
A Framework for Unrestricted Whole-Program Optimization
Spyridon Triantafyllis Matthew J. Bridges Easwaran Raman Guilherme Ottoni David I. August

Department of Computer Science
Princeton University

{strianta,mbridges,eraman,ottoni,august}@princeton.edu

Abstract
Procedures have long been the basic units of compilation in con-
ventional optimization frameworks. However, procedures are typi-
cally formed to serve software engineering rather than optimization
goals, arbitrarily constraining code transformations. Techniques,
such as aggressive inlining and interprocedural optimization, have
been developed to alleviate this problem, but, due to code growth
and compile time issues, these can be applied only sparingly.

This paper introduces the Procedure Boundary Elimination (PBE)
compilation framework, which allows unrestricted whole-program
optimization. PBE allows all intra-procedural optimizations and
analyses to operate on arbitrary subgraphs of the program, regard-
less of the original procedure boundaries and without resorting to
inlining. In order to control compilation time, PBE also introduces
novel extensions ofregion formationandencapsulation. PBE en-
ablestargeted code specialization, which recovers the specializa-
tion benefits of inlining while keeping code growth in check.This
paper shows that PBE attains better performance than inlining with
half the code growth.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Procedures,
functions, and subroutines

General Terms Experimentation, Performance, Theory, Algo-
rithms

Keywords whole-program analysis, whole-program optimization,
interprocedural analysis, interprocedural optimization, procedure
unification, region-based compilation, region formation,region
encapsulation, specialization, superblock, inlining, path-sensitive
analysis

1. Introduction
Compiler support is essential for good performance on modern ar-
chitectures. In addition to the traditional tasks of simplifying com-
putations and eliminating redundancies, an aggressively optimizing
compiler must efficiently exploit complex computational resources,
expose instruction-level parallelism (ILP) and/or thread-level paral-
lelism (TLP), and avoid performance pitfalls such as memorystalls
and branch misprediction penalties. To meet these challenges, a
compiler relies on a rich set of aggressive optimization andanal-
ysis routines. However, traditional procedure-based analysis and
optimization approaches greatly hamper the ability of these rou-
tines to produce efficient code because the original breakupof a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI ’06 June 10–16, 2006, Ottawa, Canada
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

program into procedures serves software engineering rather than
optimization goals.

For example, procedure calls within loops can conceal cyclic
code from the compiler, hindering both traditional loop optimiza-
tions and loop parallelization transformations. Additionally, break-
ing up a computational task into many small procedures may pre-
vent a scheduling routine from constructing traces long enough to
provide sufficient ILP opportunities. This is only exacerbated by
modern software engineering techniques, such as object-oriented
programming, which typically encourage small procedures (meth-
ods) and frequent procedure calls.

To alleviate the inconvenient optimization scope of individ-
ual procedures, most modern compilers employ interprocedural
optimization and/or aggressive inlining. Interprocedural analysis
and optimization [13, 17, 19] vastly increase the amount andac-
curacy of information available to the optimizer, exposingmany
previously unavailable optimization opportunities. However, the
compile-time cost of these methods, both in terms of memory us-
age and time, increases dramatically with program size. As aresult,
interprocedural optimization is either sparingly appliedor omitted
entirely from commercial compilers. Inlining, originallyproposed
to limit call overhead, copies the bodies of selected procedures
into their call sites. This not only exposes more code to analysis
and optimization routines, it also allows the optimizer to special-
ize the callee’s code for each particular call site. Unfortunately, the
benefits of aggressive inlining come at the cost of extensivecode
growth. Since the adverse effects of code growth quickly become
prohibitive, many limitations are placed on the inlining routine. In
particular, inlining is usually limited to very frequentlyexecuted
call sites with very small callees. Section 2 will examine the bene-
fits and shortcomings of inlining and interprocedural optimization
in greater detail.

This paper introducesProcedure Boundary Elimination(PBE),
a compilation framework that allows unrestricted whole-program
optimization, to overcome the limitations of procedure-based
compilation. PBE begins withprocedure unification, which uni-
fies an application’s code into an analyzable and optimizable
whole-program control-flow graph(WCFG). Similar to Sharir and
Pnueli [19], this is achieved by joining the individual control-flow
graphs (CFGs) of the original procedures through appropriately
annotated call and return arcs. To make the WCFG freely opti-
mizable, PBE then takes several additional actions. Among other
things, calling convention actions are made explicit, local symbol
scopes are eliminated in favor of a program-wide scope, and the
stack-like behavior of local variables in recursive procedures is
exposed. The WCFG building phase is described in Section 3.1.

To avoid the costs of optimizing the whole program as a single
overly-large unit, PBE appliesregion formation[9, 20, 21]. This
partitions the WCFG into compiler-selected, arbitrarily shaped sub-
graphs whose nodes are deemed to be “strongly correlated” accord-
ing to some heuristic. These partitions are then completelyencap-
sulated, so as to be analyzable and optimizable as separate units.
For the purposes of optimization, this new partitioning of the pro-
gram is preferable to its original breakup into procedures because
regions, unlike procedures, are selected by the compiler for the
explicit purpose of optimization. To fit region formation into the

correctness and performance requirements of PBE, both the region
formation heuristics and the way regions are encapsulated were sig-
nificantly modified from related work. The PBE region formation
algorithm is discussed in Section 3.2.

Aggressive inlining realizes performance benefits not justby
expanding optimization scope, but also by specializing procedure
bodies to particular call sites. To recover these benefits, PBE in-
cludestargeted code specialization(TCS) routines in the optimiza-
tion process. Such routines duplicate code aggressively enough
to obtain significant specialization benefits, while limiting code
growth to where it is likely to be beneficial for optimization. A
detailed discussion of PBE’s code specialization routinescan be
found in Section 3.4.

After procedure unification, region formation, and targeted code
specialization, subsequent optimization and analysis phases are
presented with compilation units that are very different from pro-
cedures. PBE regions are multiple-entry multiple-exit, can have ar-
bitrary dataflow across their boundaries, and may contain call and
return arcs that have a many-to-many correspondence, as illustrated
in Section 4. Effective optimization requires that such compila-
tion units be accurately analyzed. The PBE analysis framework
achieves this by extending the interprocedural analysis algorithms
presented by Sharir and Pnueli [19].

The end result is that PBE obtains a superset of the benefits of
both interprocedural optimization and inlining, while avoiding ex-
cessive compile-time dilation, unnecessary code growth, and scal-
ability limitations. As Section 5 shows, PBE is able to achieve bet-
ter performance than inlining with only half the code growth. By
allowing the compiler to choose each compilation unit’s contents,
PBE ensures that each unit provides a sufficiently broad scope for
optimization, reducing the need for program-wide analysis. Ad-
ditionally, the compiler can control the size of regions so as to
strike a reasonable balance between optimization effectiveness and
compile-time dilation. By enabling fine-grained specialization de-
cisions, PBE avoids unnecessary code growth. PBE provides extra
freedom to both region formation and optimizations by enabling
optimization phases to deal with free-form compilation units, thus
realizing new optimization benefits that were not availablethrough
either inlining or interprocedural optimization.

2. Related Work
A significant body of prior work in the fields of interprocedural op-
timization and analysis, full and partial inlining, and region forma-
tion is related to PBE because of shared goals and methodologies.
This section describes this prior work and highlights how PBE dif-
fers from or expands upon it. A detailed discussion of related work
on code specialization methods can be found in Section 3.4.

2.1 Interprocedural Analysis and Optimization

When operating within a single procedure, a dataflow analysis rou-
tine generally computes a “meet-over-all-paths” solutionto a set
of dataflow equations. In contrast to this, aprecise (or context-
sensitive) interprocedural analysis routine has to compute a “meet-
over-all-realizable-paths” solution [13, 15, 17, 19]. A path on an in-
terprocedural control-flow graph is considered realizableif its call
and return transitions are in accordance with procedure call seman-
tics [19]. More precisely, on a realizable path a return edgecannot
occur without a matching call edge, and call and return edgeshave
to be properly nested. The interprocedural dataflow analysis prob-
lem is exponential in the general case [15, 19]. However, forthe
more limited class of analyses typically used in a general-purpose
optimizer, including the one presented in this paper, efficient algo-
rithms are available [4, 17]. As we will see in Section 4, the PBE
analysis algorithm expands on the works cited above.

Using the results of interprocedural analysis, some classical op-
timization routines can be performed interprocedurally (for exam-
ple, see [4, 18]). Obviously, an interprocedural optimization routine
is able to exploit many more optimization opportunities than its in-
traprocedural counterpart. However, compilers normally apply in-
terprocedural optimization to a very limited extent, and often not at
all. This is because of the superlinear complexity of interprocedu-
ral analysis and optimization routines, which makes it difficult to
apply them repeatedly to entire real-world programs without pro-
hibitive increases in compile time and memory utilization.Addi-
tionally, extending a variable’s live range across a call orreturn can
be tricky, as data exchange between procedures is normally pos-
sible only through the parameter-passing mechanism or through
memory-resident global variables. For this reason, optimizations
such as partial redundancy elimination or loop-invariant code mo-
tion are rarely applied interprocedurally. PBE overcomes this prob-
lem by eliminating special assumptions about procedure bound-
aries (Section 3) and addresses the problem of excessive compile-
time costs through region-based compilation (Section 4).

2.2 Inlining

Inline procedure expansion, or simply inlining, eliminates pro-
cedure calls by replacing selected call sites with copies oftheir
callees. Originally used to eliminate call overhead, inlining is ag-
gressively applied by many modern research compilers in order to
expose additional optimization opportunities [2, 5, 11]. The bene-
fits of inlining come from increasing the size of procedures,thus
expanding optimization scope, and from allowing code specializa-
tion by enabling the compiler to optimize the body of a calleeac-
cording to a particular call site. Although inlining provides signif-
icant performance benefits, it also causes excessive code growth.
Since traditional inlining can only copy entire procedure bodies, it
must duplicate both “hot” and “cold” code, despite the fact that the
latter is unlikely to offer any performance benefits. For example,
inlining experiments cited in Chang et al. [5] show a 11% over-
all performance improvement at the cost of 17% code growth. One
undesirable side effect of excessive code growth is that optimiza-
tion and analysis time may increase significantly. Hank et al. [9]
report a more than eightfold compile-time increase when 20%of a
benchmark’s call sites are inlined. To avoid these pitfalls, compil-
ers usually apply inlining only to very frequent call sites with very
small callees, thus limiting the technique’s applicability and value.

Partial inlining [8, 20, 21] alleviates traditional inlining’s code
growth problems by duplicating only a portion of the callee into
the call site. This is achieved by removing infrequently executed
parts of the callee and repackaging them as separate procedures.
Implementations of partial inlining in just-in-time compilers also
have the option of simply deferring the compilation of the callee’s
cold portions until they are first entered, which may never happen
in a typical execution [20]. By providing the compiler with more
flexibility as to which parts of the code are duplicated, partial in-
lining can strike a better balance between code growth and perfor-
mance improvement. However, this flexibility is limited in several
ways. If the cold code has to be repackaged as one or more proce-
dures, only single-entry, single-exit code regions can be excluded
from duplication. More general cold regions have to be converted
to single-entry single-exit form through tail duplication, which in-
troduces code growth with no performance benefits. Perhaps more
importantly, transitions from hot to cold code, which were origi-
nally intraprocedural, must be converted to calls and returns. Addi-
tionally, any data exchange between these two parts of the code has
to be implemented through parameter passing or global variables.
This makes these transitions much costlier, which in turn makes
partial inlining worthwhile only for procedures containing sizeable
parts of very infrequently executed code. This restrictionis even

more pronounced in [20], where a transition from hot to cold code
forces recompilation.

The drawbacks of inlining, either full or partial, essentially stem
from its procedure-based nature. Full inlining is constrained by the
fact that it can only duplicate whole procedures. Partial inlining is
more flexible, but it is also constrained by the fact that it must re-
sult in a program neatly divided into procedures. This is true even
for region-based partial inlining techniques, such as [20,21]. Al-
though these techniques form regions interprocedurally, they still
must copy and rearrange the code so that each region is entirely
contained in a single procedure when the partial inlining phase con-
cludes. This leads to the restrictions outlined above. By removing
procedure boundaries and allowing the compiler to operate on ar-
bitrary portions of the program, PBE removes these restrictions.

2.3 Region-Based Compilation

Region formation [9] was originally proposed to cope with the ex-
cessive compile-time dilation that occurs when optimizingthe large
procedure bodies produced by aggressive inlining. A regionis es-
sentially a compiler-selected, multiple-entry multiple-exit portion
of the procedure, which is analyzed and optimized in isolation.
This is made possible by properly annotating dataflow information,
mainly liveness and points-to sets, on a region’s boundaries, and by
teaching the rest of the optimization process to restrict itself to op-
erate within a single region at a time. Experiments by Hank etal. [9]
show that region-based compilation can achieve radically reduced
compile times at the cost of only minimal performance loss. Sub-
sequent research, such as [20, 21] discussed above, incorporates
region formation with full or partial inlining for greater effect.

PBE is also a region-based compilation technique. The crucial
difference with prior region-based techniques is that PBE-produced
regions can be arbitrary program segments, potentially spanning
parts of multiple procedures. In comparison, previous techniques
either form regions only within existing procedures [9], orform
regions across procedures but then apply inlining so as to eliminate
calls and returns within regions [20, 21], thus suffering from the
limitations discussed in Section 2.2. As we will see in Section 3.2,
the approach taken by PBE increases the compiler’s flexibility and
effectiveness, but also presents new challenges to the restof the
optimization process.

3. Procedure Boundary Elimination
PBE removes the restrictions that a program’s division intopro-
cedures imposes on optimization. Unlike current methods that ad-
dress this problem, such as inlining and interprocedural analysis,
PBE suffers neither from excessive code growth nor from exces-
sive compile time and memory utilization. The overall flow ofthe
compilation process in PBE can be seen in Figure 1.

A PBE compiler begins by applying the following three phases,
explained in detail in Sections 3.1 to 3.4.

Unification This phase merges the control-flow graphs (CFGs)
of individual procedures into a single, whole-program control-
flow graph (WCFG) and removes all assumptions about calling
conventions and parameter-passing mechanisms.

Region Formation This phase breaks up the WCFG into compiler-
selected optimization units, orregions, and encapsulates re-
gions appropriately so that they can be analyzed and optimized
independently.

Targeted Code Specialization (TCS)This phase is applied sepa-
rately within each region. It identifies sites in the region where
code specialization is likely to provide optimization opportuni-
ties and duplicates code accordingly.

Procedures

Region Formation

Regions

Link

Opti

Analysis

TCS

Opti

Analysis

TCSTCS

Analysis

Opti

Procedure Unification

WCFG

Executable

Figure 1. Overview of PBE compilation flow.

h()f(x,y)

f(a,2)

E

X

M NQ
f(i,5)

O

P

g()

(a) Before unification

R2

)
2

)

1
(

2
(E

X

M N

P

C1

R1

C2

1

(b) After unification

Figure 2. A code example (a) before and (b) after unification.

The above three phases produce compilation units that bear
little resemblance to procedures. Therefore, the most important
component of a PBE compiler is an optimization and analysis
process that can handle these constructs, covered in Section 4.

3.1 Procedure Unification

The purpose of procedure unification is to combine the individ-
ual control-flow graphs of a program’s procedures into a whole-
program control-flow graph (WCFG). This requires joining the
CFGs of individual procedures with control-flow arcs that repre-
sent call and return transitions. Due to the semantics of procedure
invocation, call and return arcs carry special semantic constraints.
On any path corresponding to a real execution of the program,suc-
cessive calls and returns must appear in a stack-like fashion, with a
return always matching the call that is topmost on the stack at each

X

p()

p()
B p()

q()

D
A

E

(a) Before unification

X

(

1
) 2

)

2
(E

C1

R1

B

R2

C2

1

(b) After unification

Figure 3. Recursive procedure (a) before and (b) after unification.

point. A call arc and a return arc are said tomatchif they come from
the same original call site. Following the conventions of the inter-
procedural analysis bibliography [19], these semantic constraints
are represented by annotating call and return arcs with numbered
open and close parentheses respectively. This notation is conve-
nient, as the matching between calls and returns on a valid program
path exactly follows the standard rules for parenthesis matching.

More specifically, unification begins by assigning unique num-
bers to all of the program’s call sites. LetCi be a call site for a pro-
cedurep, and letRi be the corresponding return site. LetEp be the
entry node (procedure header) ofp, andXp be the exit node (return
statement) ofp. In the WCFG, this calls is represented by two in-

terprocedural arcs: a call arcCi
(i→ Ep and a return arcXp

)i→ Ri.
These concepts are illustrated by the example in Figure 2. Fig-

ure 2a shows a small proceduref with two call sites, one in a “hot”
loop in procedureg, and a less frequently executed one in proce-
dureh. In this figure, and in the examples that follow, rectangular
boxes represent basic blocks. Frequently executed basic blocks are
shown with bold lines. Figure 2b shows the same code after unifi-
cation has been applied. As the figure illustrates, the validprogram

pathC1
(1
→ E → M → X

)1
→ R1 contains the matching parenthe-

ses(1)1, whereas the invalid pathC2
(2
→ E → N → X

)1
→ R1

contains the mismatched parentheses(1)2. The use of parenthesis
annotations in analysis will be presented in Section 4.

Perhaps more interesting is the example in Figure 3, which
shows the result of applying procedure unification to a recursive
procedure. After unification (Figure 3b), a single self-recursive call
appears as two loops: one loop for the recursive call, whose back

edge isC2
(2
→ R2, and one loop for the recursive return, whose

back edge isR2 → X. Moreover, it is easy to see that both
these loops are natural, since their headers dominate theirback
edges. In later compilation phases, both these loops can benefit
from optimizations traditionally applied to intraprocedural loops,
such as loop invariant code motion, loop unrolling, and software
pipelining. Although inlining can achieve effects similarto loop
unrolling by inlining a recursive procedure into itself, and certain
interprocedural optimization methods can achieve resultssimilar to
loop invariant code motion, the way recursion is handled in PBE is
clearly more general.

Apart from their matching and nesting constraints, call andre-
turn arcs also have other implied semantics very different from
those of intraprocedural arcs. Traversing a call arc normally im-
plies saving the return address, setting up a new activationrecord
for the callee, moving actual parameter values into formal param-
eters, and generally taking any action dictated by the calling con-
vention. Interprocedural optimizations respect these semantics and

work around them appropriately, although this complicatesor even
hinders their application. Respecting the calling convention is nec-
essary, since these routines must preserve a program’s division into
procedures. PBE takes the opposite approach. Since the restof the
compilation process does not depend on procedures and the con-
ventions accompanying them, all these implicit actions aremade
explicit in the program’s intermediate representation (IR). This
frees further optimization routines from the need to navigate around
calling conventions. For example, a redundancy elimination rou-
tine can now freely stretch the live range of a variable across a call
arc, without having to convert that variable into a parameter. As
an added benefit, the compiler can now optimize those actionspre-
viously implicit in calls with the rest of the code, reducingtheir
performance impact.

In order to make call and return arcs behave more like normal
arcs, unification applies the following transformations onthe pro-
gram’s IR.

• A single, program-wide naming scope is established for vari-
ables and virtual registers. This is accomplished by renaming
local variables and virtual registers as necessary. To avoid vio-
lating the semantics of recursive calls, placeholder save and re-
store operations are inserted before each recursive call and after
each recursive return. (Recursive calls and returns are simply
those that lie on cycles in the call graph). These operationsare
annotated with enough information to allow the code genera-
tor to expand them into actual loads and stores to and from the
program stack.

• Sufficient fresh variables are created to hold the formal param-
eters of every procedure. Then the parameter passing is made
explicit, by inserting moves of actual parameter values into for-
mal parameter variables at every call site. The return valueis
handled similarly. Later optimizations, such as copy and con-
stant propagation and dead code elimination, usually remove
most of these moves.

• Call operations are broken up into an explicit saving of the ad-
dress of the return node and a jump to the start of the callee
procedure. This is done because a call operation always returns
to the operation immediately below it. This in turn makes it
necessary for a return node to always be placed below its cor-
responding call node. By explicitly specifying a return address,
call and return nodes can move independently of each other.
This ensures that optimizations such as code layout and trace
selection can operate without constraints across call and return
arcs. It also allows code specialization routines to duplicate call
sites without having to duplicate the corresponding returnsites
and vice versa.

• Any actions pertaining to the program stack, such as allocating
activation frames, are made explicit in a similar way.

After unification concludes, further code transformationsare
free to operate on the whole program, without regard to the pro-
gram’s original procedure boundaries (except for the distinction
between realizable and unrealizable paths). Eventually, the opti-
mization process will result in code that looks very different from
traditional, procedure-based code.

3.2 Region Formation

After unification, the rest of the code transformations described
in this paper could operate on the whole program. Indeed, this
would enable these transformations to achieve their maximum per-
formance impact. However, such an approach would not be scalable
to even modestly sized programs. This is because most optimiza-
tion and analysis routines are super-linear, causing compile time
and memory utilization to increase very fast with program size.

Region formation solves this problem by breaking up the pro-
gram into more manageableregions, which are then analyzed and
optimized in isolation. Although breaking up the program into re-
gions is bound to cause some performance loss, the compiler is free
to decide the size and contents of regions according to its optimiza-
tion needs. Therefore, it is reasonable to expect that regions will
be superior compilation units to the program’s original procedures,
which are chosen according to criteria unrelated to optimization.
Indeed, previous research [9] indicates that performance loss due
to region formation is minimal.

The remainder of this section describes the profile-based region
formation heuristic used by our initial implementation of PBE,
presented in Section 5. This heuristic is very different from the
one originally proposed by Hank et al. [9]. Note, however, that the
PBE technique does not depend on any particular region formation
heuristic. Simpler or more sophisticated heuristics can beused,
depending on a compiler’s specific needs.

The region formation heuristic presented here has two basic
goals. The first is to produce regions whose size is neither too
much above nor too much below a user-specified size targetS. This
is because regions that are too big may overburden the optimizer,
while regions that are too small will expose too few optimization
opportunities. Second, transitions between regions should be as
infrequent as possible. This is because an inter-region transition
has some runtime overhead, much like the overhead that callsand
returns incur in procedure-based programs. This overhead comes
both from unrealized optimization opportunities spanningthe inter-
region transition and as a consequence of region-based register
allocation.

The first phase of the region formation heuristic is a greedy clus-
tering algorithm. The basic blocks of the WCFG are divided into
clusters. The size of a cluster is the total number of instructions
contained in its constituent basic blocks. These clusters are con-
nected with undirected weighted edges. The weight assignedto an
edge between two clusters is the sum of the profile weights of the
real CFG edges between blocks in the two clusters.

At the start of the formation process, each individual basicblock
will be in a separate cluster. Clusters are then repeatedly joined by
examining the edge with the highest weight. If the combined size
of the two clusters it connects is less than the size targetS, then the
two clusters are joined, with edges and edge weights being updated
accordingly. This phase of the algorithm terminates when nomore
clusters can be joined without exceeding the size target.

The clustering phase usually results in a number of regions
with size close toS centered around the “hottest” nodes of the
WCFG. However, as often happens with greedy algorithms, there
are usually many small one- and two-block clusters left in between.
Because the presence of too many small regions is undesirable,
there is a second phase to the heuristic. In this phase, any cluster
whose size is less than a certain percentageαS of the size target is
merged with the neighboring cluster with which its connection is
strongest, regardless of size limitations.

For the experimental evaluation presented in Section 5, we
settled on the valuesS = 500 instructions andα = 0.1 as a
good tradeoff between optimizability and compile-time dilation,
after trying several values. More details about the performance of
the region formation heuristic presented above can be foundin
Section 5.

3.3 Region Encapsulation

Once the WCFG has been divided into regions, the compiler must
transform each region into a self-contained compilation unit. As
described by Hank et al. [9], this can be achieved by annotating
the virtual registers that are live-in at each region entry and live-
out at each region exit. Analysis routines can then insert special

E

)
2

)

PE

C 2
(

1
(

RBRA

R

PX

1
)

2
)

E

X

Region

RYRX

Skeleton Edge

RBRA

1
)

2
)

RA RB

E

X

M N

Region

RYRX

X

M N

RYRX

Region

1

Figure 4. (a) A region formed around blocks from Figure 3b with
nodes for region entry and exit. (b) its program skeleton form,
with blocks M and N abstracted into a skeleton edge. (c) the
encapsulated form of the region.

CFG nodes before each entry and after each exit. These nodes will
appear to “define” live-in registers and “use” live-out registers re-
spectively. Optimization routines can then treat these special nodes
conservatively. For example, if a virtual register use has reaching
definitions from one of the special region entry nodes, it cannot be
a candidate for constant propagation. Similarly, if a virtual register
definition has an upward exposed use coming from one of the spe-
cial exit nodes, then that definition will never be considered dead.

There are two challenges in applying this region encapsulation
technique to PBE. The first is that the liveness of registers at region
boundaries has to be calculated in a program-wide analysis pass. As
program size grows, this pass can become prohibitively expensive.
To alleviate this problem, the PBE compiler performs this analysis
on an abbreviatedprogram skeleton, instead of analyzing the entire
WCFG. Since region encapsulation needs liveness information on
region entries and exits, such nodes have to be present in theskele-
ton. Also, since the PBE analysis presented in Section 4 needs to
match call and return arcs in order to produce accurate results, the
skeleton graph must also represent call and return arcs adequately.
Still, nodes inside a region that do not relate to calls, returns, or
region entries and exits can be abstracted away intoskeleton edges.
Therefore, the program skeleton consists of the following elements:

• Region entries and exits.

• The original WCFG arcs connecting region exits to region en-
tries.

• Call and return arcs, plus their source and destination nodes.

• Skeleton edges, which abbreviate the remaining nodes of the
WCFG. Such edges begin at region entries or destinations of
interprocedural arcs and end at region exits or sources of in-
terprocedural arcs. Skeleton edges are annotated with the vir-
tual registers that may be defined or used along the part of the
WCFG they represent.

N

1

1
(

2)

(
2

)1

P

C1

E

M

X

R1

C2

R2

E’

M’

X’

R1’

)

Figure 5. The code of Figure 2b after superblock formation.

Since a skeleton edge always represents a subgraph of the
WCFG that lies within the same region and does not contain calls or
returns, the annotations of skeleton edges can be easily computed
by applying a simple (intraprocedural) dataflow analysis pass sep-
arately within each region. After the annotations of skeleton edges
have been computed, a PBE analysis pass (see Section 4) on theen-
tire program skeleton can yield the liveness information for region
entries and exits. Since the vast majority of WCFG nodes havebeen
abstracted away by skeleton edges, analyzing the program skeleton
is much cheaper, and therefore more scalable, than analyzing the
entire WCFG. Figure 4 shows a region that has been conveted into
its program skeleton form. BlocksM andN are converted into a
single skeleton edge that summarizes their effects.

The second challenge is unmatched call and return arcs that
arise from regions selected independently of the program’spro-
cedures. PBE analysis routines, which rely on the proper match-
ing between calls and returns, can be confused by this. To avoid
this problem, a few special nodes are added to each encapsulated
region’s CFG. A nodePE is added to represent the program en-
try. This node is followed by a nodeC that has edges of the form

C
(i

→ C circling back to it, for every return annotation)i that ap-
pears in the region1. NodeC is then connected to all the entries of
the current region. Essentially, nodeC provides a matching call arc
for every return arc that may be unmatched in the region. Region
exits are handled in a symmetric way. Figure 4c shows a regionaf-
ter it has been encapsulated. Since return annotations)1 and)2 are
unmatched at the region entries, edges containing call annotations
(1 and(2 are added to C.

With regions thus encapsulated, further analysis and optimiza-
tion routines do not need to consider the entire WCFG, avoiding
scalability problems in further compilation phases.

3.4 Targeted Code Specialization

In order to match the performance benefits of aggressively inlin-
ing compilers, a PBE compiler must do more than choose the right
scope for optimization, as inlining’s benefits come not onlyfrom
increased optimization scope, but also from code specialization.
Unlike inlining, PBE does not cause any code growth while form-
ing compilation units. The code growth budget thus freed cannow

1 In fact,PE only needs a call annotation
(i
→ if)i appears in the region and

(i appears at an edge backwards-reachable from one of the region’s entries.
However, enforcing this distinction makes little difference in practice.

be devoted to more targeted code duplication techniques, which can
recover the specialization benefits of inlining with much more mod-
est code growth.

In general, a code specialization technique duplicates selected
code segments in order to break up merge points in the CFG.
These control-flow merges generally restrict optimizationby im-
posing additional dataflow constraints. After duplication, on the
other hand, each one of the copies can be optimized accordingto its
new, less restrictive surroundings. In this sense, both full and par-
tial inlining are code specialization techniques. Severalintrapro-
cedural code specialization methods have also been proposed [3,
6, 10, 12, 14], usually in the context of scheduling. Some of these
methods can be adapted to the specialization needs of PBE. Indeed,
PBE gives such methods new freedom, since it allows them to work
across procedure boundaries.

Superblock formation

Superblock formation [12] is perhaps the simplest and most pow-
erful specialization method. Using profile information, superblock
formation selects “hot” traces and eliminates their side entrances
through tail duplication. This tends to organize frequently executed
areas of the code into long, straight-line pieces of code, which are
particularly well-suited to both classical optimization and schedul-
ing. In the context of PBE, superblock formation can freely select
traces containing call and return arcs, which significantlyincreases
its impact. The effect of applying superblock formation to the code
example in Figure 2 can be seen in Figure 5. Excessive code growth
during superblock formation can be avoided by setting a minimum
execution thresholdw of blocks to use in superblock formation,
a limit a to the relative profile weight of branches followed, and
an overall code growth limitb. In the experimental compiler pre-
sented in Section 5,w was set to 100 anda was set to 80%. The
code growth factorb was set to 50%, although superblock forma-
tion usually stays well below this limit. This occurs for several
reasons. First, the execution threshold prevents superblock forma-
tion on cold code. Second, unbiased branches fall belowa, limiting
the scope of superblocks. Finally, because superblocks areacyclic,
backedges form a natural end point.

Area specialization

Sometimes it makes sense to duplicate portions of the code that
are more complicated than a trace. For example, we may want to
specialize an entire loop, or both sides of a frequently executed
hammock. For this reason, the PBE compiler presented in Section 5
also uses a method calledarea specialization. Like superblock
formation, this method is purely profile-driven.

Area specialization begins by identifying an important CFGarc
leading to a merge point. It then selects a subgraph of the CFG
beginning at the merge point. That subgraph is duplicated, so that
the chosen link has its own copy of the subgraph.

Let A be theduplication area, i.e. the set of basic blocks se-
lected for duplication. Thefrontier F of the duplication area com-
prises all basic blocks that do not belong toA and have an imme-
diate predecessor in A. That is:

F = {b | b 6∈ A ∧ ∃a : a ∈ A ∧ a → b}

Each blockb in F is assigned a frontier weightFW , which is the
sum of the profile weights of control-flow arcs beginning inside the
duplication area and ending atb. That is:

FW (b) =
X

a∈A

W (a → b)

whereW (x) is the profile weight ofx.
The algorithm that selects the duplication area proceeds asfol-

lows: First, the area contains only the merge pointm. In a se-

ries of repeated steps, the area is expanded by adding the frontier
block b for whichFW (b) is maximum. The expansion stops when
FW (b)/W (m) < α, whereα is a tuning parameter. In the exper-
imental evaluation of Section 5,α = 0.1. To avoid excessive code
growth, the entire area specialization phase stops when it duplicates
more than a certain percentageβ of the region’s code. In Section 5,
β = 50%.

The only remaining issue is to choose the merge point arcs for
which duplication areas are selected. Although this selection can
be done in many ways, for the evaluation of Section 5 we chose to
consider only call arcs. In a sense, this makes area specialization
work like a generalized version of partial inlining. We chose this
approach mainly because it makes the comparison between PBE
and inlining more straightforward.

Other specialization methods

Although the experimental PBE compiler presented in this paper
only employs area specialization and superblock formation, any
other specialization method that has been proposed in the intrapro-
cedural domain (especially [10] and [3]) can also be appliedin the
PBE compiler. Actually, any such method is bound to increaseits
impact in PBE, since PBE enables it to work across procedures.

4. Dataflow Analysis
A context-insensitivedataflow analysis routine could analyze the
WCFG without taking the special semantics of calls and returns
into account. However, the analysis results thus produced would
be too conservative. For example, such an analysis routine would
conclude that any definitions made in blockP of Figure 2b could
reach blockR2, although no valid program path fromP to R2

exists. In preliminary trials we found that the inaccuracies caused
by such an analysis approach have a serious detrimental effect on
several compilation phases, especially register allocation.

For this reason, we developed acontext-sensitiveanalysis ap-
proach for PBE. The PBE analysis algorithm presented in thissec-
tion is derived from thefunctional approachto interprocedural
analysis [19]. An analysis method following this approach works
by calculatingtransfer functionsbetween each procedure entry and
each CFG node in the procedure. When the transfer function be-
tween a procedure entry and its exit is discovered, it can be an-
notated onsummary edgeslinking each call site to that procedure
with the corresponding return site. Transfer functions on summary
edges essentially show how an analysis value is transformeddue
to a call. Therefore, the analysis value at a return site can be de-
termined by applying the transfer function of the corresponding
summary edge to the analysis value of the corresponding callsite.
The transfer function of a procedure depends on the transferfunc-
tion of its callees, therefore all such transfer functions have to be
calculated through simultaneous iteration. After this part of the cal-
culation is complete, the interprocedural analysis routine uses the
transfer functions between each procedure entry and each call node
in the procedure to determine the analysis values of all procedure
entries. After the analysis values of all procedure entriesare known,
the analysis values of all nodes can be trivially calculatedby apply-
ing the transfer functions from the corresponding procedure entry
to the node to the analysis value of the procedure entry. See [19]
and [17] for more information.

PBE analysis faces several challenges that are not present in a
classical interprocedural analysis and therefore are not handled by
the above algorithm. Since optimization routines are free to operate
along call and return arcs, these arcs may be eliminated, duplicated,
or moved. Thus the matching between call and return arcs willgen-
erally be a many-to-many relation. For example, in Figure 5,both

return arcsX
)1
→ R1 and X ′)1

→ R′
1 match the single call arc

C1
(1
→ E. This situation never appears in classical interprocedural

analysis, where call and return arcs always have a one-to-one corre-
spondence. (This is the case in Figure 2b, where optimizations have
not yet been applied.) Moreover, the free movement of instructions
across call and return arcs and the free movement of these arcs
themselves destroy the notion of procedure membership. Thus di-
viding the CFG into procedure-like constructs for the purposes of
analysis will also be a task for the analysis algorithm. The algo-
rithm presented in the rest of this section meets these challenges,
while staying as close as possible to the traditional functional inter-
procedural analysis algorithm.

In the following presentation, we will assume for simplicity
that we have a forward analysis problem, such as dominators or
reaching definitions. Backward analysis problems, such as liveness
or upwards exposed uses, can be treated in a symmetric way. In
the following discussion, the symbol⊔ will be used to denote the
analysis problem’s confluence operator. The same symbol will be
used for the confluence operator on the induced lattice of transfer
functions, defined simply as follows:

(F1 ⊔ F2)(x) = F1(x) ⊔ F2(x)

The symbol⊤ is used to denote the maximum element of the anal-
ysis problem’s lattice (normally used to signify an “uninitialized”
analysis value). The corresponding maximum element on the lattice
of transfer functions will beF⊤, defined as follows:

F⊤(x) = ⊤

Below we present the PBE analysis algorithm as a series of 8
steps. Of these, steps 1 to 5 have to do with the structure of the
CFG, and thus are independent of the specific analysis problem.
Therefore these steps only need to be calculated whenever the CFG
changes. Otherwise they can be reused for multiple analysisruns.

Step 1: CFG node classification

CFG nodes are classified according to whether they are sources or
destinations of call or return arcs. Thus, a node that is the source of
at least one call arc is acall site. A node that is the destination of at
least one return arc is areturn site. A node that is the destination of
at least one call arc is acontext entry. A node that is the source of at
least one return arc is acontext exit. In addition, the program entry
Emain (in a C program, the header of themain() function) will
also be considered a context entry. Similarly, the program exit Xmain

(the return statement ofmain()) will be considered a context exit.
Note that these definitions are not mutually exclusive. For example,
the nodeC used in region encapsulation (Section 3.3) is both a
context entry and a call site. Context entries and exits willplay
similar roles with those of procedure entries and exits in classical
interprocedural analysis.

Step 2: Creating context-defining pairs

A pair of nodes(E,X) is called acontext-defining pair(CDP) if
E is a context entry,X is a context exit, and at least one of the
call arcs ofE matches with some return arc ofX. That is, there

must exist a pair of edgesC
(i

→ E andX
)i

→ R for some value
of i. In a prepass, the PBE analysis algorithm identifies and stores
such pairs. For the rest of the algorithm, CDPs and the contexts
they define (see Step 4) will roughly play the role of procedures. In
this spirit, we call the nodeC above acall siteof (E, X) andR a
return siteof (E, X). Additionally, the special pair(Emain, Xmain)
will also be considered a CDP.

Step 3: Drawing summary edges

From here on, a path containing normal edges and summary edges,
but no call or return edges, will be referred to as asame-contextpath

(symbol:
SC
). A CDP (E,X) is calledproper if there is a same-

context pathE
SC
 X. For each such CDP, we will createsummary

edgesleading from call sites of(E, X) to the corresponding return
sites. More formally, if(E, X) is a proper CDP, then we will create

a summary edgeC
Si→ R for every pair of edgesC

(i→ E and

X
)i

→ R.
The PBE analysis algorithm discovers proper CDPs and draws

summary edges by repeatedly running a reachability algorithm that
discovers which nodes are reachable from each context entryalong
same-context paths. If a context exitX is reachable by a context
entryE, we check to see if a CDP(E, X) exists. If it does exist, this
CDP is marked as proper and the corresponding summary edges are
drawn. The reachability algorithm is rerun after the addition of the
new summary edges, possibly leading to more proper CDPs being
discovered and new summary edges being drawn. This process has
to be repeated until it converges.

Step 4: Discovering context membership

Each CDP(E, X) defines acontextCTE,X . We will say that a
nodeN belongsto a contextCTE,X iff there are same-context

pathsE
SC
 N andN

SC
 X. Obviously, the contexts of improper

CDPs will be empty. For the PBE analysis algorithm, context mem-
bership roughly corresponds to procedure membership in theclas-
sical interprocedural analysis algorithm. Note however that a node
can belong to more than one context. Since forward reachability
from context entries has already been calculated in the previous
step, a similar backward-reachability pass from context exits is run
to determine reachability fromX. Context membership canthen be
easily determined by combining these two reachability results.

Step 5: Building the context graph

Just as call relationships between procedures can be represented in
a call graph, reachability relationships between CDPs giverise to
a context graph. A directed edgeCTE1,X1

→ CTE2,X2
means

that there is a call siteC and a return siteR such that bothC
andR belong toCTE1,X1

and there is a call edgeC
(i→ E2 and

a matching return edgeX2
)i→ R. The CDP graph can be easily

calculated by going through the call and return edges in the WCFG
and combining them with the context membership information
from the previous step. The contextCTmain, corresponding to the
CDP(Emain, Xmain), will be the entry of the context graph.

Step 6: Computing same-context transfer functions

For every CDP(E, X), this phase calculates a transfer function
FE,N from the entryE to every nodeN ∈ CTE,X . This trans-
fer function will summarize the effect on the analysis values of all
the same-context paths linkingE andN . This is accomplished by
running a simple, meet-over-all-paths dataflow analysis pass on the
nodes of each context separately. Since this dataflow analysis runs
on same-context paths, which may contain summary edges, we will
need to assign transfer functions to summary edges for this process
to work. This is done as follows: Originally, every summary edge is
assigned the transfer functionF⊤. Whenever the transfer function
FE,X between the entry and the exit of a CDP is discovered, this
function is assigned to all summary edges belonging to that CDP.
Since these summary edges may be parts of same-context paths
in other contexts, they may affect the transfer functions ofother
CDPs, leading to the discovery of the transfer functions of other
summary edges. This process has to be applied iteratively until it
converges. This is similar to the phase in classical interprocedural
analysis that calculates the transfer functions between each proce-
dure entry and each node in the procedure.

Step 7: Computing context entry values

When Step 6 terminates, the compiler has the transfer function from
each context entry to every call site in that context. The compiler
can use this information to calculate transfer functions from context
entries to other context entries. For example, consider twocontexts
CTE1,X1

and CTE2,X2
such thatCTE1,X1

→ CTE2,X2
. Let

C1, C2, . . . , Cn be all the call sites that lead fromCTE1,X1
to

CTE2,X2
. That is, for everyCi there is a pathE1

SC
 Ci and a

call edgeCi
(i→ E2. Then the transfer function fromE1 to E2 is

the confluence of theFE1,Ci
transfer functions:

FE1,E2
=

G

i

FE1,Ci

Using these transfer functions, the compiler can calculatethe
analysis values at all entries. This is done by annotating each
transfer functionFE1,E2

on the corresponding edgeCTE1,X1
→

CTE2,X2
of the context graph, and then running an iterative

dataflow analysis pass on the context graph. This phase is similar
to the second phase in functional interprocedural analysis, which
calculates the analysis values at all procedure entries.

Step 8: Computing node values

Now, the compiler has the analysis values at all context entries
(from step 7) as well as all the transfer functions from context
entries to same-context nodes. Therefore, calculating theanalysis
values at all nodes is easy. Suppose that nodeN belongs to contexts
CTE1,X1

, . . . , CTEn,Xn
. Then its analysis value is:

vN =
G

i

FEi,N (vEi
)

Again, this is similar to the last phase in functional interproce-
dural analysis.

Complexity

For locally separable problems, efficient interproceduraldataflow
analysis has a complexity ofO(ED2) [17], whereE is the num-
ber of edges in the interprocedural CFG andD is the number of
dataflow “facts” (registers in liveness analysis, definitions in reach-
ing definitions analysis, etc.). For most analyses bothE andD are
O(n), wheren is the number of nodes in the CFG, resulting in a
worst-case complexity ofO(n3). In practice, the complexity of a
dataflow analysis is known to be roughly quadratic on the sizeof
CFG nodes.

As far as complexity is concerned, the crucial difference be-
tween PBE and classical interprocedural analysis is that, while in
the former case each CFG node belongs to a single procedure, in
the latter case each CFG node may belong to multiple contexts, thus
causing certain actions to be repeated (especially in Step 6). Thus
the resulting worst-case complexity of PBE would beO(αn3),
whereα is the maximum number of contexts any node in the CFG
belongs to. In the worst case,a = O(n). However, multiple con-
texts per node arise mostly due to the code specialization routines
in Section 3.4. Due to their targeted nature and their code-growth
limits, these routines are likely to leave most of the code alone, and
copy the rest of the code only a modest number of times. Thusa is
more likely to be a value only slightly greater than 1. To recap, PBE
analysis for locally separable problems has a worst-case complex-
ity of O(n4), but is expected to behave quadratically in practice.

5. Experimental Evaluation
In order to evaluate the ideas presented in this paper, we compared
the performance of a PBE-enabled compilation process to a process
using aggressive inlining. For that purpose we used our own exper-
imental compiler, called VELOCITY, combined with the IMPACT

research compiler [1]. IMPACT is the best-performing compiler for
the Itanium architecture. In our experimental setup IMPACTis used
as a front end, compiling C benchmarks to a low-level IR called
Lcode. Benchmarks used in the experiments were taken from the
SPEC CINT95 and CINT2000 benchmark suites.

Each benchmark is profiled using training inputs before be-
ing lowered. IMPACT also annotates Lcode with the results of
aggressive alias analysis [16], which are exploited in later op-
timization phases. Lcode is then used as input to VELOCITY,
which implements all further optimization and analysis routines.
VELOCITY contains an aggressive classical optimizer whichin-
cludes global versions of partial redundancy elimination,dead and
unreachable code elimination, copy and constant propagation, re-
verse copy propagation, algebraic simplification, constant fold-
ing, strength reduction, and redundant load and store elimination.
A local version of value numbering is also implemented. These
optimization routines are applied exhaustively. VELOCITYalso
includes superblock formation, superblock-based scheduling, and
register allocation. Finally, it performs inlining for oneset of exper-
iments, and unification, region formation, and area specialization
for the other. Whenever possible, the heuristics of the VELOCITY
compiler closely follow those of IMPACT, especially for inlining,
register allocation, and scheduling.

However, VELOCITY does not yet handle most of the advanced
performance features of the Itanium architecture, such as predica-
tion, control and data speculation, and prefetching. Also,the sched-
uler does not take bundling constraints into account. Finally, in the
above compilation process, both register allocation and scheduling
are performed assuming an Itanium 2 target machine.

Immediately after the Lcode is input into VELOCITY, it un-
dergoes a first pass of classical optimization. This “cleansup” the
code, making subsequent inlining and TCS heuristics more effec-
tive. From then on, each benchmark’s compilation follows three
different paths. In the first path no inlining or procedure unifica-
tion is performed. The results of this path form the baselinein our
measurements. In the second path, the code is subjected to a very
aggressive inlining pass, copied from the IMPACT compiler.The
third path represents PBE. Procedures are unified, the code is di-
vided into regions, regions are encapsulated, and an area special-
ization pass is applied. All three paths continue by applying su-
perblock formation, another pass of classical optimization, register
allocation, and scheduling.

0

2

4

6

O
ve

rh
ea

d
(%

)

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

16
4.

gz
ip

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip2

Geo
M

ea
n

Figure 6. Overhead of unification, region formation, region encap-
sulation, and area specialization as a percentage of total compila-
tion time.

Figure 6 shows the percent of total compile time spent perform-
ing unification, region formation, region encapsulation, and area
specialization. This is essentially the up-front overheadof applying
PBE. The full overhead of PBE, which also includes compile-time
dilation in later optimization phases, will be presented inFigure 10.

1.0

1.1

1.2

1.3

1.4

S
pe

ed
up

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

16
4.

gz
ip

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip2

Geo
M

ea
n

Inlining

PBE

Figure 7. Performance benefits of inlining and PBE on train-
ing inputs over strict procedure-based compilation (dynamic cycle
count).

1.0

1.1

1.2

1.3

1.4

S
pe

ed
up

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

16
4.

gz
ip

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip2

Geo
M

ea
n

Inlining

PBE

Figure 8. Performance benefits of inlining and PBE on training
inputs over strict procedure-based compilation (runtime perfor-
mance).

As seen in Figure 6, the initial phases of PBE consume between2%
and 5% of compile time, with a geometric mean of 3%. This shows
that the techniques discussed in Section 3 do not cause a large in-
crease in the compilation time. In particular, use of the program
skeleton during region encapsulation avoids the excessiveoverhead
that occurs when analyzing the whole program.

To measure the quality of the code produced, we collected the
dynamic cycle count and runtime performance numbers using train-
ing inputs. Training inputs were used to obtain an accurate asses-
ment of the capabilities of PBE versus inlining, avoiding the issues
of profile accuracy. The results were obtained by profiling orrun-
ning the application after all optimizations, translationto Itanium
code, and register allocation and scheduling were performed. To
obtain dynamic cycle count, the schedule height of each basic block
is multiplied with the block’s execution count. This is equivalent to
simulating the code on an Itanium-like uniform 6-wide VLIW ma-
chine with perfect cache and branch predictor behavior. Therun-
time performance numbers were collected usingpfmon [7]. Exe-
cutables were run on an HP workstation zx2000 with a 900Mhz
Intel Itanium 2 processor and 2Gb of memory running Redhat Ad-
vanced Workstation 2.1.

The results of the performance experiments are shown in Fig-
ures 7 and 8, representing dynamic cycle count and runtime per-
formance, respectively. Additionally, code size and compile-time
were measured. Figure 9 measures the code growth caused by in-

1.0

1.2

1.4

1.6

1.8

2.0
C

od
e

S
iz

e
In

cr
ea

se

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

16
4.

gz
ip

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip2

Geo
M

ea
n

Inlining

PBE

Figure 9. Code growth caused by inlining and PBE compared to
strict procedure-based compilation

2

4

6

8

10

C
om

pi
le

T
im

e
D

ila
tio

n

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

16
4.

gz
ip

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip2

Geo
M

ea
n

Inlining

PBE

Figure 10. Compile time dilation for inlining and PBE compared
to strict procedure-based compilation

lining and PBE compared to the baseline, while Figure 10 measures
the compile-time cost incurred by PBE and inlining over the base
compilation.

As the dynamic cycle count graph (Figure 7) shows, PBE per-
formance beats aggressive inlining, 15% vs. 13% on average.
PBE’s performance advantage is much more pronounced in cer-
tain individual cases, such as129.compress (32% vs. 19%) and
164.gzip (10% vs. 3.6%). Similar performance gains are shown
in the runtime performance graph (Figure 8), though the overall
speedup is about half the gain estimated from dynamic cycle count.

Most importantly, PBE achieves these performance benefits
with only about half the code growth of inlining, 23% vs. 45% on
average. This is important for several reasons. First, smaller code
can often lead to better instruction cache behavior. Second, un-
like experimental compilers such as IMPACT or VELOCITY, most
commercial compilers cannot tolerate code growth like thatcaused
by inlining in this experiment. As a result, the inlining heuristics
used in industrial compilers are much less aggressive. In such an
environment the performance gap between PBE and inlining would
be significantly bigger. These performance vs. code growth restric-
tions are even more pronounced in the embedded system domain,
often leading compiler writers to entirely forgo inlining.In this
setting, PBE may be the only way to extend optimization across
region boundaries.

Figure 10 shows that PBE does not incur prohibitive compile
time costs. On average, a PBE compilation is 70% slower than an
inlining compilation, which is itself twice as slow as the baseline.

Since Figure 6 showed that the overhead of PBE’s initial phases is
relatively small, most of this compile-time dilation can beascribed
to extra optimization and analysis effort within regions. Partly, this
variance in compile times (especially the extreme cases, such as
188.ammp) is due to the experimental nature of our compiler.
Like most experimental compilers, VELOCITY performs exhaus-
tive dataflow optimization and has to run several dataflow analysis
routines on entire procedures or regions before every optimization
routine. Most commercial compilers do not follow this approach
because it leads to compile-time volatility. Compile time limiting
techniques common in industrial-strength compilers, suchas lim-
iting most classical optimizations to within basic blocks or cap-
ping the number of optimization passes applied, could reduce the
compile-time gap further. However, such an approach would not al-
low us to evaluate the full performance impact of either inlining or
PBE, and thus would not be appropriate for a research experiment.

6. Conclusion
In this article, we presented Procedure Boundary Elimination, a
compilation approach that allows unrestricted interprocedural op-
timization. Unlike inlining, which can only extend the scope of
optimization by duplicating procedures, PBE allows optimization
scope and code specialization decisions to be made independently,
thus increasing their effectiveness. Unlike traditional interproce-
dural optimization, which is constrained by having to maintain a
program’s procedural structure and is too costly for extensive use,
PBE allows optimization to freely operate across procedures by
permanently removing procedure boundaries, and allows thecom-
piler implementor to balance performance benefits and compile-
time costs through region-based compilation. A preliminary experi-
mental evaluation of PBE shows that it can achieve the performance
benefits of aggressive inlining with less than half the latter’s code
growth and without prohibitive compile-time costs.

Apart from the PBE compilation technique itself, this paper
contains the following individual contributions:

• An extended interprocedural analysis algorithm, necessary for
processing PBE-generated flowgraphs (Section 4).

• Novel region selection and region encapsulation schemes (Sec-
tions 3.2 and 3.3).

• A novel code duplication method, appropriate for recovering
the benefits of aggressive inlining within the PBE framework
(Section 3.4).

In the future, we plan to evaluate more sophisticated regionfor-
mation methods, especially methods that concentrate on dataflow
properties instead of profile weights. In addition, we intend to in-
vestigate novel targeted code specialization methods to more ef-
fectively control code growth and/or increase performance. We are
also investigating the applicability of PBE to thread-level paral-
lelism extraction.

Acknowledgments
We thank the Liberty Research Group for their support and feed-
back during this work. Additionally, we thank Andrew Appel,
Sharad Malik, David Walker, Brian Kernighan for their help with
this work. Finally, we thank the anonymous reviewers for their in-
sightful comments. This work has been supported by the National
Science Foundation (NGS-0133712 and NGS-0305617) and Intel
Corporation. Opinions, findings, conclusions, and recommenda-
tions expressed throughout this work are not necessarily the views
of the National Science Foundation or Intel Corporation.

References
[1] AUGUST, D. I., CONNORS, D. A., MAHLKE , S. A., SIAS, J. W.,

CROZIER, K. M., CHENG, B., EATON, P. R., OLANIRAN , Q. B.,
AND HWU, W. W. Integrated predication and speculative execution
in the IMPACT EPIC architecture. InProceedings of the 25th
International Symposium on Computer Architecture(June 1998),
pp. 227–237.

[2] AYERS, A., SCHOOLER, R., AND GOTTLIEB, R. Aggressive
inlining. In ACM SIGPLAN ’97 Conference on Programming
Language Design and Implementation(June 1997), pp. 134–145.

[3] BODIK , R., GUPTA, R., AND SOFFA, M. L. Complete removal of
redundant computation. InProceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation
(June 1998), pp. 1–14.

[4] CALLAHAN , D., COOPER, K. D., KENNEDY, K., AND TORCZON,
L. Interprocedural constant propagation. InProceedings of the ACM
SIGPLAN’86 Symposium on Compiler Construction(July 1986),
pp. 152–161.

[5] CHANG, P. P., MAHLKE , S. A., CHEN, W. Y., AND HWU, W. W.
Profile-guided automatic inline expansion for C programs.Software
Practice and Experience 22, 5 (May 1992), 349–370.

[6] EICHENBERGER, A., MELEIS, W., AND MARADANI , S. An
integrated approach to accelerate data and predicate computations
in hyperblocks. InProceedings of the 33rd Annual ACM/IEEE
International Symposium on Microarchitecture(November 2000),
pp. 101–111.

[7] ERANIAN , S. Perfmon: Linux performance monitoring for IA-64.
http://www.hpl.hp.com/research/linux/perfmon/, 2003.

[8] GOUBAULT, J. Generalized boxings, congruences and partial
inlining. In First International Static Analysis Symposium(Namur,
Belgium, September 1994).

[9] HANK , R. E., HWU, W. W., AND RAU , B. R. Region-based
compilation: An introduction and motivation. InProceedings of
the 28th Annual International Symposium on Microarchitecture
(December 1995), pp. 158–168.

[10] HAVANKI , W. A. Treegion scheduling for VLIW processors.
Master’s thesis, Department of Computer Science, North Carolina
State University, 1997.

[11] HWU, W. W., AND CHANG, P. P. Inline function expansion
for compiling realistic C programs. InProceedings of the ACM
SIGPLAN 1989 Conference on Programming Language Design and
Implementation(June 1989), pp. 246–257.

[12] HWU, W. W., MAHLKE , S. A., CHEN, W. Y., CHANG, P. P.,
WARTER, N. J., BRINGMANN , R. A., OUELLETTE, R. G., HANK ,
R. E., KIYOHARA , T., HAAB , G. E., HOLM , J. G.,AND LAVERY,
D. M. The superblock: An effective technique for VLIW and
superscalar compilation.The Journal of Supercomputing 7, 1 (January
1993), 229–248.

[13] KNOOP, J., AND STEFFEN, B. The interprocedural coincidence
theorem. InProceedings of the 4th International Conference
on Compiler Construction(Paderborn, Germany, October 1992),
pp. 125–140.

[14] MAHLKE , S. A., LIN , D. C., CHEN, W. Y., HANK , R. E.,
BRINGMANN , R. A., AND HWU, W. W. Effective compiler support
for predicated execution using the hyperblock. InProceedings of
the 25th International Symposium on Microarchitecture(December
1992), pp. 45–54.

[15] MYERS, E. W. A precise inter-procedural data flow algorithm.
In Proceedings of the 8th ACM symposium on Principles of
programming languages(Jan. 1981), pp. 219–230.

[16] NYSTROM, E. M., KIM , H.-S., AND HWU, W.-M. Bottom-up
and top-down context-sensitive summary-based pointer analysis. In
Proceedings of the 11th Static Analysis Symposium(August 2004).

[17] REPS, T., HORWITZ, S., AND SAGIV, M. Precise interprocedural
dataflow analysis via graph reachability. InProceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages(June 1995), pp. 49–61.

[18] SANTHANAM , V., AND ODNERT, D. Register allocation across
procedure and module boundaries. InProceedings of the ACM
SIGPLAN 1990 conference on Programming language design and
implementation(June 1990), pp. 28–39.

[19] SHARIR, M., AND PNUELI , A. Two approaches to interprocedural
data flow analysis. InProgram Flow Analysis: Theory and
Applications, S. Muchnick and N. Jones, Eds. Prentice-Hall,
Englewood Cliffs, NJ, 1981, pp. 189–233.

[20] SUGANUMA , T., YASUE, T., AND NAKATANI , T. A region-based
compilation technique for a java just-in-time compiler. InProceedings
of the ACM SIGPLAN 2003 conference on Programming Language
Design and Implementation(June 2003), pp. 312–323.

[21] WAY, T., BREECH, B., AND POLLOCK, L. Region formation
analysis with demand-driven inlining for region-based optimization.
In Proceedings of the 2000 International Conference on Parallel
Architectures and Compilation Techniques(May 2000), p. 24.

