
Lock-Free Garbage Collection for Multiprocessors

Maurice P. Herlihy

Digital Equipment Corporation

Cambridge Research Laboratory

One Kendall Square

Cambridge, MA 02139

herlihy@crl.dec .com

Abstract

Garbage collection algorithms for shared-memory mul-

tiprocessors typically rely on some form of global syn-

chronization to preserve consistency. Such global syn-

chronization may lead to problems on asynchronous

architectures: if one process is halted or delayed, other,

non-faulty processes will be unable to progress. By

contrast, a storage management algorithm is loclc-j%ee if

(in the absence of resource exhaustion) a process that is
allocating or collecting memory can be delayed at any

point without forcing other processes to block. This

paper presents the first algorithm for lock-free garbage

collection in a realistic model. The algorithm assumes

that processes synchronize by applying read, write, and

compare&swap operations to shared memory. This al-

gorithm uses no locks, busy-waiting, or barrier synchro-

nization, it does not assume that processes can observe

or modify one another’s local variables or registers, and

it does not use inter-process interrupts.

1 Introduction

Garbage collection algorithms for shared-memory mul-

tiprocessors typically rely on some form of global syn-

chronization to preseme consistency. Shared memory

architectures, however, are inherently asynchronous:

processors’ relative speeds are unpredictable, at least

*Eliot Moss is supported by National Science Foundation Grant

CCR-8658074, by Digital Equipment Corporation, Apple Com-

puter, and GTE Laboratones.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to repubfish,
requires a fee and/or specific permission.

J. Eliot B. Moss*

Dept. of Comp. and Ltio. Sci.

University of Massachusetts

Amherst, MA 01003

moss@ cs.umass.edu

in the short term, because of timing uncertainties in-

troduced by variations in instruction complexity, page

faults, cache misses, and operating system activities

such as preemption or swapping. Garbage collection

algorithms that rely on global synchronization may lead

to undesirable blocking on asynchronous architectures

because if one process is halted or delayed, other, non-

faulty processes may also be unable to progress. By

contrast, a storage management algorithm is lock-free

if any process can be delayed at any point without forc-

ing any other process to block .1 This is a very strong

view of blocking, since even very short term locks could

lead to blocking in our sense. The benefit of this view

is that we can make a strong guarantee of progress if

a system is lock-free. This paper presents a lock-free

incremental copying garbage collection algorithm.

We note from the outset, however, that our garbage

collection algorithm, like any resource management al-

gorithm, blocks when resources are exhausted. In our

algorithm, for example, a delayed process may force

other processes to postpone storage reclamation, iil-

though it will not prevent them from allocating new

storage if any free storage is available. If that pro-

cess has actually failed, then the non-faulty processes

will eventually be forced to block when their remain-

ing free storage is exhausted. If halting failures are a

concern, then our algorithm should be combined with

higher-level (and much slower) mechanisms to detect

and restart failed processes, an interesting extension we

do not address here. Nevertheless, our algorithm toler-

ates substantial delays and variations in process speeds,

and may therefore be of value for real-time or “soft”

real-time continuously running systems.
Previous algorithms typically include two distinct

forms of synchronization. One is synchronization of

access, update, etc., to individual objects, which we

call local synchronization. For example, Halstead [Hal-

1Note that we do not use blocking to mean that ordinary execu-

tion, e.g., mutatorprocesses, stops during collection. In fact, we do

not make a mutator/collector distinction, as witl be seen.

@ 1991 ACM 0897914384/91 KO07J0229 $1.50

229

http://crossmark.crossref.org/dialog/?doi=10.1145%2F113379.113400&domain=pdf&date_stamp=1991-06-01

stead, 1985] uses short term locks on objects. The other

is some form of barrier for phases of the garbage collec-

tion computation and/or locks on such data structures

as a free list. This we call global synchronization. Our

algorithm is lock-free in both local and global synchro-

nization, and distinct techniques are used for each.

2 Model

There are three aspects to our model of memory: the un-

derlying shared memory hardware and its primitive op-

erations, the application level heap memory semantics

that we will support, and the structuring of the contents

of shared memory in order to support the application

level semantics.

2.1 Underlying Architecture

We focus on a multiple instruction, multiple data

(MIMI)) architecture in which n processes, executing

asynchronously, share a common memory. Each pro-

cess also has some private memory (e.g., registers and

stack) inaccessible to the other processes. The pro-

cesses are numbered from 1 to n, and each process

knows its own number, denoted by me. The primitive

memory operations are read, which copies a value from

shared memory to private memory, write, which copies

a value in the other direction, and compare&swap,

shown in Figure 1. We do nor assume that processes

can interrupt one another.

We chose the compare&swap primitive for two rea-

sons. First, it has been successfully implemented, hav-

ing first appeared in the IBM System/370 architecture

[IBM]. Second, it can be shown that some form of read-

modify-write primitive is required for non-blocking so-

lutions to many basic synchronization problems, and

that compare&swap is as powerful in this respect as

any other read-modify-write operation [Herlihy, 1991;

Herlihy, 1988]. Most multiprocessors, even ones based

on load/store architectures, have primitives of adequate
power. For example, the forthcoming MIPS II architec-

ture [Kilian, 1991] includes two relevant instructions,

Load Linked and Store Conditionally. The first does an

ordinary load but sets a special status bit in the proces-

sor called the LL bit. This bit is automatically cleared
if an underlying cache consistency protocol detects up-

dates that might affect the location previously loaded.

The Store Conditionally instruction, which is required

to store into the location previously loaded, performs

the store only if the LL bit is still set, and returns the

LL bit value. It is easy to implement any conditional or

unconditional, single memory location, read-modify-

write operation with these two instructions, including

compare&swap.

Note that we assume that compare&swap forces ap-

propriate cache consistency, not only for the location

updated, but also for most previous writes (certainly

writes to the same object, and possibly other writes to

shared memory as well). It is easy to examine our code

sequences and determine the exact cache consistency

re~uirements, so we omit the details.

compare&swap(w: word, old, new: value)

returns(boolean)

if w = old

then w:= new
return true

else return false

end if
end compare&swap

Figure 1: The Compare&Swap operation

2.2 The Application’s View

An application program has a set of private local vari-

ables, denoted by x, y, z, etc., and it shares a set of

objects, denoted by A, B, C, etc., with other processes.

To an application, an object appears simply as a fixed-

size array of values, where a value is either immediate

data, such as a boolean or integer, or a pointer to an-

other object. The storage management system permits

applications to create new objects, to fetch component
values from objects, and to replace component values

in objects. The create operation creates a new object of

size S,2 initializes each component value to the distin-

guished value nil, and stores a pointer to the object in a

local variable.

x := create (s)

The fetch operation takes a pointer to an object and art

index within the object, and returns the value of that

component.

v := fetch (x, i)

The store operation takes a pointer to an object, an
index, and a new value, and replaces that component

with the new value.

store (x, i, v)

We assume that applications use these operations in

a type-safe manner, and that index values always lie

within range.

2We assume that objects do not vary in size over time,

our techniques could be exten&d to support such a model.

though

230

In the presence of concurrent access to the same ob-

ject, the fetch and store operations are required to be

linearizable [Herlihy and Wing, 1990]: although exe-

cutions of concurrent operations may overlap, each op-

eration appears to take effect instantaneously at some

point between its invocation and its response. Applica-

tions are free to introduce higher-levels ynchronization

constructs, such as semaphores or spin locks, but these

are independent of our storage management algorithm.

2.3 Basic Organization

Memory is partitioned into n contiguous regions, one

for each process. A process may access any memory

location, but it allocates and garbage collects exclu-

sively within its own region. Locations in process p’s

region are local top, otherwise they are remote. Each

process can determine the process in whose region an

address x lies, denoted by owner (x). This division of

labor enhances concurrency: each process can make

independent decisions on when to start collecting its

own region and can use its own techniques for alloca-

tion. The region structure is also well-suited for non-
uniform memory access (NUMA) architectures (e.g.,

[BBN, 1985; Li, 1986; Pfister et al., 1985]), in which

any process can reference any memory location, but the

cost of accessing a particular location varies with the

distance between the processor and the memory mod-

ule.

An object is represented as a linked list of versions,
where each version is a contiguous block of words con-

tained entirely within one process’s region. Versions

are denoted by lower case letters a, b, c, etc. A version

includes a snapshot of the vector of values of its object,

and a header containing size information and a pointer

to the next version. Version a’s pointer to the next ver-

sion is denoted a.next. A version that has a next version

is called obsolete; a version that does not have a next

version is called current.
An object can be referred to by pointing to any of its

versions. The find-current procedure (Figure 2 locates

an object’s current version by chaining down the list

of next pointers until it reaches a version whose next
pointer is nil. The fetch and store procedures appear

in Figures 3 and 4. Fetch simply reads the desired

field from the current version. Store modifies the ob-

ject by creating and linking in a new current version3.
Later we will discuss how store can avoid creating new

versions. The store procedure is lock+-ee: an indi-

vidual process may starve if it is overtaken infinitely

often, but the system as a whole cannot starve because
one compare&swap can fail only if another succeeds.

3mi~ ~e,od cm ~Plement arbi~ atomic updates to a s@le

object, including read-modify-write operations, modifications of

multiple fields, and growing or shrinking the object size.

Any allocation technique can be used to implement cre-
ate; the details are not interesting because each process

allocates and garbage-collects its own region, so no

inter-process synchronization is required.

Multiple versions serve two purposes: first, they al-

low us to perform concurrent updates without mutual

exclusion [Herlihy, 1990], and second, they allow our

copying collector to “move” an object without locking

it. In Section 5 we discuss approaches to performing

updates in place.

find-current(x: object) returns(object)

while x.next # nil do

x := x.next

end while

return x

end find-current
—

Figure 2: Find-currenti locate current version of x

fetch(x: object, i: integer) returns(value)

x:= find-current (x)

return x[i]

end fetch
—.

Figure 3: Fetch: obtains current contents of a slot

store(x: object, i: integer, v: value)

temp := local space for new version
loop /* retry from here, if necessary */

x:= find-current (x)

for j in 1 to x.size do

tempti] := xfi]

end for

temp[i] := v

if compare&swap (x.next, nil, temp) then

return

end if

end loop

end store
—

Figure 4: Store: updates contents of a slot

3 The Algorithm

Our algorithm is an incremental copying garbage col-
lector in the style of Baker [Baker, 1978] as extended

to multiprocessing by Halstead [Halstead, 1985]. Ei~ch
region is divided into multiple contiguous spaces: a

single to space, zero or more j$-om spaces, and zercl or

more free spaces. Initially, a process’s objects reside

231

in from spaces, and new objects are allocated in the to
space. Ascomputation proceeds, theprocesses cooper-

ate to move objects from from spaces to to spaces, and

to redirect reachable pointers to the to spaces. Once it

can be guaranteed that there is no path from any local

variable to any version in a particular j?-om space, that

from space becomes free. When the storage allocated

in a to space exceeds a threshold, it becomes a fi-om
space, and a flee space is allocated to serve as the new

to space. This structure is standard for copying collec-

tors; our contribution is a lock-free implementation of

such a collector.

First, some terminology. A process j?ips when it

turns a to space into a from space. A version residing

in j-em space is old, otherwise it is new. Note that

an old version may be either current or obsolete, and

similarly for new versions. Further, it is possible for a

new version to have an old version as its next version.

Our procedures use the function old to test whether a

version is old. This function could be implemented by

associating an old bit with the space as a whole, or with

individual objects, or by maintaining a table mapping

memory pages to spaces.

Each process alternates between executing its appli-

cation and executing a scanning task that checks lo-

cal variables and to space for pointers to old versions.

When such a pointer is found, the scanner locates the

object’s current version. If that version is old, the ob-

ject is evacuated a new current version is created in

the scanner’s own to space.

A scan is clean with respect to process p if it com-

pletes without finding any pointers to versions in any of

p’s from spaces; otherwise it is dirty. A scan is done as
follows:

1.

2.

Examine the contents of the local variables. This

stage can be interleaved with assignments as long

as the variables’ original values are scanned before

being overwritten.

Examine each memory location in the allocated

portion of to space. This stage can be interleaved
with allocations, as long as each newly allocated

version is eventually scanned.

Scanning does not require interprocess synchronization.

How can we determine when a from space can be

reclaimed? Define a round to be an internal during

which each process starts and completes a scan. A clean

round is one in which every scan is clean and no process

flips. Our algorithm is based on the following claim:

once a process flips, the j?om space can be reclaimed

after a clean round starts and finishes.
How does one process detect, without locks or bar-

rier synchronization, that another has started and com-

pleted a scan? Call the detecting process the owner,

232

and the scanning process the scanner. The two pro-

cesses communicate through two atomic bits, called
handshoke bits, each written by one process and read

by the other. Initially, both bits agree. To start a flip,

the owner creates a new to space, marks all versions

in the old to space as being old, and complements its

own handshake bit. On each scan, the scanner reads

the owner’s handshake bit, performs the scan, and sets

its own handshake bit to the previously read value for

the owner’s bit. This protocol guarantees that the hand-

shake bits will agree again once the scanner has started
and completed a scan in the interval since the owner’s

bit was complemented. (Similar techniques appear in

a number of asynchronous shared-memory algorithms

[Afek et al., 1990; Peterson, 1983; Larnport, 1986].)

How does the owner detect that all processes have

started and completed a scan? The processes share an

n-element boolean array owner, where process q uses

owner[q] as its “owner” handshake bit. The processes

also share an n-by-n-element boolean array scanner,
where process q uses scanner~] [q] as its “scanner”

handshake bit when communicating with owner process

p. Initially, all bits agree. An owner q starts a round

by complementing owner[q]. A scanner p starts a scan

by copying the owner array into a local array. When

the scan is finished, p sets each scanner~][q] to the

previously saved value of owner[q]. The owner process

q detects that the round is complete as soon as owner[q]

agrees with scanner~] [q] for all p. An owner may not

start a new round until the current round is complete.

How does a process detect whether a completed

round was clean? The processes share an n-element

boolean array, dirty. When a process flips, it sets

dirty~] to true for all p other than itself, and when

a process finds a pointer into p’s from space, it sets

dirty~] to true. If a process’s dirty bit is~alse at the end

of a round, then the round was clean, and it reclaims its

from spaces. The process sets its own dirty bit to false
before starting each round.

We are now ready to discuss the algorithm in more

detail. To flip (Figure 5), a process allocates a new to

space, marks the versions in the old to space as old, sets

everyone else’s dirty bit, and complements its owner

bit. (A process may not flip in the middle of a scan.)

To start a scan (Figure 6), the process simply copies the
current value of the owner array into a local array. The

scanner checks each memory location for pointers to old

versions (Figure 7). When such a pointer is found, it sets

the owner’s dirty bit, and redirects the pointer to a new

current version, evacuating the object to its own to space
if the current version is old. When the scan completes

(Figure 8), the scanner informs the other processes by

updating its scanner bits to the previously-saved values

of the owner array. The scanner then checks whether a

round has completed. If the round is completed and the

scanner’s dirt y bit is false, the scanner reclaims itsfiom

spaces. If the round is completed but the dirty bit is

true, then the scanner simply resets its dirty bit. Either

way, it then starts a new scan.

flipo

mark versions in current to space as old
create new to space
foriinl tondo

if i # me then dirty [i] := true end if

end for

owner[me] := not owner[me]

end flip

Figure 5: Starting a flip

Scan-starto
foriinl tondo

Iocal-owner[i][me] := owner[i]

end for
end scan-start

Figure 6: Starting a scan

scan-value(x: object) returns(object)

if old (x) then dirty [owner (x)] := true end if

loop /* evacuate object if necessary */

x:= find-cttment (x)

if new (x) then return x end if

temp:= local space for new version
for j in 1 to x.size do

tempti] := xU]

end for

if compare&swap (x.next, nil, temp)

then return temp

else release space for new version
end if

end loop
end scan-value

Figure 7: Scanning a pointer

4 Correctness

For our algorithm there are two correctness properties of

interesfi safety, ensuring that the algorithm implements
the application-level model described in Section 2.2,

and liveness, ensuring that as long as processes continue

to take steps, then garbage is eventually collected. We

outline the arguments here; more details may be found

in &Ierlihy and Moss, 1992].

scan-endo

/* Notify other from spaces*/

foriinl tondo

scanner[i] [me] := local-owner[i]

end for

/* Did a round complete? */

if (b’i) scanner[i] [me] = owner[me] then

if not dirty[me] then

reclaim from spaces
end if
dirty[me] := false

end if

/“ start new scan*/

Scan-starto

end scan-end

Figure 8: Completing a scan

There are two safety properties to be demonstrated

that the implementations of the model’s basic operations

are linearizable, and that non-gmbage objects are never

collected. One way to show an operation implementa-

tion is Iinearizable is to identify a single primitive step

where the operation “takes effect” [Lamport, 1983]; in

this case the last access to the next field of an object is

such a primitive step.
The argument that only garbage is collected proceeds

by demonstrating these three claims:

Claim 1 Every process starts and completes at least
one scan during the interval between the start and end
of p’s clean round.

Claim 2 Every process starts and completes at least
one scan clean with respect to p during the interval
between the start and end of p’s clean round.

Claim 3 When a process reclaims a from space, no
path exists into that space porn any other process’s
local variables.

Liveness is shown by proving this claim:

Claim 4 If each process always eventually scans, then
some process always eventually reclaims its from

spaces.

5 Update in place

A significant obstacle to general practical use of our

algorithm is the requirement to create a new version
for each update. However, inspired by [Massalin and
Pu, 1991], we devised a very simple technique for up-

date in place using the cas-two operator, defined in

233

Figure 9. Later versions of the M68000 architecture

define a CAS2 instruction that implements this opera-

tor [Motorola, Inc., 1989], so our algorithm is practical,

at least on that architecture. The cm-two operator may

be difficult to incorporate smoothly into RISC architec-

tures; for example, the previously mentioned MIPS II

instructions are inadequate for implementing cas-two

directly.

compare&swap-two
(w1, w2: word, 01,02, nl, n2: value)

returns(boolean)

ifwl=olandw2=02

then W1 := nl

W2 := n2

return true

else return false

end if

end compare&swap-twoI

Figure 9: The Compare&Swap-Two operation

In using cas-two for update in place the idea is to

verify that the next pointer is still nil and to do the

update in the same atomic step. Figure 10 shows the

revised store routine. Note that versions are still needed

for garbage collection, and are permitted, but no longer

required, for store operations. Making new versions

might be sensible, e.g., to increase locality on a NUMA

multiprocessor.

store-cas-two(x: object, i: integer, v: value)
100p /* retry from here, if necessary*/

x := find-current (x)

if cas-two (x.next, x[i], nil, x[i], nil, v) them

return

end if

end loop

end store-cas-two

Figure 10: Update in place using cas-two

Unfortunately, few architectures now include cas-
two. It is possible to allow a single writer, namely the

owner, to update in place by adding extra fields to each

object and requiring creators of new versions to exami-
ne the additional fields for a pending update. Another

approach is to abandon lock-free implementation of lo-

cal (per-object) synchronization, and to use short term
locks. Details are available in an expanded version of

the paper ~erlihy and Moss, 1992], which discusses

some additional extensions as well.

6 Related Work

Our algorithm is an intellectual descendant of Baker’s

single-processor algorithm [Baker, 1978], and can be

viewed as a lock-free refinement of Halstead’s multi-

processor algorithm [Halstead, 1985]. Our algorithm

differs from Halstead’s because it does not require pro-

cesses tos ynchronize when flippingfiotn and to spaces,

and we do not require locks on individual objects,

A number of researchers [Ben-Ari, 1984; Dijkstra

et al., 1978; Kung and Song, 1977] have proposed

two-process mark-sweep schemes, in which one pro-

cess, the mutator, executes an arbitrary computation,

while a second process, the collector, concurrently de-

tects and reclaims inaccessible storage. The models

underlying these algorithms differ from ours in an im-

portant respect: they require that the collector process

observe the mutator’s local variables, which are treated

as roots. Many current multiprocessor architectures,

however, cannot meet this requirement, since the only

way to copy a pointer is to load it into a private register,

and then store it back to memory, leaving a “window”

during which the collector cannot tell which objects are

referenced by the mutator. The problem is that one pro-

cessor generally cannot examine another processor’s

registers, and the registers are a crucial part of the state

of the mutator. These algorithms synchronize largely

through read and write operations, although some kind

of mutual exclusion appears to be necessary for the free

list and other auxiliary data structures. Pixley [Pixley,

1988] gives a generalization of Ben-Ari’s algorithm in

which a single collector process cleans up after mul-

tiple concurrent mutators. This algorithm, as Pixley

notes, behaves incorrectly in the presence of certain

race conditions, which Pixley explicitly assumes do not

occur. Our algorithm introduces multiple versions to

avoid precisely these kinds of problems.

The Ellis, Li, and Appel @311iset al., 1988] describe

the design and implementation of a multi-mutator,

single-collector copying garbage collector. This al-

gorithm is blocking, since processes synchronize via

locks, and flipping thefiom and to spaces requires halt-

ing the mutators and inspecting and altering their reg-

isters.

Massalin and l% [Massalin and Pu, 1991] describe
how to implement an operating system kernel without

locks. From them we realized the existence and useful-

ness of the cas-two operato~ they also appear to have

introduced the term lock-free. Beyond that there is little

similarity between our work and theirs since they were
considering lock-free solutions to different problems.

234

7 Conclusions

The garbage collection algorithm presented here is (to

our knowledge) the first shared-memory multiprocessor

algorithm that does not require some form of global

synchronization. The algorithm’s key innovations are

lock-free object operations for local synchronization

and the use of asynchronous “handshake bits” for global

synchronization, to detect when it is safe to reclaim a

space.

There are several directions in which this research

could be pursued. First, as noted above, although our

algorithm tolerates delays, it does not tolerate halting

failures, sincefiom space reclamation requires a clean

sweep from each process. It would be of great inter-

est to know whether halting failures can be tolerated

in this model, and how expensive it would be. Sec-

ond, our algorithm makes frequent copies of objects.

Some copying, such as moving an object from from
space to to space, is inherent to any copying collec-

tor. Other copying, such as moving an object from

one process’s to space to another’s, is primarily in-

tended to avoid blocking synchronization, although it

might also improve memory access time in a NUMA

architecture. The “pure” algorithm also copies objects

within the same to space, although this copying can

be eliminated by using a stronger operator (cas-two),

by adding extra fields (owner-only update in place), or

by locking individual objects. It would be useful to

have a more systematic understanding of the trade-offs

between copying, blocking synchronization, and the

power of synchronization operators. Third, it appears

that cas-two allows substantially more efficient imple-

mentation of our algorithms and it would be helpful

to have a precise formal characterization and proof of

this conjecture. Fourth, since our algorithms assume

enough resources are available to prevent blocking re-

sulting from resource exhaustion, it would be helpful

to have a quantitative analysis of the resources required

to prevent exhaustion, and a qualitative development of

reasonable assumptions leading to practical guarantees

that resources will not be exhausted. Finally, it would

be instructive to gain some practical experience with

this (or similar) lock-free algorithms. The version of

the algorithm that uses cas-two appears to be practical;

other ~ersions maybe Practical h- more limit~ circum-

stances, e.g., when

References

[Afek et al., 1990]

ob~ects are updated infrequently.

Y. Afek, H. Attiya, D. Dolev,

E. Gafni, M. Merritt, and N. Shavit. Atomic

snapshots. In Ninth ACM Symposium on Principles
of Distributed Computing (1990).

[Baker, 1978] Henry G. Baker. List processing in real

time on a serial computer. Commun. ACM .21,4
(Apr. 1978), 280-294.

[BBN, 1985] BBN. The uniform system approach to

programming the Butterfly parallel processor. Tech.

Rep. 6149, Bolt, Beranek, and Newman Adv.

Computers, Inc., Cambridge, MA, Oct. 1985.

[Ben-Ari, 1984] M. Ben-Ari. Algorithms for

on-the-fly garbage collection. ACM Trans.
Program. Lung. Syst. 6,3 (July 1984), 333–344.

[Dijkstra et al., 1978] E. W. Dijkstra, L. Lamport,

A. J. Martin, C. S. Scholten, and E. F. M. Steffins.

On-the-fly garbage collection An excercise in

cooperation. Commun. ACM 21, 11 (Nov. 1978),

966-975.

Ellis et al., 1988] John R. Ellis, Kai Li, and

Andrew W. Appel. Real-time concurrent collection

on stock multiprocessors, Tech. Rep. 25, Digital

Systems Research Center, 130 Lytton Avenue, Palo

Alto, CA 94301, Feb. 1988.

&Ialstead, 1985] R. H. Halstead, Jr. Multilisp: A

language for concurrent symbolic computation.

ACM Trans. Program. Lang. Syst. 7,4 (Oct. 1985),

501-538.

~erlihy, 1988] Maurice P. Herlihy. Impossibility and

universality results for wait-free synchronization.

In Seventh ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (Aug. 1988),

pp. 276-290.

~erlihy, 1990] Maurice P. Herlihy. A methodology

for implementing highly concurrent data structures.

In Second ACM SZGPLAN Symposium on
Principles and Practice of Parallel Programming
(Mar. 1990), pp. 197-206.

@erlihy, 1991] Maurice P. Herlihy. Wait-free

synchronization. ACM Trans. Program. Lang. Syst.
13,1 (Jan. 1991), 124-149.

~erlihy and Moss, 1992] Maurice P. Herlihy and

J. Eliot B. Moss. Lock-free garbage collection for

multiprocessors. IEEE Transactions on Parallel
and Distributed Systems (1992). To appear.

[Herlihy and Wing, 1990] Maurice P. Herlihy and

Jeannette M. Wing. Linearizabilty: a correctness
condition for concurrent objmts. ACM Trans.
Program. Lung. Syst. 12,3 (July 1990), 463-492.

[IBM] IBM. System/370 Principles of Operation.

Order Number GA22-7000.

235

[Kilian, 1991] Earl Kilian, Apr. 1991. Personal

communication.

[Kung and Song, 1977] H. T. Kung and S. W. Song.

An efficient parallel garbage collection system and

its correctness proof. In 18th Symposium on
Foundations of Computer Science (Oct. 1977),

pp. 120-131.

[Lamport, 1983] Leslie Lamport. Specifying

concurrent program modules. ACM Trans.
Program. Lung. Syst. 5,2 (Apr. 1983), 19W222.

~amport, 1986] Leslie Lamport. On interprocess

communication, parts I and II. Distributed
Computing 1 (1986), 77–101.

[Li, 1986] Kai Li. Shared Virtual Memory on Loosely
Coupled Multiprocessors. PhD thesis, Yale

University, New Haven CT, Sept. 1986.

[Massalin and Pu, 1991] Henry Massalin and Calton

Pu. A lock-free multiprocessor OS kernel.

Technical Report CUCS-005-91, Columbia

University, Department of Computer Science, New

York, NY, Mar. 1991.

[Motorola, Jnc., 1989] Motorola, Inc. M68000 Family
Programmer’s Reference Manual. Motorola,

Phoenix AZ., 1989. Document M68000PM/AD.

[Peterson, 1983] G. L. Peterson. Concurrent reading

while writing. ACM Trans. Program. Lang. Syst. 5,
1 (Jan. 1983), 4655.

~fister et al., 1985] Greg H. Pfister et al. The IBM

Research Parallel Processor Prototype (RP3):

Introduction and architecture. In International
Conference on Parallel Processing (1985).

Pixley, 1988] C. Pixley. An incremental garbage
collection algorithm for muhi-mutator systems.

Distributed Computing 3, 1 (Dec. 1988), 41-49.

236

