A Framework for Unrestricted Whole-Program Optimization

Spyridon Triantafyllis ~ Matthew J. Bridges

Easwaran Raman uili@rme Ottoni

David I. August

Department of Computer Science
Princeton University

{strianta,mbridges,eraman,ottoni,august} @princeton.edu

Abstract

Procedures have long been the basic units of compilatiomwnn ¢
ventional optimization frameworks. However, procedunestgpi-
cally formed to serve software engineering rather thamapttion
goals, arbitrarily constraining code transformationschreques,
such as aggressive inlining and interprocedural optirtrahave
been developed to alleviate this problem, but, due to codeitr
and compile time issues, these can be applied only sparingly

This paper introduces the Procedure Boundary Eliminaf@H)
compilation framework, which allows unrestricted wholegram
optimization. PBE allows all intra-procedural optimizais and
analyses to operate on arbitrary subgraphs of the progegard-
less of the original procedure boundaries and without tegpto
inlining. In order to control compilation time, PBE alsorioduces
novel extensions ofegion formationand encapsulationPBE en-
ablestargeted code specializatipmvhich recovers the specializa-
tion benefits of inlining while keeping code growth in chetkis
paper shows that PBE attains better performance thanriglimith
half the code growth.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—Compilers, Optimization; D.3Rd¢gram-
ming LanguagdsLanguage Constructs and Features—Procedures,
functions, and subroutines

General Terms Experimentation, Performance, Theory, Algo-
rithms

Keywords whole-program analysis, whole-program optimization,
interprocedural analysis, interprocedural optimizatiprocedure
unification, region-based compilation, region formatigegion
encapsulation, specialization, superblock, inliningthpsensitive
analysis

1. Introduction

Compiler support is essential for good performance on moder
chitectures. In addition to the traditional tasks of sirfyptig com-

putations and eliminating redundancies, an aggressiyigning

compiler must efficiently exploit complex computationadoarces,
expose instruction-level parallelism (ILP) and/or thréexkl paral-
lelism (TLP), and avoid performance pitfalls such as menstajls
and branch misprediction penalties. To meet these chaters
compiler relies on a rich set of aggressive optimization andl-
ysis routines. However, traditional procedure-basedyaismland
optimization approaches greatly hamper the ability of ehesu-
tines to produce efficient code because the original breakup

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 10-16, 2006, Ottawa, Canada
Copyright(© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

program into procedures serves software engineeringrrithe
optimization goals.

For example, procedure calls within loops can conceal cycli
code from the compiler, hindering both traditional loopiopza-
tions and loop parallelization transformations. Addiaty break-
ing up a computational task into many small procedures may pr
vent a scheduling routine from constructing traces longughdo
provide sufficient ILP opportunities. This is only exacesgshby
modern software engineering techniques, such as objesited
programming, which typically encourage small procedurastf-
ods) and frequent procedure calls.

To alleviate the inconvenient optimization scope of indivi
ual procedures, most modern compilers employ interprae¢du
optimization and/or aggressive inlining. Interprocedianalysis
and optimization [13, 17, 19] vastly increase the amount and
curacy of information available to the optimizer, exposmgny
previously unavailable optimization opportunities. Heee the
compile-time cost of these methods, both in terms of memery u
age and time, increases dramatically with program size.rasualt,
interprocedural optimization is either sparingly appledmitted
entirely from commercial compilers. Inlining, originalproposed
to limit call overhead, copies the bodies of selected procesl
into their call sites. This not only exposes more code toyaisl
and optimization routines, it also allows the optimizer peaal-
ize the callee’s code for each particular call site. Unfoatigly, the
benefits of aggressive inlining come at the cost of extensbae
growth. Since the adverse effects of code growth quicklyobec
prohibitive, many limitations are placed on the inliningitioe. In
particular, inlining is usually limited to very frequentlxecuted
call sites with very small callees. Section 2 will examine bene-
fits and shortcomings of inlining and interprocedural ojtattion
in greater detail.

This paper introduceBrocedure Boundary EliminatiofPBE),

a compilation framework that allows unrestricted wholegyam
optimization, to overcome the limitations of procedursdzh
compilation. PBE begins witlprocedure unificationwhich uni-
fies an application’s code into an analyzable and optimé&abl
whole-program control-flow grapWCFG). Similar to Sharir and
Pnueli [19], this is achieved by joining the individual critflow
graphs (CFGs) of the original procedures through apprtglyia
annotated call and return arcs. To make the WCFG freely opti-
mizable, PBE then takes several additional actions. Amdhgro
things, calling convention actions are made explicit, lagenbol
scopes are eliminated in favor of a program-wide scope, hed t
stack-like behavior of local variables in recursive prages is
exposed. The WCFG building phase is described in Section 3.1

To avoid the costs of optimizing the whole program as a single
overly-large unit, PBE appliegegion formation[9, 20, 21]. This
partitions the WCFG into compiler-selected, arbitrartgped sub-
graphs whose nodes are deemed to be “strongly correlatedfdxc
ing to some heuristic. These partitions are then completetap-
sulated, so as to be analyzable and optimizable as sepanitde u
For the purposes of optimization, this new partitioning e pro-
gram is preferable to its original breakup into proceduresabnise
regions, unlike procedures, are selected by the compilethi®
explicit purpose of optimization. To fit region formationtanthe

correctness and performance requirements of PBE, botleghenr
formation heuristics and the way regions are encapsulatee svg-
nificantly modified from related work. The PBE region fornoati
algorithm is discussed in Section 3.2.

Aggressive inlining realizes performance benefits not hyst
expanding optimization scope, but also by specializinggdore
bodies to particular call sites. To recover these benefB& B-
cludestargeted code specializatiqiiCS) routines in the optimiza-
tion process. Such routines duplicate code aggressivedyigin
to obtain significant specialization benefits, while lim@icode
growth to where it is likely to be beneficial for optimizatioA
detailed discussion of PBE’s code specialization routices be
found in Section 3.4.

After procedure unification, region formation, and targetede
specialization, subsequent optimization and analysisehare
presented with compilation units that are very differentdrpro-
cedures. PBE regions are multiple-entry multiple-exity bave ar-
bitrary dataflow across their boundaries, and may contdirand
return arcs that have a many-to-many correspondenceysisalied
in Section 4. Effective optimization requires that such poai

tion units be accurately analyzed. The PBE analysis framewo 22

achieves this by extending the interprocedural analysisrathms
presented by Sharir and Pnueli [19].

The end result is that PBE obtains a superset of the benefits o

both interprocedural optimization and inlining, while &iag ex-
cessive compile-time dilation, unnecessary code growtt,szal-
ability limitations. As Section 5 shows, PBE is able to avhibet-
ter performance than inlining with only half the code growBy
allowing the compiler to choose each compilation unit’steois,
PBE ensures that each unit provides a sufficiently broadestmp
optimization, reducing the need for program-wide analy8id-
ditionally, the compiler can control the size of regions sota
strike a reasonable balance between optimization effautiss and
compile-time dilation. By enabling fine-grained specialian de-
cisions, PBE avoids unnecessary code growth. PBE provides e
freedom to both region formation and optimizations by eimapl
optimization phases to deal with free-form compilationtsinihus
realizing new optimization benefits that were not availdbteugh
either inlining or interprocedural optimization.

2. Related Work

A significant body of prior work in the fields of interproceduiop-
timization and analysis, full and partial inlining, and i@gforma-
tion is related to PBE because of shared goals and methadslog
This section describes this prior work and highlights howERH-
fers from or expands upon it. A detailed discussion of relaterk
on code specialization methods can be found in Section 3.4.

2.1 Interprocedural Analysis and Optimization

When operating within a single procedure, a dataflow anahgsi-
tine generally computes a “meet-over-all-paths” solutiora set
of dataflow equations. In contrast to thispeecise (or context-

Using the results of interprocedural analysis, some aaksp-
timization routines can be performed interproceduraldy éxam-
ple, see [4, 18]). Obviously, an interprocedural optimimatoutine
is able to exploit many more optimization opportunitiestfta in-
traprocedural counterpart. However, compilers normatiglgain-
terprocedural optimization to a very limited extent, angtpfnot at
all. This is because of the superlinear complexity of intecgdu-
ral analysis and optimization routines, which makes it clififi to
apply them repeatedly to entire real-world programs withmo-
hibitive increases in compile time and memory utilizatiéwldi-
tionally, extending a variable’s live range across a catbturn can
be tricky, as data exchange between procedures is hormagly p
sible only through the parameter-passing mechanism ougfro
memory-resident global variables. For this reason, ogatons
such as partial redundancy elimination or loop-invariasdecmo-
tion are rarely applied interprocedurally. PBE overconmesprob-
lem by eliminating special assumptions about procedurendbou
aries (Section 3) and addresses the problem of excessivgileem
time costs through region-based compilation (Section 4).

Inlining
Inline procedure expansion, or simply inlining, elimiratpro-

fcedure calls by replacing selected call sites with copietheir

callees. Originally used to eliminate call overhead, iniinis ag-
gressively applied by many modern research compilers iardmd
expose additional optimization opportunities [2, 5, 11jeTbene-
fits of inlining come from increasing the size of procedurtbsis
expanding optimization scope, and from allowing code speéi-
tion by enabling the compiler to optimize the body of a caliee
cording to a particular call site. Although inlining proes! signif-
icant performance benefits, it also causes excessive casdhgr
Since traditional inlining can only copy entire proceduogies, it
must duplicate both “hot” and “cold” code, despite the faetttthe
latter is unlikely to offer any performance benefits. Forrapée,
inlining experiments cited in Chang et al. [5] show a 11% ever
all performance improvement at the cost of 17% code growtte O
undesirable side effect of excessive code growth is thamig-
tion and analysis time may increase significantly. Hank ef9l
report a more than eightfold compile-time increase when 20%b
benchmark’s call sites are inlined. To avoid these pitfaltsnpil-
ers usually apply inlining only to very frequent call siteghwery
small callees, thus limiting the technique’s applicapiiind value.
Partial inlining [8, 20, 21] alleviates traditional inlimj’s code
growth problems by duplicating only a portion of the calleéi
the call site. This is achieved by removing infrequently axed
parts of the callee and repackaging them as separate presedu
Implementations of partial inlining in just-in-time conbgris also
have the option of simply deferring the compilation of thées=ls
cold portions until they are first entered, which may neveypes
in a typical execution [20]. By providing the compiler withome
flexibility as to which parts of the code are duplicated, igait-
lining can strike a better balance between code growth arfdrpe
mance improvement. However, this flexibility is limited ieveral

sensitivg interprocedural analysis routine has to compute a “meet- ways. If the cold code has to be repackaged as one or more-proce

over-alltealizablepaths” solution [13, 15, 17, 19]. A path on an in-
terprocedural control-flow graph is considered realizabis call
and return transitions are in accordance with procedufeeaian-
tics [19]. More precisely, on a realizable path a return eclgeot
occur without a matching call edge, and call and return etiges
to be properly nested. The interprocedural dataflow arsjysib-
lem is exponential in the general case [15, 19]. Howevertter
more limited class of analyses typically used in a geneugbgpse
optimizer, including the one presented in this paper, efficalgo-
rithms are available [4, 17]. As we will see in Section 4, tlREP
analysis algorithm expands on the works cited above.

dures, only single-entry, single-exit code regions canxwuded
from duplication. More general cold regions have to be coede
to single-entry single-exit form through tail duplicatiomhich in-
troduces code growth with no performance benefits. Perhaps m
importantly, transitions from hot to cold code, which werégb
nally intraprocedural, must be converted to calls and nstuAddi-
tionally, any data exchange between these two parts of the lcas
to be implemented through parameter passing or globalblasa
This makes these transitions much costlier, which in turkaaa
partial inlining worthwhile only for procedures contaigisizeable
parts of very infrequently executed code. This restrici®even

more pronounced in [20], where a transition from hot to cade
forces recompilation.

The drawbacks of inlining, either full or partial, esselyiatem
from its procedure-based nature. Full inlining is consiedi by the
fact that it can only duplicate whole procedures. Partikiing is
more flexible, but it is also constrained by the fact that istme-
sult in a program neatly divided into procedures. This ig &uen
for region-based partial inlining techniques, such as PAQ, Al-
though these techniques form regions interprocedurdiby still
must copy and rearrange the code so that each region islgntire
contained in a single procedure when the partial inlininggghcon-
cludes. This leads to the restrictions outlined above. Byoéng
procedure boundaries and allowing the compiler to openataro
bitrary portions of the program, PBE removes these regirist

2.3 Region-Based Compilation

Region formation [9] was originally proposed to cope witk #x-
cessive compile-time dilation that occurs when optimizimglarge
procedure bodies produced by aggressive inlining. A regias-
sentially a compiler-selected, multiple-entry multigeit portion
of the procedure, which is analyzed and optimized in isofati
This is made possible by properly annotating dataflow infiam,
mainly liveness and points-to sets, on a region’s bounsiaaied by
teaching the rest of the optimization process to restisetfito op-
erate within a single region at a time. Experiments by Harak ¢9]
show that region-based compilation can achieve radicatiyiced
compile times at the cost of only minimal performance losth-S
sequent research, such as [20, 21] discussed above, ing@po
region formation with full or partial inlining for greateffect.

PBE is also a region-based compilation technique. The &ruci
difference with prior region-based techniques is that RB&duced
regions can be arbitrary program segments, potentiallyripg
parts of multiple procedures. In comparison, previous riggres
either form regions only within existing procedures [9],form
regions across procedures but then apply inlining so asrorelte
calls and returns within regions [20, 21], thus sufferingnfrthe
limitations discussed in Section 2.2. As we will see in Set8.2,
the approach taken by PBE increases the compiler’s fletyitaitid
effectiveness, but also presents new challenges to theféke
optimization process.

3. Procedure Boundary Elimination

PBE removes the restrictions that a program’s division o
cedures imposes on optimization. Unlike current methodsat-
dress this problem, such as inlining and interproceduralyais,
PBE suffers neither from excessive code growth nor from &xce
sive compile time and memory utilization. The overall flowtloé
compilation process in PBE can be seen in Figure 1.

A PBE compiler begins by applying the following three phases
explained in detail in Sections 3.1 to 3.4.

Unification This phase merges the control-flow graphs (CFGs)
of individual procedures into a single, whole-program colnt
flow graph (WCFG) and removes all assumptions about calling
conventions and parameter-passing mechanisms.

Region Formation This phase breaks up the WCFG into compiler-
selected optimization units, aegions and encapsulates re-
gions appropriately so that they can be analyzed and opiniz
independently.

Targeted Code Specialization (TCS)This phase is applied sepa-
rately within each region. It identifies sites in the regionene
code specialization is likely to provide optimization opimi-
ties and duplicates code accordingly.

) Procedures

D ¢
i Ve
Procedure Unification

{

(e)
Y

Region Formation

P
E< / Regions
[tes | [1es | | Tos |
— 1 y
| Analysis| | Analysis| | Analysis|

v v v
Opti | opti | | [opti |

Link

{

[Executable J

Figure 1. Overview of PBE compilation flow.

fxy)

hQ

(a) Before unification

(b) After unification

Figure 2. A code example (a) before and (b) after unification.

The above three phases produce compilation units that bear
little resemblance to procedures. Therefore, the most itapb
component of a PBE compiler is an optimization and analysis
process that can handle these constructs, covered in Bdctio

3.1 Procedure Unification

The purpose of procedure unification is to combine the idivi
ual control-flow graphs of a program’s procedures into a ehol
program control-flow graph (WCFG). This requires joining th
CFGs of individual procedures with control-flow arcs thatree
sent call and return transitions. Due to the semantics afguhore
invocation, call and return arcs carry special semantisiraints.
On any path corresponding to a real execution of the progsam,
cessive calls and returns must appear in a stack-like fashith a
return always matching the call that is topmost on the staeleh

a0

(l E
0/

\Rz
/

) X

(b) After unification

R1

PO

(a) Before unification

Figure 3. Recursive procedure (a) before and (b) after unification.

point. A call arc and a return arc are saidiatchif they come from
the same original call site. Following the conventions & ithter-
procedural analysis bibliography [19], these semanticstraints
are represented by annotating call and return arcs with etedb
open and close parentheses respectively. This notatioonigee
nient, as the matching between calls and returns on a valgtam
path exactly follows the standard rules for parenthesi<hiad.
More specifically, unification begins by assigning uniquenau
bers to all of the program’s call sites. L&t be a call site for a pro-
cedurep, and letR; be the corresponding return site. Ligf be the
entry node (procedure header)ofandX, be the exit node (return
statement) op. In the WCFG, this calls is represented by two in-

terprocedural arcs: a call a€¢ b E, and areturn arc, X R;.
These concepts are illustrated by the example in Figure@. Fi
ure 2a shows a small procedufavith two call sites, one in a “hot”
loop in procedurey, and a less frequently executed one in proce-
dureh. In this figure, and in the examples that follow, rectangular
boxes represent basic blocks. Frequently executed baxiksbre
shown with bold lines. Figure 2b shows the same code afté uni
cation has been applied. As the figure illustrates, the yabidram

pathCt KER E—M—XxX2 R, contains the matching parenthe-

ses(1)1, whereas the invalid patf’ Cp Nox2 Ry
contains the mismatched parenthege$,. The use of parenthesis
annotations in analysis will be presented in Section 4.

Perhaps more interesting is the example in Figure 3, which
shows the result of applying procedure unification to a reivar
procedure. After unification (Figure 3b), a single selftnesive call
appears as two loops: one loop for the recursive call, whask b

edge isC> & R2, and one loop for the recursive return, whose
back edge isR: — X. Moreover, it is easy to see that both
these loops are natural, since their headers dominate ihek
edges. In later compilation phases, both these loops cagfiben
from optimizations traditionally applied to intraproceduloops,
such as loop invariant code motion, loop unrolling, andgafe
pipelining. Although inlining can achieve effects similar loop
unrolling by inlining a recursive procedure into itself,dacertain
interprocedural optimization methods can achieve resittigar to
loop invariant code motion, the way recursion is handledBi s
clearly more general.

Apart from their matching and nesting constraints, call esd
turn arcs also have other implied semantics very differeoinf
those of intraprocedural arcs. Traversing a call arc ndymail-
plies saving the return address, setting up a new activatioord
for the callee, moving actual parameter values into fornaahm-
eters, and generally taking any action dictated by thengaltion-
vention. Interprocedural optimizations respect theseaseics and

work around them appropriately, although this complicatesven
hinders their application. Respecting the calling coneenis nec-
essary, since these routines must preserve a progranssodivito
procedures. PBE takes the opposite approach. Since thef thst
compilation process does not depend on procedures and the co
ventions accompanying them, all these implicit actionsrasele
explicit in the program’s intermediate representation)(IRhis
frees further optimization routines from the need to nadgaound
calling conventions. For example, a redundancy elimimatimu-
tine can now freely stretch the live range of a variable eceosall
arc, without having to convert that variable into a parameis
an added benefit, the compiler can now optimize those agians
viously implicit in calls with the rest of the code, reducitigeir
performance impact.

In order to make call and return arcs behave more like normal
arcs, unification applies the following transformationstbe pro-
gram’s IR.

* A single, program-wide naming scope is established for-vari
ables and virtual registers. This is accomplished by rengmi
local variables and virtual registers as necessary. Talaxiot
lating the semantics of recursive calls, placeholder sadeer
store operations are inserted before each recursive chilfaer
each recursive return. (Recursive calls and returns arplgim
those that lie on cycles in the call graph). These operatoes
annotated with enough information to allow the code genera-
tor to expand them into actual loads and stores to and from the
program stack.

Sufficient fresh variables are created to hold the formahumar
eters of every procedure. Then the parameter passing is made
explicit, by inserting moves of actual parameter values fot-

mal parameter variables at every call site. The return veue
handled similarly. Later optimizations, such as copy ang-co
stant propagation and dead code elimination, usually remov
most of these moves.

Call operations are broken up into an explicit saving of ttie a
dress of the return node and a jump to the start of the callee
procedure. This is done because a call operation alwaysheetu
to the operation immediately below it. This in turn makes it
necessary for a return node to always be placed below its cor-
responding call node. By explicitly specifying a return eeits,

call and return nodes can move independently of each other.
This ensures that optimizations such as code layout and trac
selection can operate without constraints across call etodr
arcs. It also allows code specialization routines to dapéicall
sites without having to duplicate the corresponding resites

and vice versa.

Any actions pertaining to the program stack, such as allogat
activation frames, are made explicit in a similar way.

After unification concludes, further code transformatiare
free to operate on the whole program, without regard to tlee pr
gram’s original procedure boundaries (except for the mtsidn
between realizable and unrealizable paths). Eventudléy,opti-
mization process will result in code that looks very differérom
traditional, procedure-based code.

3.2 Region Formation

After unification, the rest of the code transformations désd

in this paper could operate on the whole program. Indeed, thi
would enable these transformations to achieve their maximper-
formance impact. However, such an approach would not balsleal
to even modestly sized programs. This is because most agatimi
tion and analysis routines are super-linear, causing dentiphe
and memory utilization to increase very fast with prograresi

Region formation solves this problem by breaking up the pro-
gram into more manageabilegions which are then analyzed and
optimized in isolation. Although breaking up the progrartoire-
gions is bound to cause some performance loss, the congpfleei
to decide the size and contents of regions according to inza-
tion needs. Therefore, it is reasonable to expect that megidll
be superior compilation units to the program’s originalqadures,
which are chosen according to criteria unrelated to opaton.
Indeed, previous research [9] indicates that performaose dlue
to region formation is minimal.

The remainder of this section describes the profile-basgdne
formation heuristic used by our initial implementation OB,
presented in Section 5. This heuristic is very differentrfrthe
one originally proposed by Hank et al. [9]. Note, howeveat tie
PBE technique does not depend on any particular region favma
heuristic. Simpler or more sophisticated heuristics carused,
depending on a compiler’s specific needs.

The region formation heuristic presented here has two basic
goals. The first is to produce regions whose size is neither to
much above nor too much below a user-specified size targehis
is because regions that are too big may overburden the aaimi
while regions that are too small will expose too few optintima
opportunities. Second, transitions between regions shbal as
infrequent as possible. This is because an inter-regiarsitian
has some runtime overhead, much like the overhead thatasadls
returns incur in procedure-based programs. This overheatks
both from unrealized optimization opportunities spanrhginter-
region transition and as a consequence of region-basesteegi
allocation.

The first phase of the region formation heuristic is a greéualy-c
tering algorithm. The basic blocks of the WCFG are dividet in
clusters. The size of a cluster is the total number of intibns
contained in its constituent basic blocks. These clusterscan-
nected with undirected weighted edges. The weight assigmad
edge between two clusters is the sum of the profile weightkeof t
real CFG edges between blocks in the two clusters.

At the start of the formation process, each individual bakick
will be in a separate cluster. Clusters are then repeateifigd by
examining the edge with the highest weight. If the combinied s
of the two clusters it connects is less than the size tafgiten the
two clusters are joined, with edges and edge weights beidgtag
accordingly. This phase of the algorithm terminates whemnoee
clusters can be joined without exceeding the size target.

The clustering phase usually results in a number of regions
with size close toS centered around the “hottest” nodes of the
WCFG. However, as often happens with greedy algorithmsethe
are usually many small one- and two-block clusters left imieen.
Because the presence of too many small regions is undesirabl
there is a second phase to the heuristic. In this phase, astecl
whose size is less than a certain percentagef the size target is
merged with the neighboring cluster with which its connattis
strongest, regardless of size limitations.

For the experimental evaluation presented in Section 5, we
settled on the value§ = 500 instructions andx = 0.1 as a
good tradeoff between optimizability and compile-timeatibn,
after trying several values. More details about the peréoroe of
the region formation heuristic presented above can be fannd
Section 5.

3.3 Region Encapsulation

Once the WCFG has been divided into regions, the compilet mus
transform each region into a self-contained compilatioit. Uks
described by Hank et al. [9], this can be achieved by anmgtati
the virtual registers that are live-in at each region entrgt bve-

out at each region exit. Analysis routines can then inseztigp

Region s

Regio:i_ i Regio:i_ i

IRA I IRB 1 IRA 1

IRX 1 IRY 1
- - -

- -
¥ y ¥ y

IRY 1

Figure 4. (a) A region formed around blocks from Figure 3b with
nodes for region entry and exit. (b) its program skeletormfor
with blocks M and N abstracted into a skeleton edge. (c) the
encapsulated form of the region.

CFG nodes before each entry and after each exit. These nalles w
appear to “define” live-in registers and “use” live-out 1&tgrs re-
spectively. Optimization routines can then treat theseiappodes
conservatively. For example, if a virtual register use hesching
definitions from one of the special region entry nodes, incarte
a candidate for constant propagation. Similarly, if a \attiegister
definition has an upward exposed use coming from one of the spe
cial exit nodes, then that definition will never be considedead.
There are two challenges in applying this region encapsulat
technique to PBE. The first is that the liveness of registersgion
boundaries has to be calculated in a program-wide analgss s
program size grows, this pass can become prohibitivelyresipe.
To alleviate this problem, the PBE compiler performs thialgsis
on an abbreviatedrogram skeletoninstead of analyzing the entire
WCFG. Since region encapsulation needs liveness infoomatn
region entries and exits, such nodes have to be present ki
ton. Also, since the PBE analysis presented in Section 4snieed
match call and return arcs in order to produce accuratetsesk
skeleton graph must also represent call and return arcsiatidg
Still, nodes inside a region that do not relate to calls, rretuor
region entries and exits can be abstracted awaysiketeton edges
Therefore, the program skeleton consists of the followiegkents:

® Region entries and exits.

e The original WCFG arcs connecting region exits to region en-
tries.

e Call and return arcs, plus their source and destinationsiode

e Skeleton edges, which abbreviate the remaining nodes of the
WCFG. Such edges begin at region entries or destinations of
interprocedural arcs and end at region exits or sources-of in
terprocedural arcs. Skeleton edges are annotated withitthe v
tual registers that may be defined or used along the part of the
WCFG they represent.

Figure 5. The code of Figure 2b after superblock formation.

Since a skeleton edge always represents a subgraph of th

WCFG that lies within the same region and does not contais cal
returns, the annotations of skeleton edges can be easilputeth
by applying a simple (intraprocedural) dataflow analysisspsep-
arately within each region. After the annotations of sl@ietdges
have been computed, a PBE analysis pass (see Section 4)am the
tire program skeleton can yield the liveness informatianrégion
entries and exits. Since the vast majority of WCFG nodes haga
abstracted away by skeleton edges, analyzing the progreletsik

is much cheaper, and therefore more scalable, than anglytzén

entire WCFG. Figure 4 shows a region that has been convetied in

its program skeleton form. Blockk/ and N are converted into a
single skeleton edge that summarizes their effects.

The second challenge is unmatched call and return arcs that

arise from regions selected independently of the progrgmds
cedures. PBE analysis routines, which rely on the propecimat
ing between calls and returns, can be confused by this. Tl avo
this problem, a few special nodes are added to each enctgabula
region’s CFG. A nodePF is added to represent the program en-
try. This node is followed by a nod€ that has edges of the form

C A C circling back to it, for every return annotatign that ap-
pears in the regidn NodeC is then connected to all the entries of
the current region. Essentially, no@eprovides a matching call arc
for every return arc that may be unmatched in the region. dregi
exits are handled in a symmetric way. Figure 4c shows a reafion
ter it has been encapsulated. Since return annotaioasd). are
unmatched at the region entries, edges containing calltatios
(1 and(2 are added to C.

With regions thus encapsulated, further analysis and agdim
tion routines do not need to consider the entire WCFG, angidi
scalability problems in further compilation phases.

3.4 Targeted Code Specialization

In order to match the performance benefits of aggressivéiy-in
ing compilers, a PBE compiler must do more than choose tl rig
scope for optimization, as inlining’s benefits come not dinym
increased optimization scope, but also from code speat#iz.
Unlike inlining, PBE does not cause any code growth whilerfor
ing compilation units. The code growth budget thus freedream

1in fact, PE only needs a call annotatio%» if); appears in the region and
(; appears at an edge backwards-reachable from one of the'segitries.
However, enforcing this distinction makes little diffecenin practice.

e

be devoted to more targeted code duplication techniquashwehn
recover the specialization benefits of inlining with muchrenmod-
est code growth.

In general, a code specialization technique duplicatesctad
code segments in order to break up merge points in the CFG.
These control-flow merges generally restrict optimizatignim-
posing additional dataflow constraints. After duplicatiam the
other hand, each one of the copies can be optimized accaulitsy
new, less restrictive surroundings. In this sense, botrefud par-
tial inlining are code specialization techniques. Severabpro-
cedural code specialization methods have also been probpdse
6, 10, 12, 14], usually in the context of scheduling. Someheke
methods can be adapted to the specialization needs of P&&edn
PBE gives such methods new freedom, since it allows them th wo
across procedure boundaries.

Superblock formation

Superblock formation [12] is perhaps the simplest and mostp
erful specialization method. Using profile informationpetblock
formation selects “hot” traces and eliminates their sideagtes
through tail duplication. This tends to organize frequeeitecuted
areas of the code into long, straight-line pieces of codéclware
particularly well-suited to both classical optimizatiomdaschedul-
ing. In the context of PBE, superblock formation can freediest
traces containing call and return arcs, which significainttyeases
its impact. The effect of applying superblock formationtie tode
example in Figure 2 can be seen in Figure 5. Excessive coadlygro
during superblock formation can be avoided by setting a mmimn
execution thresholdv of blocks to use in superblock formation,
a limit a to the relative profile weight of branches followed, and
an overall code growth limib. In the experimental compiler pre-
sented in Section 5y was set to 100 and was set to 80%. The
code growth factob was set to 50%, although superblock forma-
tion usually stays well below this limit. This occurs for seal
reasons. First, the execution threshold prevents supseifiboma-
tion on cold code. Second, unbiased branches fall beldimiting
the scope of superblocks. Finally, because superblockacsiadic,
backedges form a natural end point.

Area specialization

Sometimes it makes sense to duplicate portions of the cate th
are more complicated than a trace. For example, we may want to
specialize an entire loop, or both sides of a frequently etezt
hammock. For this reason, the PBE compiler presented indBest
also uses a method callettea specializationLike superblock
formation, this method is purely profile-driven.

Area specialization begins by identifying an important CHG
leading to a merge point. It then selects a subgraph of the CFG
beginning at the merge point. That subgraph is duplicatedhat
the chosen link has its own copy of the subgraph.

Let A be theduplication areai.e. the set of basic blocks se-
lected for duplication. Th&ontier F' of the duplication area com-
prises all basic blocks that do not belong4cand have an imme-
diate predecessor in A. That is:

F={b|bgANTa:a€ ANa— b}

Each blockb in F'is assigned a frontier weigti1, which is the
sum of the profile weights of control-flow arcs beginning éesthe
duplication area and ending @tThat is:

FW(b) =Y W(a—b)
ac€A

whereW (z) is the profile weight of:.
The algorithm that selects the duplication area proceeésl-as
lows: First, the area contains only the merge pointIn a se-

ries of repeated steps, the area is expanded by adding thtéfro
block b for which FW (b) is maximum. The expansion stops when
FW (b)/W(m) < «, wherea is a tuning parameter. In the exper-
imental evaluation of Section b, = 0.1. To avoid excessive code
growth, the entire area specialization phase stops wheplicdites
more than a certain percentagef the region’s code. In Section 5,
8 = 50%.

Ci ' E. This situation never appears in classical interprocddura
analysis, where call and return arcs always have a oned@ame-
spondence. (This is the case in Figure 2b, where optimizaittiave

not yet been applied.) Moreover, the free movement of ietitros
across call and return arcs and the free movement of these arc
themselves destroy the notion of procedure memberships @hu
viding the CFG into procedure-like constructs for the pggmof

The only remaining issue is to choose the merge point arcs for analysis will also be a task for the analysis algorithm. Thpa

which duplication areas are selected. Although this sieleatan
be done in many ways, for the evaluation of Section 5 we ctmse t
consider only call arcs. In a sense, this makes area spztiah
work like a generalized version of partial inlining. We chabis

rithm presented in the rest of this section meets theseertgsk,
while staying as close as possible to the traditional fmeti inter-
procedural analysis algorithm.

In the following presentation, we will assume for simplcit

approach mainly because it makes the comparison between PBEnat we have a forward analysis problem, such as dominators o

and inlining more straightforward.

Other specialization methods

Although the experimental PBE compiler presented in thigepa
only employs area specialization and superblock formatamy
other specialization method that has been proposed in tfapio-
cedural domain (especially [10] and [3]) can also be apphetie
PBE compiler. Actually, any such method is bound to incretsse
impact in PBE, since PBE enables it to work across procedures

4. Dataflow Analysis

A context-insensitivelataflow analysis routine could analyze the
WCFG without taking the special semantics of calls and retur
into account. However, the analysis results thus producealdv
be too conservative. For example, such an analysis routmadwv
conclude that any definitions made in bloEkof Figure 2b could
reach blockR2, although no valid program path fro® to Ro
exists. In preliminary trials we found that the inaccuraaiaused
by such an analysis approach have a serious detrimentat effe
several compilation phases, especially register allonati

For this reason, we developedcantext-sensitivanalysis ap-
proach for PBE. The PBE analysis algorithm presented insénis
tion is derived from thefunctional approachto interprocedural
analysis [19]. An analysis method following this approacbrie
by calculatingransfer functiondbetween each procedure entry and
each CFG node in the procedure. When the transfer functien be
tween a procedure entry and its exit is discovered, it canrbe a
notated orsummary edgebnking each call site to that procedure
with the corresponding return site. Transfer functions ummary
edges essentially show how an analysis value is transfodued
to a call. Therefore, the analysis value at a return site eadeh
termined by applying the transfer function of the corresjiog
summary edge to the analysis value of the correspondingicall
The transfer function of a procedure depends on the trafgfer
tion of its callees, therefore all such transfer functioasento be
calculated through simultaneous iteration. After this pathe cal-
culation is complete, the interprocedural analysis rautiges the
transfer functions between each procedure entry and ediciode
in the procedure to determine the analysis values of allguoe
entries. After the analysis values of all procedure enairesknown,
the analysis values of all nodes can be trivially calculdgdpply-
ing the transfer functions from the corresponding procedantry
to the node to the analysis value of the procedure entry. B¥e [
and [17] for more information.

PBE analysis faces several challenges that are not presant i
classical interprocedural analysis and therefore are adlied by
the above algorithm. Since optimization routines are foegperate
along call and return arcs, these arcs may be eliminatediceltgd,
or moved. Thus the matching between call and return arcgesit
erally be a many-to-many relation. For example, in Figurbdih

return arcsX 2 R; and X' 2% R} match the single call arc

reaching definitions. Backward analysis problems, sucivesdss

or upwards exposed uses, can be treated in a symmetric way. In
the following discussion, the symbaol will be used to denote the
analysis problem’s confluence operator. The same symbbbwil
used for the confluence operator on the induced lattice oftea
functions, defined simply as follows:

(F1U Fy)(x) = Fi(z) U Fa(x)

The symbolT is used to denote the maximum element of the anal-
ysis problem’s lattice (normally used to signify an “unialized”
analysis value). The corresponding maximum element orattied

of transfer functions will bé™+, defined as follows:

FT(:E) =T

Below we present the PBE analysis algorithm as a series of 8
steps. Of these, steps 1 to 5 have to do with the structureeof th
CFG, and thus are independent of the specific analysis proble
Therefore these steps only need to be calculated wheney&R6
changes. Otherwise they can be reused for multiple analysss

Step 1: CFG node classification

CFG nodes are classified according to whether they are soarce
destinations of call or return arcs. Thus, a node that isahecg of
at least one call arc is@all site A node that is the destination of at
least one return arc israturn site A node that is the destination of
at least one call arc is@ntext entryA node that is the source of at
least one return arc is@ntext exitln addition, the program entry
Emain (in @ C program, the header of tima&i n() function) will
also be considered a context entry. Similarly, the progréitnain
(the return statement ofai n()) will be considered a context exit.
Note that these definitions are not mutually exclusive. kangle,
the nodeC' used in region encapsulation (Section 3.3) is both a
context entry and a call site. Context entries and exits pldy
similar roles with those of procedure entries and exits assical
interprocedural analysis.

Step 2: Creating context-defining pairs

A pair of nodes(E, X) is called acontext-defining pai{CDP) if
E is a context entryX is a context exit, and at least one of the
call arcs of E matches with some return arc &f. That is, there

must exist a pair of edgeS & E and X X R for some value
of 4. In a prepass, the PBE analysis algorithm identifies an@stor
such pairs. For the rest of the algorithm, CDPs and the ctsitex
they define (see Step 4) will roughly play the role of proceguin
this spirit, we call the nod€’ above ecall siteof (£, X) andR a
return siteof (E, X). Additionally, the special paif Emain, Xmain)

will also be considered a CDP.

Step 3: Drawing summary edges

From here on, a path containing normal edges and summarg.edge
but no call or return edges, will be referred to aame-contexpath

(symbol:“iac). A CDP (E, X) is calledproper if there is a same-

context path® %€ X. For each such CDP, we will creagammary
edgedeading from call sites of E, X)) to the corresponding return
sites. More formally, if E, X) is a proper CDP, then we will create

a summary edg€’ % R for every pair of edges’ Y £ and

x % R.

The PBE analysis algorithm discovers proper CDPs and draws
summary edges by repeatedly running a reachability algorihat
discovers which nodes are reachable from each context &latng
same-context paths. If a context et is reachable by a context
entry E, we check to see ifa CDfF, X) exists. If it does exist, this
CDP is marked as proper and the corresponding summary edges a
drawn. The reachability algorithm is rerun after the additdf the
new summary edges, possibly leading to more proper CDPg bein
discovered and new summary edges being drawn. This proasss h
to be repeated until it converges.

Step 4: Discovering context membership

Each CDP(E, X) defines acontextCTg,x. We will say that a
node N belongsto a contextCTg, x iff there are same-context

pathsE ¢ NandN 3 X, Obviously, the contexts of improper
CDPs will be empty. For the PBE analysis algorithm, contestmn
bership roughly corresponds to procedure membership inlése
sical interprocedural analysis algorithm. Note howevet thnode
can belong to more than one context. Since forward readtyabil
from context entries has already been calculated in theiqusv
step, a similar backward-reachability pass from conteitséx run

to determine reachability fronY. Context membership canthen be
easily determined by combining these two reachabilityltesu

Step 5: Building the context graph

Just as call relationships between procedures can be egpeesin
a call graph, reachability relationships between CDPs gaeto
a context graph. A directed edgéTs, . x, — CTg,,x, Mmeans
that there is a call sit€® and a return siteR such that bothC

and R belong toCTg,,x, and there is a call edgé & E; and

a matching return edg&’,)i, R. The CDP graph can be easily
calculated by going through the call and return edges in tR#®
and combining them with the context membership information
from the previous step. The conteXtImain, corresponding to the
CDP (Emain, Xmain), Will be the entry of the context graph.

Step 6: Computing same-context transfer functions

For every CDP(E, X), this phase calculates a transfer function
Fg,n from the entryE to every nodeN € CTg, x. This trans-

fer function will summarize the effect on the analysis valoéall

the same-context paths linking and N. This is accomplished by
running a simple, meet-over-all-paths dataflow analysss pa the
nodes of each context separately. Since this dataflow dsalyss

on same-context paths, which may contain summary edgesilive w
need to assign transfer functions to summary edges for theeps

to work. This is done as follows: Originally, every summadge is
assigned the transfer functidnr. Whenever the transfer function
Fg,x between the entry and the exit of a CDP is discovered, this
function is assigned to all summary edges belonging to tix®.C
Since these summary edges may be parts of same-context path
in other contexts, they may affect the transfer function®tbier
CDPs, leading to the discovery of the transfer functionstb&o
summary edges. This process has to be applied iterativeilyitun
converges. This is similar to the phase in classical integaural
analysis that calculates the transfer functions betweeh peoce-
dure entry and each node in the procedure.

Step 7: Computing context entry values

When Step 6 terminates, the compiler has the transfer fumfrom
each context entry to every call site in that context. The miten
can use this information to calculate transfer functiongfcontext
entries to other context entries. For example, considerctmbexts
CTg,,x, and CTg, x, such thatCTg, x, — CTg, x,. Let
C1,Ca,...,C, be all the call sites that lead frof T, x, tO

CTg,, x,. That is, for everyC; there is a pathE, 2§ ¢ and a

call edgeC; & E5. Then the transfer function fror; to E- is
the confluence of thé'g, ¢, transfer functions:

Fg, B, = I_lFEl,Ci,
7

Using these transfer functions, the compiler can calcutate
analysis values at all entries. This is done by annotatinth ea
transfer functionf'z, g, on the corresponding edgé’z, x, —
CTE,,x, Of the context graph, and then running an iterative
dataflow analysis pass on the context graph. This phase isim
to the second phase in functional interprocedural analysisch
calculates the analysis values at all procedure entries.

Step 8: Computing node values

Now, the compiler has the analysis values at all contextiemtr
(from step 7) as well as all the transfer functions from cente
entries to same-context nodes. Therefore, calculatingtiadysis
values at all nodes is easy. Suppose that médelongs to contexts
CTg, ,x,,...,CTg,, x,. Then its analysis value is:

on =|_| Fein(vB,)
Again, this is similar to the last phase in functional intexe-
dural analysis.

Complexity

For locally separable problems, efficient interproceddathflow
analysis has a complexity @(ED?) [17], whereE is the num-
ber of edges in the interprocedural CFG ands the number of
dataflow “facts” (registers in liveness analysis, defimigan reach-
ing definitions analysis, etc.). For most analyses ot#nd D are
O(n), wheren is the number of nodes in the CFG, resulting in a
worst-case complexity ab(n?). In practice, the complexity of a
dataflow analysis is known to be roughly quadratic on the sfze
CFG nodes.

As far as complexity is concerned, the crucial difference be
tween PBE and classical interprocedural analysis is thiailgvin

the former case each CFG node belongs to a single procedure, i

the latter case each CFG node may belong to multiple contexis
causing certain actions to be repeated (especially in Stephéis
the resulting worst-case complexity of PBE would ©gan?®),
whereq is the maximum number of contexts any node in the CFG
belongs to. In the worst case,= O(n). However, multiple con-
texts per node arise mostly due to the code specializatigtines
in Section 3.4. Due to their targeted nature and their codert
limits, these routines are likely to leave most of the codaa) and
copy the rest of the code only a modest number of times. @lisis
more likely to be a value only slightly greater than 1. To g®BE
analysis for locally separable problems has a worst-casgplex-
isty of O(n*), but is expected to behave quadratically in practice.

5. Experimental Evaluation

In order to evaluate the ideas presented in this paper, wepaad
the performance of a PBE-enabled compilation process toceps
using aggressive inlining. For that purpose we used our oyere
imental compiler, called VELOCITY, combined with the IMPAC

research compiler [1]. IMPACT is the best-performing colepior 14 —

the Itanium architecture. In our experimental setup IMPASTsed - N E nlining

as a front end, compiling C benchmarks to a low-level IR chlle 13 ¢ § § PBE 1

Lcode. Benchmarks used in the experiments were taken frem th = "l § § 1

SPEC CINT95 and CINT2000 benchmark suites. g 12 § § § B
Each benchmark is profiled using training inputs before be- 2 § § % N N

ing lowered. IMPACT also annotates Lcode with the results of @ 11 [N N § N

aggressive alias analysis [16], which are exploited inrlate- § 1

timization phases. Lcode is then used as input to VELOCITY,

which implements all further optimization and analysistioes.
VELOCITY contains an aggressive classical optimizer whith
cludes global versions of partial redundancy eliminatatead and
unreachable code elimination, copy and constant propagaie-
verse copy propagation, algebraic simplification, cortsfald-

ing, strength reduction, and redundant load and store reditiain.

A local version of value numbering is also implemented. Bhes Figure 7. Performance benefits of inlining and PBE on train-

optimization routines are applied exhaustively. VELOCIato ing inputs over strict procedure-based compilation (dyicarycle
includes superblock formation, superblock-based sclvagiuhnd count).

register allocation. Finally, it performs inlining for oset of exper-
iments, and unification, region formation, and area spieaitbn

for the other. Whenever possible, the heuristics of the VELTY 1.4
compiler closely follow those of IMPACT, especially for ining, L Hl Inlining
register allocation, and scheduling. 13 | PBE J
However, VELOCITY does not yet handle most of the advanced a | N]
performance features of the Itanium architecture, suchrediqa- 3 12| § J
tion, control and data speculation, and prefetching. Atls®sched- ‘é = § |
uler does not take bundling constraints into account. Kinalthe ZEEEE % § |
above compilation process, both register allocation ahdduling i Y §
are performed assuming an Itanium 2 target machine. 10 R]
Immediately after the Lcode is input into VELOCITY, it un- ' -
dergoes a first pass of classical optimization. This “clagisthe . 5 & X 2
code, making subsequent inlining and TCS heuristics mdez-ef (8@6\ Q\Q’O) b‘g\Q ,\of;’\ ,\,é‘(' Qo’?’{_ ,§®Q 00& @Q:é\
tive. From then on, each benchmark’s compilation follows¢h N (,06\ N Y (b'be &’ ,{/ob" 0?9
different paths. In the first path no inlining or proceduréfioa- ,{)P" ,39‘ VY

tion is performed. The results of this path form the basealnaur
measurements. In the second path, the code is subjectedety a v
aggressive inlining pass, copied from the IMPACT compildre
third path represents PBE. Procedures are unified, the sodie i
vided into regions, regions are encapsulated, and an aes@abp
ization pass is applied. All three paths continue by appglydn-
perblock formation, another pass of classical optimizatiegister
allocation, and scheduling.

Figure 8. Performance benefits of inlining and PBE on training
inputs over strict procedure-based compilation (runtineefqu-
mance).

As seen in Figure 6, the initial phases of PBE consume bet2&en
and 5% of compile time, with a geometric mean of 3%. This shows

IN
T

Overhead (%)

6 that the techniques discussed in Section 3 do not causeeifarg
crease in the compilation time. In particular, use of thegpam
skeleton during region encapsulation avoids the excessaxead

g that occurs when analyzing the whole program.

| | To measure the quality of the code produced, we collected the

dynamic cycle count and runtime performance humbers usairg t

2 7 ing inputs. Training inputs were used to obtain an accursses

L] ment of the capabilities of PBE versus inlining, avoiding thsues

o | | | | | | | | of profile accuracy. The results were obtained by profilingumr-

] &S @ R S ning the application after all optimizations, translationitanium

° o3 7 ,ée@ @Q &z’ code, and register allocation and scheduling were perforiie

SRS ,f;;b‘ 0®° obtain dynamic cycle count, the schedule height of eaclt téatk

is multiplied with the block’s execution count. This is eeplent to

simulating the code on an Itanium-like uniform 6-wide VLIW\am

Figure 6. Overhead of unification, region formation, region encap- Cchine with perfect cache and branch predictor behavior. riine

sulation, and area specialization as a percentage of totapita- time performance numbers were collected ugfigon(7]. Exe-

tion time. cutables were run on an HP workstation zx2000 with a 900Mhz
Intel Itanium 2 processor and 2Gb of memory running Redhat Ad

Figure 6 shows the percent of total compile time spent perfor vanced Workstation 2.1.
ing unification, region formation, region encapsulationd area The results of the performance experiments are shown in Fig-
specialization. This is essentially the up-front overhegapplying ures 7 and 8, representing dynamic cycle count and runtime pe
PBE. The full overhead of PBE, which also includes compiteet formance, respectively. Additionally, code size and cdeipme
dilation in later optimization phases, will be presente&igure 10. were measured. Figure 9 measures the code growth caused by in

@ Hl Inlining

g 18 PBE T

2 16 | .

°~’ \

N Ll N N -

0 N N \ N

% 12 + § § § § N

O N Yy R] N N

S RSP ES
‘bq;{? 6@ QVQ;‘/ \:\q <b\’§\ e&‘b & @& QPQQ

W& N RSN
NN A

Figure 9. Code growth caused by inlining and PBE compared to
strict procedure-based compilation

10

5 Hl Inlining
Es- SY PBE]
5 \ ‘

g s N \ 1
ECIN N \

o \ \ \

1 N s N N

Figure 10. Compile time dilation for inlining and PBE compared
to strict procedure-based compilation

lining and PBE compared to the baseline, while Figure 10 omess
the compile-time cost incurred by PBE and inlining over tlsd
compilation.

As the dynamic cycle count graph (Figure 7) shows, PBE per-
formance beats aggressive inlining, 15% vs. 13% on average.
PBE's performance advantage is much more pronounced in cer-
tain individual cases, such 429. conpr ess (32% vs. 19%) and
164. gzi p (10% vs. 3.6%). Similar performance gains are shown
in the runtime performance graph (Figure 8), though the aler
speedup is about half the gain estimated from dynamic cyelatc

Most importantly, PBE achieves these performance benefits
with only about half the code growth of inlining, 23% vs. 45% o
average. This is important for several reasons. First, lsmebde
can often lead to better instruction cache behavior. Second
like experimental compilers such as IMPACT or VELOCITY, rhos
commercial compilers cannot tolerate code growth like taaised
by inlining in this experiment. As a result, the inlining histics
used in industrial compilers are much less aggressive. ¢h an
environment the performance gap between PBE and inliningdvo
be significantly bigger. These performance vs. code groeatric-

Since Figure 6 showed that the overhead of PBE’s initial phés
relatively small, most of this compile-time dilation candmribed
to extra optimization and analysis effort within regionarty, this
variance in compile times (especially the extreme caseas) as
188. anmp) is due to the experimental nature of our compiler.
Like most experimental compilers, VELOCITY performs exbau
tive dataflow optimization and has to run several dataflowyaisa
routines on entire procedures or regions before every dgiion
routine. Most commercial compilers do not follow this apgeb
because it leads to compile-time volatility. Compile tinmaiting
techniqgues common in industrial-strength compilers, saghm-
iting most classical optimizations to within basic blocksaap-
ping the number of optimization passes applied, could redie
compile-time gap further. However, such an approach wootéh
low us to evaluate the full performance impact of eithemiinlg or
PBE, and thus would not be appropriate for a research expatim

6. Conclusion

In this article, we presented Procedure Boundary Elimimata
compilation approach that allows unrestricted interpdocal op-
timization. Unlike inlining, which can only extend the seopf
optimization by duplicating procedures, PBE allows optiation
scope and code specialization decisions to be made indepidy)d
thus increasing their effectiveness. Unlike traditionakrproce-
dural optimization, which is constrained by having to mainta
program’s procedural structure and is too costly for extensse,
PBE allows optimization to freely operate across proceslime
permanently removing procedure boundaries, and allowsdhe
piler implementor to balance performance benefits and dempi
time costs through region-based compilation. A prelimyrexperi-
mental evaluation of PBE shows that it can achieve the padaoce
benefits of aggressive inlining with less than half the r&teode
growth and without prohibitive compile-time costs.

Apart from the PBE compilation technique itself, this paper
contains the following individual contributions:

e An extended interprocedural analysis algorithm, necgdsar
processing PBE-generated flowgraphs (Section 4).

* Novel region selection and region encapsulation schenes (S
tions 3.2 and 3.3).

e A novel code duplication method, appropriate for recowgrin
the benefits of aggressive inlining within the PBE framework
(Section 3.4).

In the future, we plan to evaluate more sophisticated refgion
mation methods, especially methods that concentrate @ilalat
properties instead of profile weights. In addition, we ictéa in-
vestigate novel targeted code specialization methods @ @b
fectively control code growth and/or increase performahi¢e are
also investigating the applicability of PBE to thread-leparal-
lelism extraction.

Acknowledgments

We thank the Liberty Research Group for their support and-fee
back during this work. Additionally, we thank Andrew Appel,

tions are even more pronounced in the embedded system domainSharad Malik, David Walker, Brian Kernighan for their helfttw

often leading compiler writers to entirely forgo inliningn this
setting, PBE may be the only way to extend optimization acros
region boundaries.

Figure 10 shows that PBE does not incur prohibitive compile
time costs. On average, a PBE compilation is 70% slower than a
inlining compilation, which is itself twice as slow as theskéine.

this work. Finally, we thank the anonymous reviewers foirthre
sightful comments. This work has been supported by the Natio
Science Foundation (NGS-0133712 and NGS-0305617) and Inte
Corporation. Opinions, findings, conclusions, and recondae
tions expressed throughout this work are not necessaglyitws

of the National Science Foundation or Intel Corporation.

References

(1]

2

—

3

—

[4

[l

5

—_

[6

—_

[7

—

[8

-

[9

—

[20]

(11]

AUGUST, D. I., CONNORS D. A., MAHLKE, S. A., SAs,J. W,,
CROZIER, K. M., CHENG, B., EATON, P. R., QANIRAN, Q. B,
AND Hwu, W. W. Integrated predication and speculative execution
in the IMPACT EPIC architecture. I®roceedings of the 25th
International Symposium on Computer Architect@@ane 1998),

pp. 227-237.

AYERS, A., SCHOOLER, R., AND GOTTLIEB, R. Aggressive
inlining. In ACM SIGPLAN '97 Conference on Programming
Language Design and ImplementatiGlune 1997), pp. 134-145.

BobIK, R., GUPTA, R., AND SOFFA, M. L. Complete removal of
redundant computation. Rroceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implenientat
(June 1998), pp. 1-14.

CALLAHAN , D., CooPER K. D., KENNEDY, K., AND TORCZON,
L. Interprocedural constant propagation.Aroceedings of the ACM
SIGPLAN’86 Symposium on Compiler Construct{daly 1986),
pp. 152-161.

CHANG, P. P., MAHLKE, S. A., GHEN, W. Y., AND HWU, W. W.
Profile-guided automatic inline expansion for C prograi@sftware
Practice and Experience 28 (May 1992), 349-370.

EICHENBERGER A., MELEIS, W., AND MARADANI, S. An
integrated approach to accelerate data and predicate tatiops
in hyperblocks. InProceedings of the 33rd Annual ACM/IEEE
International Symposium on Microarchitectugovember 2000),
pp. 101-111.

ERANIAN, S. Perfmon: Linux performance monitoring for IA-64.
http://www.hpl.hp.com/research/linux/perfmon/, 2003.

GouBAULT, J. Generalized boxings, congruences and partial
inlining. In First International Static Analysis Symposiyidamur,
Belgium, September 1994).

HANK, R. E., Hvu, W. W., AND RAU, B. R. Region-based
compilation: An introduction and motivation. IRroceedings of
the 28th Annual International Symposium on Microarchiteet
(December 1995), pp. 158-168.

HAvANKI, W. A. Treegion scheduling for VLIW processors.
Master's thesis, Department of Computer Science, Nortiol®ar
State University, 1997.

Hwu, W. W., AND CHANG, P. P. Inline function expansion

for compiling realistic C programs. IRroceedings of the ACM
SIGPLAN 1989 Conference on Programming Language Design and
Implementatior(June 1989), pp. 246-257.

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Hwu, W. W., MAHLKE, S. A., CHEN, W. Y., CHANG, P. P.,
WARTER, N. J., BRINGMANN, R. A., OUELLETTE, R. G., HANK,
R. E., KIYOHARA, T., HAAB, G. E., HOLM, J. G.,AND LAVERY,
D. M. The superblock: An effective technique for VLIW and
superscalar compilatiof.he Journal of Supercomputing 7 (January
1993), 229-248.

KNOOR, J., AND STEFFEN, B. The interprocedural coincidence
theorem. InProceedings of the 4th International Conference
on Compiler Constructior{Paderborn, Germany, October 1992),
pp. 125-140.

MAHLKE, S. A., LIN, D. C., GHEN, W. Y., HANK, R. E.,
BRINGMANN, R. A.,AND Hwu, W. W. Effective compiler support
for predicated execution using the hyperblock. Proceedings of
the 25th International Symposium on Microarchitect{ibiecember
1992), pp. 45-54.

MYERS, E. W. A precise inter-procedural data flow algorithm.
In Proceedings of the 8th ACM symposium on Principles of
programming languageg§lan. 1981), pp. 219-230.

NYSTROM, E. M., Kim, H.-S.,AND Hwu, W.-M. Bottom-up
and top-down context-sensitive summary-based pointdysisa In
Proceedings of the 11th Static Analysis Sympogiiagust 2004).

REPS T., HORWITZ, S.,AND SAGIV, M. Precise interprocedural
dataflow analysis via graph reachability. Pmoceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languagegJune 1995), pp. 49-61.

SANTHANAM, V., AND ODNERT, D. Register allocation across
procedure and module boundaries. Rroceedings of the ACM
SIGPLAN 1990 conference on Programming language design and
implementatior(June 1990), pp. 28-39.

SHARIR, M., AND PNUELI, A. Two approaches to interprocedural
data flow analysis. IrfProgram Flow Analysis: Theory and
Applications S. Muchnick and N. Jones, Eds. Prentice-Hall,
Englewood Cliffs, NJ, 1981, pp. 189-233.

SUGANUMA, T., YASUE, T., AND NAKATANI, T. A region-based
compilation technique for a java just-in-time compilerProceedings

of the ACM SIGPLAN 2003 conference on Programming Language
Design and Implementatiofdune 2003), pp. 312-323.

WAy, T., BREECH, B., AND PoLLOCK, L. Region formation
analysis with demand-driven inlining for region-basedimjzation.
In Proceedings of the 2000 International Conference on Parall
Architectures and Compilation Techniqu@day 2000), p. 24.

