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ABSTRACT
We present an experiment that compares how people per-
form search tasks in a degree-of-interest browser and in
a Windows-Explorer-like browser. Our results show that,
whereas users do attend to more information in the DOI
browser, they do not complete the task faster than in an
Explorer-like browser. However, in both types of browser,
users are faster to complete high information scent search
tasks than low information scent tasks. We present an ACT-
R computational model of the search task in the DOI browser.
The model describes how a visual search strategy may com-
bine with semantic aspects of processing, as captured by
information scent. We also describe a way of automatically
estimating information scent in an ontological hierarchy by
querying a large corpus (in our case, Google’s corpus).

Categories and Subject Descriptors
H.52 [User Interfaces]: Theory and methods; D.2.8 [Software
Engineering]: Metrics—complexity measures, performance
measures

General Terms
Measurement, Human Factors, Theory

Keywords
User studies, user models, ACT-R, DOI trees, information
scent, information visualization

1. INTRODUCTION
Visualizing large hierarchical information structures is a per-
vasive task in the real world. Whether the structures are or-
ganization charts, web pages, chronological information, or
even file systems, there is a need of being able to see as much
and as global a view as possible on a limited size screen.
With that aspiration in mind, one of the most successful
and inventive techniques was focus + context [3]. Focus +
context is a name that covers several visualization methods
aiming to increase the amount of information displayed to

a user. Such visualizations generally achieve this by pre-
senting in greater detail the information around the user’s
(assumed) point of focus and by offering a more schematic
view of the other parts of the information structure. Fisheye
views [3], hyperbolic trees [7], and degree-of-interest trees [4]
are all focus + context techniques.

However, in spite of the intuitive efficacy and of the enthusi-
asm generated in the user-interface community, it is not clear
that focus + context techniques present a real advantage to
the everyday user. Performance in focus + context visualiza-
tion appears to be largely a function of the relation between
the semantics of the navigation cues and the user’s tasks.
This relation is called information scent and is described
in greater detail below. For instance, [13] looked at users’
performance on search tasks when they used a hyperbolic
tree browser and a more common, Windows Explorer-based
browser. They concluded that, although in some cases (e.g.,
expert users or low information scent tasks) the hyperbolic
tree may produce faster results, the interaction between the
semantic qualities of the labels and the visual layout is quite
complex and a clear advantage cannot really be predicted for
the hyperbolic tree. Indeed, one of the first questions that
confronts anybody trying to understand how users perform
the search tasks in these focus + context browsers is how
do users choose what to focus their attention on? Are the
visual cues (e.g., node density, color, arrangement on page)
what determine focus, or are the semantic features of the
display (is this label related to what I am looking for) more
likely to dominate? Are visual cues more likely to matter
when the information scent (that is, the semantic quality of
the labels) is poor than when it is strong?

The purpose of this paper is to understand how the combina-
tion between visual and semantic information in the focus +
context browser affect users’ performance in a search task.
To achieve this goal, we first collected experimental data
about how users perform simple search tasks in a type of fo-
cus + context browser called degree-of-interest (DOI) tree.
We looked at two kind of search tasks: high-scent tasks, in
which the target item was on a highly predictable, common-
sense path, and low-scent tasks, in which the target item was
hidden under less plausible labels. We collected the times
that people needed to complete the search tasks for two dif-
ferent browsers, as well as finer grain eye-movement data
such as number of nodes looked at, number of revisitations
per node, or direction of eye gaze. Then, based on these
data, we built a detailed cognitive model of navigation in



DOI trees. The cognitive model took into account complex
visual search phenomena, as well as semantic aspects of the
information processing. One of the advantages of cognitive
modeling is that it provides a very well defined theory of
the process that users go through; based on that theory, the
interface designers can make low-cost predictions about new
designs that conform to the assumptions of the model and
they can also evaluate the quality of their design based on
those features that the model deems most determining of
human performance.

One of the problems in evaluating interfaces or in devising
computational models of browsing is an automatic measure
of information scent: how do we know which nodes look
highly relevant to people? Often designers’ intuitions do not
match the other people’s intuitions. This paper describes a
way of automatically determining scent in an ontological hi-
erarchy. Our method essential involves extracting category
relationships from a large corpus (in our case the corpus that
Google makes accessible through their API ).

Next we briefly review two concepts that are central to this
study: degree-of-interest trees and information scent.

1.1 Degree of Interest Trees
Degree of Interest (DOI) trees were introduced first by [4];
they are an instance of focus + context visualization and use
degree-of-interest calculations to decide what gets displayed
on the screen. Figure 1a shows a degree of interest tree
that represents an ontological hierarchy of concepts. The
hierarchy was first used in the Great CHI’97 Browse-off [11].
In Figure 1 the node in focus is Artificial, the node that
was last clicked by the user. Note that only the nodes close
(in terms of tree distance) to the node in focus or to its
ancestors are displayed. For instance, the children of the
node Science are not displayed in this image because they
are at a distance higher than 2 from the path from root to
the node in focus. Also note that, whereas various parts of
the tree are shown in different detail, the overall structure
of the tree is also visible.

Compare this browser with a traditional Windows-Explorer–
like type of file browser (henceforth called Explorer). Fig-
ure 1b shows the image that the user sees after clicking on
the node Artificial in an Explorer browser. Fewer nodes are
displayed in this image and the user cannot really get any
sense about the kind of information hidden under the other
labels except from the ones he has already clicked. The tree
structure looks harder to grasp in this display too.

The assumptions underneath the DOI tree visualization are
(1) that the users will navigate more easily through the in-
formation structure because its skeleton is clearly exposed;
and (2) that they will learn faster about the information in
the tree, because more (possibly unnecessary) information
is available to them.

1.2 Information Scent
Throughout the paper we refer to the following search task:
find the node with the label A in a hierarchical ontology, as
displayed by some browser. We sometimes abbreviate this
task as find A. A is called the target node. In solving this
task, the user has to click on a sequence of nodes to find the

descendants of those nodes that are not already displayed
on the screen.

To understand how the semantic quality of the labels affects
the navigation, we looked at two kinds of tasks that differed
in how predictable the path to the target was: tasks with
high information scent and tasks with low information scent.
Information scent [12] is the “perception of the value, cost,
or access path of information sources, obtained from prox-
imal cues such as bibliographic citation, WWW links, or
icons represented the sources.” In other words, in a search
tasks, the information scent of a label is an informal esti-
mate of the likelihood that the label hides the target node.
The information scent captures the semantic aspect of the
decision making in search. What does it mean for a search
task to be high or low scent? A task is high scent if all
the labels on the path to the solution have high scent; it is
low scent if at least some of these labels are low scent. For
instance, for the search task find a banana in an ontology
like the one in Figure 1, the path to the node banana is
Categories → Things → Natural → Vegetable → Fruits →
Tropical → Banana, so the task is high scent because all
nodes on the path make sense. However, our ontology is
not perfect: an item such as Library of Congress is under
Categories → People → Specific People → Organizations →
Governmental → United States → Legislative Branch → Li-
brary of Congress; this task is low scent because it is less
intuitive that Library of Congress should be under the la-
bels People or Specific People. Because intuition is hard to
capture, in our experiments we actually use human ratings
to decide whether a task is low or high scent.

1.3 Overview
In the remainder of the paper we describe an experiment
in which we collected data about people browsing through a
DOI browser and an Explorer browser; next we discuss a way
to calculate automatically information scent, and finally, we
present our cognitive model for DOI tree navigation.

2. EXPERIMENT
As discussed in the introduction, the DOI tree is a clever
visualization that seems to promise substantial performance
gains for its users. In this experiment we wanted to gather
data to support or invalidate this hypothesis. Specifically,
we looked at how participants performed low- and high-scent
search tasks using two browsers: a DOI browser (see Fig-
ure 1a) and a traditional, Explorer browser (see Figure 1b).
We collected a multitude of measures for these tasks: re-
action times, mouse movements and clicks, eye movements,
but we do not discuss all of them in this article.

2.1 Method
Participants. Eleven participants were recruited from Stan-
ford University and from PARC; the participants from Stan-
ford were paid $40. Two additional recruits were eliminated
due to eye tracking problems.

Apparatus. We used the two browsers introduced before:
the DOI browser and the Explorer browser. An ISCAN RK-
426PC eye-tracker was used to record eye movements.

Materials. Thirty two search tasks were used. All these
tasks involved finding one or more nodes in the ontologi-



(a) (b)

Figure 1: Two different visualizations for the same ontological hierarchy: (a) DOI tree (b) Explorer.

cal hierarchy used in [13]. In this paper we only discuss
the 16 tasks that involved finding a single node in the hi-
erarchy. Out of the 16 tasks, 8 were low scent and 8 were
high scent. Examples of low scent tasks include find the Li-
brary of Congress (discussed in Section 1.2), find the play
Romeo and Juliet (the path to that node was Categories →
Things → Artificial → Intangible → Cultural → Literature
→ Examples → Plays → Shakespeare → Romeo and Juliet).
Beside the banana example discussed in Section 1.2, other
instances of high-scent tasks were: find the Ebola virus (un-
der Categories →Things → Natural → Viral → Ebola) and
find the lobster (under Categories → Things → Natural →
Animals → Invertebrates → Arthropods → Crustaceans →
Lobster). All these tasks were used before in Experiment
1 from [13]. The decision whether a task was high or low
scent was based on normative data collected in [13]; in that
study participants were asked to report their familiarity with
each of the tasks and also to locate where the targets are
more likely to be found in the first four levels of the Great
CHI Browse-off ontology. The information scent score was
defined as the proportion of participants who correctly iden-
tified the location of the target item from looking at the four
upper tree levels. All the low scent tasks in our study had an
information score lower than 0.17; all the high-scent tasks
had an information score higher than 0.32. The number of
steps to the solution (i.e., solution path length) did not differ
significantly for the two types of tasks (7.87 steps for high
scent and 8.25 steps for low scent; t(14) = −0.35, p > 0.7).

Procedure. The participants proceeded through (a) a fa-
miliarization phase, (b) a practice phase, and (c) a test
phase. During the familiarization phase, the experimenter
walked the participant through two introductory practice
tasks demonstrating the basic functions of each browser.
During the practice phase, each participant completed two
practice tasks with each browser. The practice tasks were
conducted in the same manner as the experimental tasks,
but were not timed. After the practice tasks, the partic-
ipants’ eyes were tracked. A brief session was devoted to
calibrating the tracking system along a 9-point grid. Dur-
ing the test session, each participant completed the two sets

Table 1: Average response times (s) for the search
tasks.

Browser High Scent Low Scent
DOI 24.54 69.01
Explorer 28.42 59.83

of 32 tasks. For each participant, one test list was presented
with one browser, and then the second test list of 16 items
with the other browser. List order and browser order were
counterbalanced across participants. The presentation or-
der of test items within each list was randomized for each
participant.

2.2 Results and Discussion
Our design was a repeated measure design. As suggested by
Lorch and Myers [10], in order to make sure that all the error
terms are taken into account, the correct statistical method
to analyze this kind of design is to run separate regressions
on the data from each subject that include all the variables
of interest. Then, for each variable, one should use a t-test
to check if the regression coefficients from all subjects are
significantly different from 0.

Response Times. Response times for trials in which the
participant did not complete the task or were greater than
300s were replaced with the participant’s mean response
time. In what follows we only report analyses for the 16
tasks that involved a single retrieval.

The average response times are shown in Table 1. The re-
gressions indicated that the only significant variable that
affected the response times was the scent (t(10) = 3.75, p <
0.05): participants completed the high scent tasks faster
than the low scent tasks. The browser had no effect on how
fast the participants performed the tasks (t(10) = −1.23, p >
0.2). Moreover, unlike in studies of the hyperbolic browser,
where a slight facilitation was found for low scent tasks [13],
there was no interaction between the scent and the browser
type; namely, participants did not behave differently for dif-



ferent types of tasks in different browsers. The lack of a
browser effect contradicted the common sense expectation
that the DOI tree may actually facilitate search due to more
nodes being exposed to the participants.

In what follows, we explore some other measures of partic-
ipants’ performance in an attempt to understand why no
performance difference was obtained for the two browsers.

Number of nodes visited. When we looked at the num-
ber of nodes visited (i.e., number of distinct nodes either
looked at or clicked on) by each participant in each tasks,
we found that there were far fewer nodes visited in the Ex-
plorer browser (on average, 53 nodes per task) than in the
DOI tree browser (80 nodes). This effect was significant
(t(10) = −4.47, p < 0.005). Also, the number of nodes vis-
ited in the high scent task was lower than for the low scent
tasks (47 versus 85 nodes: t(10) = 4.21; p < 0.005), confirm-
ing our intuition that the low scent tasks were harder and
that the participants had to wander around quite a while
until they found the correct path. The interaction between
browser and scent was not significant.

Finding that people visit more nodes in the DOI tree is not
surprising: by definition, the DOI tree attempts to expose
the users to as much as possible relevant information. How-
ever, the fact that they are not faster with DOI browser sug-
gests that this extra amount of information possibly means
time needlessly spent.

Average Revisitation. We also looked at how many times
a participant revisited the same node on average. People
tended to revisit more nodes in the Explorer than in the
DOI browser (t(10) = 4.34; p < 0.005): on average they re-
visit a node about 6.6 times in the DOI tree, as indicated
by the mouse clicks and eye movements. The same number
is 8.15 for the Explorer. Since each revisit costs the partic-
ipants time and based on the number of nodes visited, one
can hypothesize that the time spent in the Explorer for re-
visitation (needed to backtrack when a wrong path has been
taken) is actually used in the DOI browser for visiting new
nodes. So in fact people do get some extra knowledge of the
information structure with the DOI tree; however, getting
that extra knowledge acts as a distraction at the level of
task completion.

Distance to Solution Path. Since participants tended to
wander more (i.e., visit more nodes) in the DOI browser, we
wanted to see how far apart from the solution they actu-
ally got. We looked at the average distance from the nodes
visited to the actual solution path1. Not surprisingly, par-
ticipants went further away from the solution path in the
DOI browser (on average, 4.57 nodes away) compared to
the Explorer browser (only 3.96 nodes away). This differ-
ence was significant (t(10) = −6.59; p < 0.0001). Moreover,
in the high scent tasks participants wandered less from the
solution path (3.62 nodes on average) compared with the
low scent tasks (4.83 nodes). The scent effect was also sig-
nificant (t(10) = 4.2; p < 0.005).

1By distance from a node to a path in the tree we mean the
length of the minimum path from that node to a node on
the path to the solution.

Figure 2: The node Fishes acts as a distractor in the
task Find a lobster.

By examining these data and also the individual partici-
pants’ data we got more insights into the advantages and
disadvantages of the DOI tree. First, the DOI tree seemed
to be more forgiving if participants made a mistake. Namely,
even if the participants clicked on a wrong node, if the wrong
node was close to the correct one, clicking on that node
would also expand some of the children of the correct node
and would offer the opportunity to recover from that mis-
take. For instance, in Figure 1a, the participant looking
for the Ebola virus wrongly clicked on the node Artificial.
However, that click also expanded the children of the correct
node (Natural), thus giving the participant the occasion to
correct themselves and choose the correct node (i.e., Viral).
As seen from Figure 1b, in the Explorer browser this is not
possible because the children of Natural are not visible.

Whereas the DOI tree was more forgiving for users’ errors,
its visual characteristics also had a greater potential for dis-
traction. One example comes from looking at how partici-
pants completed the high scent task Find the lobster. Sur-
prisingly, this task took a lot more time in the DOI browser
(65s on average) than in the Explorer browser (only 25s).
When we examined the data, we noticed that participants
in the DOI browser tended to explore the node Fishes and
related nodes more than in the Explorer. One explanation is
that, because the node Fishes is visible on the screen early
in the task (even after clicking on the node Animals) and,
due to its high semantic similarity with lobster, it acts as a
powerful distractor. Fishes does not have the same visibility
in the Explorer, so users are less likely to make the mistake
of choosing it. Figure 2 shows an instance where the node
Fishes is displayed in a highly visible position.

These data indicated that, as suggested by our initial intu-
ition, a greater amount of information is exposed and pro-
cessed in the DOI browser. However, this extra information
has the potential of distracting the users in their search for
a solution to their query. It is interesting that although
people could theoretically choose to be efficient in the DOI
browser as in the Explorer (in the sense of not wandering
too much off the solution path), in some sense they cannot
help but absorb all the extra information that is available to
them. That process of gathering unneeded information com-
pensates for the potential time gains that the DOI browser



may bring. In the end, although different mechanisms may
characterize browsing in the two types of environment, the
DOI browser and the Explorer browser end up being about
the same in terms of efficiency.

Direction of eye movements and mouse clicks. Since
one of our principal interests was to understand how the
visual search interferes with the semantic aspects of the la-
bels in the DOI browser, we also analyzed the eye move-
ment data. We report here only the data from the DOI
browser. We split the eye movements and the mouse clicks
into two categories: movements/clicks made immediately
after the mouse had been clicked (i.e., immediately after
the screen has changed and new information has appeared
on the screen) and movements/clicks made in between two
mouse clicks, when the screen was static. We wanted to
understand whether there were any systematic patterns of
exploring the screen, so we analyzed the direction of the eye
movement/mouse click. We defined three directions: (1)
down, if the next action was on a node at a level lower in
the tree than the current node; (2) up, if the next action
was on a level higher than that of the current one; and (3)
lateral if the next action was at the same level.

We found that participants’ visual strategy was different
in the high and low scent tasks. Immediately after click-
ing the mouse, participants had a marginal tendency to
look up (i.e., back to the root) more in the low scent cases
(t(10) = 1.84, p < 0.1). After a given mouse click, the next
mouse click was more likely to be down in the tree for high
scent than for low scent tasks (t(10) = 4.93, p < 0.001) and
up or lateral in the tree for low scent tasks (up: t(10) =
−3.77; p < 0.005; lateral: t(10) = −4.37; p < 0.001). These
data showed that participants were more likely to follow the
path they were on in the high scent cases, whereas in the low
scent cases they may have preferred to go back or wander
around the tree more in search for a label with a stronger
scent.

In between mouse clicks, participants tended to look back
up in the tree more for low scent tasks than for high scent
tasks (t(10) = −1.93; p < 0.1). However, for both types
of tasks the majority of movements (more than 55%) were
made in the lateral direction (i.e., on the same tree level).

3. MODELING NAVIGATION
In this section we present an ACT-R [1] computational model
of navigation in degree of interest tree. The ultimate goal
of such a model is to capture the data at the very fine grain
level of eye movements. While we are not still at the stage
where we could report such an accomplishment, we believe
there are many lessons to be learned even from trying to
model participants’ data at a coarser grain level such as re-
sponse times and nodes clicked or looked at.

Our ACT-R model has two components: a visual search
component and a semantic component. The model first de-
cides which part of the screen it needs to focus on (based
mostly on visual cues such as screen position, density, etc.)
and then it examines the nodes in that part of the screen.
The node examination is based on a scent type of function:
for each node, it evaluates how good a match it is for this
particular target. Then it selects the best node and clicks

on it (exceptions may happen, though).

In the next section we discuss how we estimate the scent of
a particular node.

3.1 Estimating Individual Node Scent
The results of our experiment showed that semantic factors
(low versus high scent) are highly relevant for both low and
high scent tasks. We saw that people are faster for high than
for low scent task. Our assumption is that the high scent
targets are on tree paths with high scent nodes, that is, with
nodes that look highly relevant to the target (as opposed
to other nodes in the tree). But how do we estimate the
scent of a node (e.g, Vegetables or People) with respect to a
particular target (e.g., Banana)? One way is to ask people
directly. This is how it has been done in our experiment in
order to decide the scent of different tasks. However, the
ratings that were collected referred to only the first four
levels in our hierarchy. But when solving the task, since
a model (or a person) could get to a random point in the
tree, it would be useful to be able to estimate the scent of
any node in the tree with respect to the particular task.
There are about 7000 nodes in the tree, so it is not feasible
to collect human ratings for all those nodes and for all 16
tasks. Therefore, a method for automatically estimating
scent would be highly valuable.

Measures of semantic similarity may look as obvious choices
for estimations of scent. We first decided to look at LSA
[8] and PMI[15] as measures of semantic similarity. Both of
these measures essentially compute the similarity between
two words based on their co-occurrences in the same docu-
ments. They have been used in the past with success (e.g.,
[2]). Unfortunately, these measures proved to be quite poor
choices. Indeed, when we compared them with the human
data that we had collected, neither PMI or LSA fared well.
for (Out of the 16 targets, only once the humans’ top choice
matched one of these measures’ top choice.). But after look-
ing at the task in more depth, we realized that for our on-
tology similarity was not a fair measure of scent.

Here is why. Imagine that you had to answer the question:
“under which of these labels is it more likely to find the la-
bel banana: people, places, things or monkeys”? Probably
you would pick up things. However, in sentences we of-
ten encounter banana and monkeys or even people together,
perhaps because people and monkeys usually eat bananas
or because people slip on banana peels. That kind of co-
occurrence would be captured by LSA or PMI; one may
think of it as measuring semantic associatedness.

So, we thought that instead of picking on associatedness
cues, in a search task people may actually pick on category
membership. Is banana a thing more than a place, a mon-
key or a person? Unfortunately, although there are quite
a few programs that automatically discover hypernymy, to
the best of our knowledge there is none that answers this
kind of question.

With that in mind, we decided to build our own program.
Much of the work on automatic hypernym discovery [6, 14]
relies on the observation that there are certain textual pat-
terns that mark the description of a category relationship



(e.g., banana is a (kind/type of) fruit, fruits such as ba-
nanas, fruits especially banana, fruit called banana). We do
not have a corpus rich in such examples (and that is one of
the problems of automatic hypernym discovery research), so
we decided to use the Google’s corpus (available via Google
API) to collect data about the number of co-occurrences of
such strings. For each of our tasks we generated a Google
query2). This is an example: ”arthropods including lobster”
OR ”arthropods including lobsters” OR ”arthropod especially
lobster” OR ”arthropods especially lobster” OR ”arthropods
especially lobsters” OR ”lobster is a kind of arthropod” OR
”lobster is a type of arthropod OR ”arthropods like lobster”
OR ”arthropod called lobster” OR ”arthropods called lob-
sters” OR ”lobster and other arthropods” OR ”lobsters and
other arthropods” OR ”lobster or other arthropods” OR ”lob-
sters or other arthropods” OR ”arthropod such as lobster OR
”arthropods such as lobster” OR ”arthropods such as lob-
sters” OR ”lobster is an arthropod” OR ”lobster an arthro-
pod”. Then we recorded the estimated number of results
that Google returned. (Note that this method is applicable
with any other big enough corpus and search engine.)

To estimate scent from the numbers returned from Google,
for each task we ranked the nodes in the reverse order of the
number of results and then assigned a co-occurrence rank to
each node. For each node we also computed PMI-like scores
by dividing the Google results to the frequency of the node
label (this frequency was obtained as the results returned
from querying Google with the node label — e.g., “lobster”
OR “lobsters”) and ranked these numbers in the same way,
from highest to lowest. Then we averaged the co-occurrence
and the PMI ranks to obtain a scent indicator3. This mea-
sure resulted in Google’s top choice agreeing with humans’s
top choice in 7 out of 16 tasks. Out of the remaining 9
tasks, six of them presented some overlap between Google’s
top three choices and humans’ top three choices. For only
three tasks there was no relationship between this method’s
top three choices and subjects’ top three.

3.2 Brief Introduction to ACT-R
ACT-R[1] is a production-system–based cognitive architec-
ture that has been extensively used to model various aspects
of human cognition, from memory and problem solving, to
language and web browsing. ACT-R resembles a program-
ming language in which all the constructs have some psy-
chological validity. For instance, once such construct is the
retrieval of a piece of information from memory. ACT-R
imposes various constraints on its constructs; for example,
the time needed for a retrieval operation is well specified;
also what kinds of items you can retrieve from memory at
any given moment. These constraints are backed by many
psychology studies and models of human cognition. All the
constructs in ACT-R can be put together in a program called
a computational model. A computational model for a task is
an ACT-R program that does the task and embodies a the-
ory about the mechanisms that humans deploy when solving
that task. Because ACT-R specifies a certain granularity

2In fact, each Google query needed to be split in several
queries due to Google-imposed constraints on the length of
the query.
3The actual scent indicator was the difference between a
large constant and that average, since we needed low rank
nodes to have high scent values.

,

Figure 3: Different proximity-based groups as de-
fined by our model.

(50ms) for the actions (called productions) inside a model
and because each other operation takes a certain (not nec-
essarily constant) time specified by the theory (retrieval,
moving of visual attention, key press, etc.), we can derive
quantitative predictions (i.e., response time, accuracy) from
the model and we can compare those predictions with hu-
man data.

ACT-R operates with two kinds of knowledge: declarative
and procedural. Procedural knowledge refers to actions that
we normally take to accomplish a task (e.g., turn on the
key in the ignition to start the car). Declarative knowledge
refers to facts that we know (e.g., that “Paris is the capi-
tal of France” or that “banana is a member of the category
fruits”). These facts are atomic “pieces” of memory called
chunks. Each chunk is characterized by an activation level
that reflects how often and how recently the chunk has been
used. Basic facts such as “1 + 2 = 3” typically have very
high activation, whereas more obscure facts (e.g., “Stravin-
sky composed The Nightingale”) may have low activation
levels. Activation characterizes how available that chunk
is: high activation chunks can be retrieved quickly, whereas
low activation chunks are harder to retrieve. When ACT-
R needs to retrieve information from memory, it picks up
the chunk that has the highest activation and that satisfies
the retrieval constraint. (For instance, assume that ACT-
R needs to retrieve the capital of China; there maybe two
chunks — one expressing the fact that “Beijing is the capital
of China” and another that “Peking is the capital of China”;
which one is retrieved depends on their relative activations,
which possibly differ from individual to individual.) Some-
times the activation of a chunk may be too low (under a
certain value called retrieval threshold) to be retrieved.

3.3 The Model
According to work in the visual search literature [9, 5], when
processing a visual scene, people often tend to group visual
items together, select one such group and attend the items
within it. The way these visual groups are formed may be
based on proximity or based on other common feature that
they share to a large degree (e.g., all gray items on a page
may form a group and all red items may form a different
group). In our model, we assume that the visual display is
partitioned according to (vertical) closeness. Figure 3 shows
an example of how the visual items are grouped together.
Given a display, the model selects the best group accord-
ing to several heuristics. Groups that contain nodes that
are children of the node clicked on are preferred; also sparse
groups [5] and groups close to the current eye position (i.e.,
the node that has been attended last). There is a certain



inhibition to return back to groups that were visited before.
ACT-R does not have such a grouping mechanism available;
we have explicitly implemented it. Once a group is selected,
the nodes within that group are attended one by one, from
top position to bottom position4. In agreement to the ACT-
R theory, the processing of each node includes three stages:
(1) finding the location of the next item; (2) attending that
location; (3) encoding the semantic information existent at
that location. This last step is equivalent with processing
the text of the label; it involves assessing whether the label
stands for a hypernym of the search target. The informa-
tion whether a word is a hypernym of another is encoded
in memory in the form of a chunk. The activation of that
chunk is proportional with the degree in which the search
target is a hyponym of the node (i.e., with the scent of the
node, as estimated through the Google search method dis-
cussed previously). If the node is a hypernym in a high
enough degree, that node will have an activation over the
retrieval threshold and will be retrieved. As the model scans
the nodes, if it does not encounter any hypernyms and if it’s
deep enough in the tree5, it decreases the probability of con-
tinuing to attend nodes in the same visual group. When all
the nodes in the group have been visited or when the prob-
ability of continuing becomes too low, the model makes a
selection: it chooses the node among the previously visited
nodes that is the best hypernym of the target6. If the model
can find a best hypernym in the current visual group, it is
the node that will be next clicked on. Otherwise, if no such
node exists or if the best hypernym is part of a different
visual group7 the model makes a probabilistic decision: ei-
ther leaves the group without clicking and looks for another
group to attend or returns to the best hypernym found so
far (if it is still displayed on the screen). The model then
goes back to selecting a visual group.

Occasionally, when expanding leaves in the hierarchy tree,
none of the nodes in the visual group is a hypernym (but
they can be members of the same category as the target).
For instance, when searching for bananas, one would come
across a visual group containing avocado, breadfruit, guava,
kiwi, papaya. For leaves (which are marked visually dif-
ferently than the interior nodes in the DOI visualization),
instead of category information, regular semantic similarity
(PMI scores) is used. The intuition is that if you are in a
part of the tree with leaves similar to what you are looking
for (e.g., papaya, kiwi when searching for banana), you are
more likely to encounter it than if you are around leaves

4Although we do not discuss this analysis in our experiment
section, this strategy is consistent with our eye movement
data. When doing a quadrant analysis of eye movements,
after a mouse click, the eyes tend to move first in the north-
east direction.
5The nodes that are close to the root are very general and
unrelated (e.g., level one contains nodes such as People,
Places, Events, Things. A node not being part of one of
these categories does not predict well whether it is going to
be part of another.
6The model attempts to retrieve a hypernym; due to the
ACT-R’s retrieval mechanism, the hypernym with the high-
est activation (i.e., highest scent with respect to that target)
is automatically retrieved.
7This is equivalent with the model remembering that else-
where it has met a better hypernym than any node in this
group.

that are completely unrelated (e.g., Aquarius, Aries, Can-
cer, Capricornus). Thus the model processes leaves slightly
differently than regular interior nodes. Instead of trying to
retrieve whether the leaf is a hypernym of a target or not,
it just assesses how similar the link is to the target. In a
given group, each time it meets a leaf with low similarity,
it decreases the probability to continue. If the probability
is too low, the model makes a selection (in case any hyper-
nyms were also included in that group) and/or switches to
a different visual group, as before.

Results of the simulations. As discussed in the begin-
ning of this section, we plan to refine this model to capture
subjects’ data at the level of eye movement sequences. Here
we present some of the results obtained so far regarding
response times and mouse clicks per task and we compare
these data with the human participants data.

Given that the model attempts to predict solution for com-
plex search problems and no correction to the model are
made when it makes a “wrong” move (i.e., a move that a
human did not do), even finding the solution to a problem is
a big accomplishment, especially in a world where the scent
of the nodes (as we computed them) can be only approx-
imations of the knowledge that people actually have. We
stopped the model after it ran 300s without finding a so-
lution. In this circumstances, the model found solutions to
11 out of the 16 tasks (7 high scent, 4 low scent). Part of
the problem was our estimation of hypernymy: for instance,
the phrase “crosscut saw is a type of < A >” is quite rare
even for the huge Google corpus. In such cases we tried to
estimate the hypernymy of the parts, but again “saw”, with
its more frequent verb meaning, drove us into problems.

When we looked at the response times, the model was able
to capture the difference between low and high scent task:
the high scent tasks took on average 41.17s and the low scent
tasks were slower: 74.88s for the model. (Human data can
be found in Table 1.) On average the model clicked on 69%
of the nodes that humans clicked on8. In the case of high
scent tasks, the model clicked on 68% of the nodes that the
participants clicked on; whereas this number was 73% for
the low scent tasks.

4. CONCLUSIONS
We have presented an experiment and a computational model
intended to understand how people navigate through large
hierarchical information structures such as DOI trees. The
experiment studied how people complete search tasks in two
browsers: a DOI tree browser and a Windows-Explorer like
browser. The results suggested that, in terms of task com-
pletion speed, the two browsers are not different. What
really made a difference in the task completion speed was
the semantic aspect captured by the information scent: how
well chosen were the labels for the nodes. People tend to
visit more new nodes in the DOI tree than in the Explorer
browser, whereas in the Explorer browser they tend to re-
visit the same nodes more. By displaying more information,

8But some of the clicks that only the model made are per-
fectly plausible: for instance, when searching for the Pawnee
Indian tribe it clicked on Native American, although it so
happened that none of the six participants who completed
that task clicked on that node.



the DOI browser seems to encourage users to wander more
off the solution path and to gather more knowledge than
necessary for task completion. In other words, what time is
lost with revisitation (due to backtracking) in the Explorer
browser it is spent with exploration of new, unnecessary
nodes in the DOI browser. Thus, the DOI browser may
prove beneficial over long term usage because it allows users
to gather more information about the hierarchy structure.
The DOI browser also allows users to recover more easily
when they made certain types of errors; however, it also can
distract the participants with highly salient but irrelevant
items that are placed close to the users’ focus of attention.

We also sketched an ACT-R computational model of navi-
gation in DOI trees. The model combined a detailed visual
strategy in which a region of the screen was located as rel-
evant with a semantic process that made the selection of
which node to click next. The semantic part of the model
was based on an automatic estimation of the information
scent of the nodes in the tree. In fact, one of the lessons
from this model is that, if you want to capture the human
performance even in the roughest detail (e.g., which tasks
get completed in a useful time) you need a good measure of
information scent. We settled on the a measure that cap-
tures the hypernymy relationship: in what degree the search
target A is member of the category denoted by the node label
B? That measure was computed by querying a large corpus
(in our case Google’s database) with queries describing cat-
egory membership. Whereas the model was able to capture
some of the aspects in the data (e.g., difference in response
times for low and high scent task), it is still work in progress.
We hope to look at finer grain measures such as individual
user performance and sequences of eye movements.

The ultimate goal of this paper was to understand the inter-
play between visual search and semantic information. We
noted earlier that information scent really plays the most im-
portant part in search. However (and our earlier stages of
the model stood proof for that), even good information scent
will not be able to salvage a poor search strategy. Simple
facts (such as the fact that people know that if they clicked
a node, they should attend to new parts of the screen first)
are not trivial to capture in a visual attention model when
the visual environment is so rich in items. Subtle semantic
cues interfere with the visual attention process (e.g., be-
fore, I clicked on a node that was uninteresting so the parts
around it on the screen will probably be uninteresting in the
future too; or, this node has high scent, therefore I should
attend to the visual group that contains its children first)
and are hard to capture in a model that has constraints on
the working memory capacity (how much information can
you remember about the many nodes on the screen?).

Stepping back into the world of focus + context visualiza-
tions, our results with the DOI tree browser corroborated
those in [13]: cramming more information on the screen does
not necessarily improve performance. Putting the right la-
bels on the information that you display is a better way to
speed up the task.
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