on Security

and Privacy. 1987. Oakland, California.

22. Sandhu, R. Transaction Control Expressions for Separation

of Duties. in 4th Aerospace Computer Security Conference.

1988. Arizona.

23. Sandhu, R. Separation of Duties in Computerized

Information Systems. in IFIP WG11.3 Workshop on

Database Security. 1990. Halifax, UK.

24. Nash, M. and K. Poland. Some Conundrums Concerning

Separation of Duty. in IEEE Symposium on Security and

Privacy. 1990. Oakland, CA.

25. Baldwin, R. Naming and Grouping Privileges to Simplify

Security Management in Large Databases. in IEEE

Symposium on Security and Privacy. 1990. Oakland.

26. Gligor, V., S. Gavrila, and D. Ferraiolo. On the Formal

Definition of Separation-of-Duty Policies and their

Composition. in IEEE Symposium on Security and Privacy.

1998. Oakland, CA.

27. Ferraiolo, D., J. Cugini, and D. Kuhn. Role-Based Access

Control (RBAC): Features and Motivations. in Computer

Security Applications. 1995.

28. Kuhn, R. Mutual exclusion of roles as a means of

implementing separation of duty in role-based access control

systems. in Proceedings of the second ACM workshop on

Role-based access control. 1997.

29. Nyanchama, M. and S. Osborn, The role graph model and

conflict of interest. Transactions on Information Systems

Security, 1999. 2(1): p. Pages 3 - 33.

30. Muller, J., Delegation and Management. British Journal of

Administrative Management, 1981. 31(7): p. 218-224.

31. Moffett, J.D., Delegation of Authority Using Domain Based

Access Rules, in Dept of Computing. 1990, Imperial College,

University of London.

32. Zhang, L., G. Ahn, and C. B. A Rule-based Framework for

Role-Based Delegation. in 6th ACM Symposium on Access

Control Models and Technologies. 2001. Chantilly, VA,

USA.

33. Hagstrom, A., et al. Revocations - A Categorization. in

Computer Security Foundations Workshop. 2001: IEEE.

34. Schaad, A. and J. Moffett. Separation, review and

supervision controls in the context of a credit application

process: a case study of organisational control principles. in

ACM SAC 2004.

35. Janssen, W., et al., Model Checking for Managers. Lecture

Notes in Computer Science, 1999. 1680.

36. Loer, K. and M. Harrison. Towards Usable and Relevant

Model Checking Techniques for the Analysis of Dependable

Interactive Systems. in ASE. 2002.

37. Clarke, E., O. Grumberg, and D. Peled, Model Checking.

2000: The MIT Press.

38. Cimatti, A., et al. NuSMV2: an Open Source Tool for

Symbolic Model Checking in QA075 Electronic computers.

Computer Science

http://eprints.biblio.unitn.it/archive/00000085. 2002.

39. McMillan, K., The SMV system, Symbolic Model Checking -

an approach 1992, Carnegie Mellon University CMU-CS-

92-131.

40. Biere, A., A. Cimatti, and Y. Zhu, eds. Symbolic model

checking without BDDs. Tools and Algorithms for the

construction and analysis of systems Vol. 1579. 1999,

Springer LNCS.

41. Mossakowski, T., M. Drouineaud, and K. Sohr. A temporal-

logic extension of role-based access control covering

dynamic separation of duties. in TIME-ICTL. 2003. Cairns,

Queensland, Australia.

42. Goldblatt, R., Logics of Time and Computation, 2nd Edition,

Revised and Expanded. CSLI Lecture Notes, 1992. 7.

43. Zhang, N., M. Ryan, and D. Guelev. Evaluating Access

Control Policies Through Model Checking. in ISC. 2005.

