
UNCOUPLING UPDATING AND REBALANCING IN
CHROMATIC BINARY SEARCH TREES*

OTTO NURMI AND ELJAS SOISALON-SOININEN

Department of Computer Sciencej University of Helsinki

Teollisuuskatu 29, SF-OO51O Helsinki, Finland

Abstract. In order to gain maximal efficiency of the

concurrent use of search trees the number of nodes to be

locked at a time should be as small aa possible, and the

locks should be released aa soon aa possible. We propose

a new rebalancing method for binary search treea that

allows rebalancing to be uncoupled from updating, so as

to make updating faster. The trees we use are obtained

by relaxing the balance conditions of red-black trees.

When not involved with updating, the rebalancing task

can be performed as a shadow process being active all

the time, or it can be performed outside rush hours, at

night, for example.

1. INTRODUCTION

Red-black trees [6] are balanced binary search trees with

several properties that make them a good choice for

an in-core structure whenever fast random access of

data is desired. They have O(n) size and O(log n)

access time, and they can be updated in O(log n) time,

where n is the number of keys stored in the tree. After

insertions and deletions the tree must be rebalanced

by rotations in order to keep these time bounds. For

red-black trees there exists a bottom-up rebalancing

method that requires at most three single rotations

for an update operation [14, 15]. They have a top-

down rebalancing method that needs O(log n) time for

an update operation and O(log n) rotations (see [6]).

When red-black trees are used in priority search trees

[10], the trees can be updated in O(log n) time. They

make the persistent trees [12] efficient. Red-black trees

are called symmetric binary B-trees in [2] and balanced

trees in [14, 15].

We assume that the data structure is used as a dic-

●The work is supported by the Academy of Finland.

tionary; its operations are search, insert, and delete. In-

sert and delete operations are called update operations.

Each individual operation is assigned to a separate pro-

cess. The processes that perform updating are called

updaters.

If several processes operate concurrently in a data

structure there must be a way to prevent simultaneous

writing and reading the same part of the structure.

A common strategy for concurrency control in tree

structures is that a process locks some parts of the

tree; other processes cannot access a locked part. For

efficiency, only a small part of the structure should be

locked at a time. The sooner the parts are unlocked the

sooner the individual processes terminate.

In a conventional bottom-up rebalancing method

rebalancing transformations are carried out when an

updater returns from the inserted or deleted node to

the root. If a bottom-up method is used in a concurrent

environment, the path from the root to a leaf must

be locked for the time a writer operates; otherwise the

process can lose the path to the root. During the time

the root is locked by an updater, no other process can

access the tree. Thus, at most one updater can be active

at a time.

There exists a top-down balancing method for red-

black trees [6] in which an updater modifies the tree

on the way from the root to the leaf to be inserted or

deleted. Since no further rebalancing is necessary after

an operation, an updater needs never to return the path

to the root. Only a constant number of nodes must be

locked at a time. The height of the tree is O(log n) all

the time, and any key can thus be found in O(log n)

time.

We shall take a different approach to the rebalancing

problem by uncoupling the rebalancing and updating.

The updaters perform no rebalancing but leave certain

information for separate rebalancing processes, which

Permission to copy without fee all or part of this material is granted
will later retain the balance. A rebalancing process

provided that the copies are not made or distributed for direct com-
can run as a shadow process concurrently with other

mercial advantage, the ACM copyright notice and the title of the processes (cf. on-the-jly garbage collection [3]) or it

publication and its date appear, and notice is given that copying is by can be activated when there are only few other active

permission of the Association for Computing Machinery. To copY processes. Several rebalances can work concurrently.
otherwise, or to republish, requires a fee and/or specific permission.

@ 1991 ACM 0-89791-430-9/91/0005/0192 $1.50 192

http://crossmark.crossref.org/dialog/?doi=10.1145%2F113413.113430&domain=pdf&date_stamp=1991-04-01

In our approach, a process must lock a small con-

stant number of nodes at a time. Since the updaters

do no rebalancing and the separate rebalance opera-

tion is divided into several small steps the nodes can be

unlocked rapidly. The tree may temporarily be out of

balance, i.e., its height is not necessarily bounded by

O(log n).

The separation of updating and rebalancing was

proposed already by Guibas and Sedgewick in [6]. Their

solution seems to allow only insertions. For A VLtrees

[1] a solution without deletions was presented by Kessels

in [7]. It was completed with deletions in [11]. As we

shall see the uncoupling is much simpler for red-black

trees and, thus, a fewer nodes must be locked at a time.

In Section 2 we review the definition of (balanced)

red-black trees and extend the definition to include cer-

tain unbalanced trees. The implementation of the up-

date operations is discussed in Section 3 and the sep-

arate rebalance operations are presented in Section 4.

A concurrency control method for the operations is dis-

cussed in Section 5. Section 6 contains conclusions and

some remarks.

2. CHROMATIC BINARY TREES

In this section we recapitulate the balance conditions

for a red-black tree and then relax the conditions so

that certain unbalanced trees will satisfy them. The

loose conditions are needed since we shall permit for an

updater to leave the tree in an unbalanced shape.

We shall only consider leaf-oriented binary search

trees, which are full binary trees (each node has either

two or no children) with the keys stored in the leaves.

The internal nodes contain routers, which guide a search

through the structure. The router stored in a node v

must be greater than or equivalent to any key stored in

the leaves of v’s left subtree and smaller than any key

in the leaves of v’s right subtree. We do not require

the routers to be keys present in the tree. The loose

definition of the routers enables a very simple strategy

for concurrency control, as will be shown in Chapter 5.

The routers far away from a leaf need not be updated

even after deleting a key.

With each edge e of the tree we associate a non-

negative integer w(e), called the weight or color of e.

An edge e is red if w(e) = O and black if w(e) = 1. If

w(e) > 1, the edge is overweighted If e = (u, v) is an

edge of the tree, w(e) is stored in v, i.e., the weight of

the edge between a node and its child is stored in the

child.

The weighted length of a path is the sum of the

weights of its edges. The weighted level of a node is

the weighted length of the path from the root to the

node. The weighted level of the root is O.

The definition of a (balanced) red-black tree is

adopted from [6]:

Definition 1. A full binary tree T with the following

balance conditions is a red-black tree:

B1: The parent edges of 2“s leaves are black.

B2: The weighted level of all leaves of T is the

same.

B3: No path from T’s root to its leaf contains two

consecutive red edges.

B4: T has only red and black edges. ❑

Red-black trees, as defined above, are balanced, i.e.,

their height is bounded by O(log n) where n is the

number of their nodes (or the number of their leaves)

(see Bayer [2], in which red edges are called horizontal

and black edges vertical).

Tarjan [14, 15] has defined update operations for

red-black trees in which rebalancing is carried out im-

mediately when a leaf has been inserted or deleted. The

rebalancing transformations may propagate from the in-

serted or deleted node towards the root of the tree. Al-

though the method of [14, 15] never requires more than

a constant number of rotations after an update oper-

ation, the number of other needed rebalancing actions

(called promote and demote in [14, 15]) can be @(log n)

where n is the number of nodes in the tree. The method

is inefficient if high degree concurrency is desired. In the

update operations of Guibas and Sedgewick [6] the bal-

ancing is done before inserting or deleting a leaf. In

their method, the need for balancing transformations

may propagate only in the top-down direction. The

method can be used in a concurrent environment in

such a way that only a few nodes need to be locked at

a time. It does not support separation of updating and

balancing when deletions are present.

The trees we shall use will be defined by relaxing

the red-black balance conditions. We withdraw the

conditions B3 and B4 and allow all non-zero weights

in the edges closest to the leaves. The condition B2 is

needed as such in the relaxed definition.

Definition 2. A full binary tree T with the following

conditions is a chromatic tree:

.RB1: The parent edges of T’s leaves are not red.

RB2: The weighted level of all the leaves of T is the

same. ❑

A chromatic tree can be out of balance but any red-

black tree is a chromatic tree. An empty tree is a red-

black tree as well as a tree consisting only of a single

leaf.

3. UPDATING A CHROMATIC TREE

The update operations for a chromatic tree are designed

so that they keep the weak balance conditions. The

conditions are loose enough to prevent the need of

immediate rebalancing. Since the tree must be a full

binary tree an insert operation adds a new internal node

193

(a)

A
w,

,. . .
t ‘., -
**

w 2 “s %’,
\

t
‘\\ I

●.,8 I
W,*W2

(b]

FIG. 1. Update operations. (Only the involved nodes are

depicted; the operations have symmetric variants. A circle

denotes any node, a square denotes a lea~ a line without an

associated weight denotes a black edge.) (a) Insertion: an

internal node and a leaf are inserted. (b) Deletion: a leaf

and an internal node are deleted.

and a new leaf into the tree. (For simplicity, we do not

consider the trivial cases in which the tree is initially

empty or consist of a single leaf.) A delete operation

removes a leaf and an internal node. Since the routers

are not necessarily y keys present in the tree, even a delete

operation does not need to modify routers far away from

the deleted nodes. The operations are described below

(cf. Fig, 1).

Insertion: The new key is searched from the tree.

If the key is found the process terminates. An unsuc-

cessful search ends up in a leaf, say v. A new internal

node u is inserted in the structure in the place of v, and

v and a new leaf containing the new key are made chil-

dren of u. The children are ordered such that the one

containing the smaller key will be u’s left child. The

router for u is a copy of the key contained in its left

child.

The parent edge of u gets the weight of v’s old parent

edge —1. The weights of the child edges of u are set to

one.

Deletion: The key to be deleted is searched from

the structure. If it is not found, the process terminates.

Otherwise, the leaf containing the key is removed. Its

parent is replaced by the parent’s other child, say u.

The weight of u’s new parent edge is the sum of

the weight of u’s old parent edge and the weight of the

parent edge of the removed internal node.

The new weights are assigned in such a way that the

conditions RB1 and RB2 hold true.

An insertion may introduce a new red edge and sev-

eral insertions may introduce a sequence of consecutive

red edges to the path from the root to a leaf. A dele-

tion can introduce a new overweighted edge or it can

increase an existing overweight.

4. REBALANCING A CHROMATIC TREE

This section describes the actions performed by a rebal-

ancing process. The process searches violations of the

red-black conditions and when one is found it updates

the weights of a few edges, and it may additionally per-

form a single or a double rotation. The operations are

designed so that RB1 and RB2 hold and the tree will

be modified towards a red-black tree.

A node v has a red-red conj?ict if one of the paths

from it to a leaf begins with two consecutive red edges.

It has an overweight conflict if one of its child edges is

overweighted. A node can have several conflicts.

The operations for red-red conflicts are similar with

those defined in [14, 15]; the difference is that we do

not care if a new conflict will arise closer the root of

the tree. The new conflict is left for a new separate

rebalancing action.

The operations for overweighted edges resemble the

operations that are performed after a deletion in [14,

15]. As in the case of a red-red conflict, we do not im-

mediately remove the new conflict that may arise closer

to the root. The operations may create new red-red

conflicts below the node in which the operation was per-

formed. Some of them must be removed immediately

(see Case 5 of Definition 3).

The rebalancing process searches nodes that have

conflicts. When it has found such a node it will remove

the conflict by using one of the transformation rules

defined below. There is one exception: if the rebalance

founds a red-red conflict in a node whose all adj scent

edges are red, the conflict cannot be removed before the

conflict in its parent.

The rebalancing transformations defined below are

illustrated in Fig. 2.

Definition 3. Let T be a chromatic tree and v one

of its nodes that have a conflict. The rebalancing
transformation in v depends on the weights of some

edges close to v (if several of the cases apply, choose

one of them):

Case 1. Both of the child edges of v are red, and

either v is the root or the parent edge of v has a non-

zero weight: Set the color of the child edges black; if v

is not the root, then decrease the weight of the parent

edge of v by one.

Case 2. The left (resp. right) child edge of v is red,

its other child edge is not red, and the left (right) child

edge of v’s left (right) child is red: Perform a single

rotation to the right (left).

194

AW>o

“A
w -1

“9
t’ ‘i

d“ “b

‘1”, Q.~ *t W>() t ‘,
8d“ d: “

,’#

d’” \

w

[b}

[d)

/

Wf>l “,
‘,

‘.

/

w?>o“LWI-l W7-1

FIG. 2. Rebalance operations. (All operations but (a)

have symmetric variants. A broken line denotes a red

edge, a double line denotes an overweighted edge; for other

denotations see Fig. 1.) (a) Case 1 (the red child edges of the

lowermost nodes are not shown): the weights are adjusted.

(b) Case 2: a single rotation. (c) Case 3: a double rotation.

(d) Case 4: the weights are adjusted. (e) Case 5: a single

rotation is performed and the weights are adjusted.

Case 3. The left (resp. right) child edge of v is red,

its other child edge is not red, and the right (left) child

edge of w‘s left (right) child is red: Perform a double

rotation to the right (left).

Case 4. One of the child edges of v is overweighted

and the other is not red: Decrease the weights of the

child edges by one; if v is not the root then increase the

weight of the parent edge of v by one.

Case 5. The left (resp. right) child edge of v is

overweighted, its other child edge leading to a node u

is red, and the left (right) child edge of u is not red:

Perform a single rotation to the right (left) and after

that, perform the operation defined in Case 4 in the

left (right) child. ❑

The transformations clearly keep the conditions for

a chromatic tree. (At the first glance, it may seem that

in Cases 3 and 4 the condition RB1 could be violated

by decreasing the parent edge of a leaf from one to zero.

In that case the tree would, however, have a violation

of the condition RB2 before the transformation.)

The transformation defined in Case 1 removes at

least one red-red conflict. It may introduce a new red-

red conflict in a node closer to the root. In the root,

no new conflicts can arise. In Cases 2 and 3 a red-

red conflict disappears and no new conflicts can arise.

Each transformation of Cases 4 and 5 decreases the

overweight of at least one edge. The transformation

of Case 4 may increase the overweight in an edge closer

to the root. The transformations of Cases 4 and 5 may

also create new red-red conflicts.

For the correctness of the rebalancing transforma-

tions, we first prove the following lemma:

Lemma 1. Given a chromatic tree that does not sat-

isfy the balance conditions for red-black trees, the tree

has at least one node in which a rebalancing transfor-

mation can be carried out.

Proof. The only case in which no rebalancing action is

possible is a red-red conflict in a node whose all adjacent

edges are red. The tree must, however, have another

node closer to the root that has a red-red conflict and

whose parent edge is not red (at least the root is such

a node). In that node, one of the transformations of

Cases 1, 2, or 3 can be, used. ❑

It is easy to see that no rule can move overweight

downwards in the tree (in the sense that the number

of nodes below the overweight would decrease). The

overweighted edges will thus disappear by a sequence

of transformations defined in Cases 4 and 5. If the tree

has no overweight conflicts a new red-red conflict may

only appear above a removed red-red conflict and it will

disappear in the root at the latest. Thus, for a given

chromatic tree, there is at least one sequence of rebal-

ancing transformations defined above that modifies the

195

tree such that it will finally be a red-black tree.

For a stronger result we shall need we first give some

definitions that will simplify its proof.

Let T be a chromatic tree with n nodes and E the

set of its edges, and let e = (u, u) be its edge. Then, by

nodes(e) we denote the number of nodes in the subtree

whose root is v. The red-red unbalance of the edge e is

{

n— nodes(e), if e and the parent edge

rw(e) = of u are red;

o, otherwise.

The red-red unbalance of a red edge that causes a

conflict is the “distance” between the conflict and the

root of the tree. The red-red unbalance of the tree is the

sum of the red-red unbalance of its edges, i.e., ru(T) =

D,CE ru(e). Similarly, the overweight unbalance of an

edge e is

{

(w(e) - l)(n - nodes(e)), if w(e)> 1;
ou(e) = ~

1 otherwise.

The overweight unbalance of an edge is the “distance”

between the edge and the root multiplied by the over-

weight. Finally, the overweight unbalance of the tree is

OU(T) = ~e@ o~(e).

T is clearly a red-black tree if and only if ru(T) =

OU(T) = O. The influence of our rebalancing transfor-

mations to the unbalance of a tree is described by the

following lemma:

Lemma 2. Let T and T’ be chromatic trees such that

T’ is obtained from T by using the transformation of

Case i (1 ~ i < 5) of Definition 3. Then

{

ru(T) > ru(T’) and OU(T) = OU(T’), if i = 1,2, or 3;

OU(T) > OU(T’), ifi=4,0r5.

Proof. Directly from definitions. ❑

The overweight unbalance of a tree cannot be in-

creased by the transformations. In Cases 4 and 5 the

red-red unbalance may be increased. The added unbal-

ance must later be removed by the transformations of

Cases 1, 2 and 3.

The following theorem tells us that we do not need to

fix the order in which a rebalance removes the conflicts.

Theorem 1. Given a chromatic tree, any sequence

of rebalancing transformations that is long enough,

modifies the tree into a red-black tree.

Proof. Let T be a chromatic tree with n nodes, and

letx=T1, T2, . . . be a sequence of chromatic trees such

that T1 = T and Ti+l is obtained from Ti by one of

the rebalancing transformations. Let us assume further

that m is as long as possible, i.e., it is finite if and only

if no rebalancing transformations can be applied to its

last element.

For the sake of contradiction, let us assume that T

is infinite. The total weight of the edges of a chromatic

tree is always non-negative. No transformation defined

in Cases 2–5 can increase the total weight of the tree.

The transformation of Case 1 increases the total weight

by one, but it never produces an overweighted edge.

Thus the total weight of the transformed trees is also

bounded from above. There exist only a constant

number of binary trees with n nodes and a different

shape.

We can conclude that we can get only a finite num-

ber of different trees by using our rebalancing transfor-

mations. Since T is infinite, it must contain at least two

equivalent trees. Let TP and Tq be two trees in r such

that TP = Tq and p < q, and let r be an index such that

p~r <q.

Assume first that a transformation rule for an over-

weight conflict (Case 4 or 5) has been used in the

tree Tr. Both rules decrease the overweight unbalance

ou (2Z). Since no other transformations can increase the

overweight unbalance, T. cannot be transformed to T4

by using the rules of Definition 3. Thus TP cannot be

equivalent to Tq, which is a contradiction. This means

that the sequence between TP and Tq can contain no

applications of Cases 4 and 5.

Assume then that a transformation rule for a red-

red conflict (Case 1, 2, or 3) has been used in Tr. The

red-red unbalance ru(Tr) is decreased. Since the unbal-

ance can only be increased by a rule for an overweight

conflict, and they cannot be applied for trees between

TP and Tq, T. can no more be transformed to T~. Thus

TP cannot be equivalent to T~. The contradiction proves

that x must be finite.

Since n was as long as possible and it is finite, the

theorem follows from Lemma 1. ❑

One can easily construct a procedure that rebal-

ances a chromatic tree by visiting its nodes 0(1) times.

The procedure traverses the tree in the inorder (see [15],

e.g.) and whenever it encounters a conflict, it makes the

appropriate rebalancing transformations. The traversal

must be extended in such a way that possible new red-

red conflicts in already visited left subtrees are removed

immediately. Since red-red conflicts do not propagate

downwards this can be accomplished by visiting a con-

stant number of already visited nodes. After a rotation,

the procedure must take care not to go to an already

traversed subtree that has been moved from the left.

There is another algorithm that takes an arbitrary

binary search tree and transforms it to a complete

binary tree (in which the level of the leaves differs at

most by one) by using ~(n) time and O(1) working

space [13]. That algorithm always rebuilds the whole

tree whereas the one sketched above does only some

local rebuilding when the tree has only some balance

violations. The red-black balance conditions are, of

196

course, much weaker than the ones for a complete

binary tree.

In an concurrent environment, we cannot fix the or-

der in which a rebalance traverses the tree. Otherwise,

the rebalance should lock paths from the root to the

leaves of the tree. The length of such a path is is not

bounded by a constant. In the next section we shall

show that by allowing a nondeterministic traversal for

the rebalance only a small constant number of nodes

must be locked at a time.

5. CONCURRENCY CONTROL
IN A CHROMATIC TREE

In this section we present a simple locking strategy for

chromatic trees. It prevents simultaneous writing and

reading the same data but still allows a high degree of

concurrency. The strategy is based on the one of Ellis

[4, 5], which was originally developed for AVL and 2-3

trees.

As discussed earlier, we define that a strategy for

concurrency control is eficient, if, at a point of time,

any process prohibits the access of other processes only

to a constant number of nodes. The strategies of

[4, 5, 8,9] are all efficient in that sense.

A process that performs search operations is called a

reader and a process that may modify the tree (update

and rebalance operations) is called a writer.

As in [4, 5] we use three kinds of locks, which we

call r-locks, w-locks, and z-locks (they are called p-, cr.,

and <-locks in [4, 5]). If a reader holds an r-lock in

a node, the node cannot be w-locked nor x-locked by

other processes but another reader can r-lock it. If a

process holds a w-lock in a node, the node cannot be

w-locked nor z-locked by other processes but it can be

r-locked by a reader. Finally, if a node is z-locked, no

other process can access the node. A reader uses r-locks

to exclude writers, a writer uses w-locks to exclude other

writers and z-locks to exclude all other processes.

Our strategy is that a reader r-locks the node whose

contents it is reading. A writer x-locks the nodes, whose

contents is to be modified. During the search phase

of an update operation and when a rebalance checks

whether a transformation should be performed or not,

the nodes can be accessed by readers; the writers use

w-locks instead of z-locks during this first phase. (If

they used r-locks instead, there could arise a dead-lock

situation when the w-locks are converted to z-locks

after the search phase.) The nodes are always locked

in the top-down direction in order to avoid dead-lock

sit uat ions.

When a reader advances from the root to a leaf, it

uses r-lock coupling, i.e., it r-locks the child to be visited

next, before it releases the r-lock in the currently visited

node. Thus, a reader keeps at most two locks at a time.

A writer that will perform an insert operation uses

w-lock coupling during the search phase. When the

search terminates at a leaf, the lock in the parent is

released and the w-lock in the leaf is converted to an

z-lock, Then the leaf is changed to an internal node

with two new leaves as children, The key stored in it

is copied into one new leafi the key to be inserted is

stored in the other new leaf. Finally, the router in the

internal node and the weights of the edges are assigned

as explained in Chapter 3. By using this technique, we

do not need to z-lock the parent of the node where the

search terminated. The process keeps at most two locks

in the tree at a time.

During a delete operation, three nodes must be

locked on the lowest level: the leaf to be deleted, its

sibling, and its parent. To achieve this, a process that

will perform a delete operation uses w-lock coupling

during the search phase. When the leaf to be deleted

haa been found, its parentis still kept w-locked, and the

process w-locks the sibling of the leaf. Then it z-locks

the parent of the leaf, the leaf itself, and its sibling. Now

the leaf is deleted, the contents of the sibling is copied to

the parent and the sibling is deleted, and after adjusting

the weights, the only remaining lock is released. If the

sibling node was a leaf, the parent must be made to a

leaf before the copying. By copying the contents of the

sibling to the parent we avoid the need to x-lock the

grandparent of the deleted leaf. The process locks at

most three nodes at a time.

The rebalancing processes traverse the tree nonde-

terministically. In the node currently visited, a pro-

cess nondeterministically chooses one of the rebalanc-

ing transformations and checks, whether the transfor-

mation applies and, finally, if it applies, it is performed

by the process. During the checking phase, the process

w-locks the nodes whose color-fields must be investi-

gated. In the worst case it must w-lock four nodes (the

visited node, its children, and one of its grandchildren.

The nodes are w-locked in the top-down direction. Just

before the transformation, it converts the w-locks of the

nodes whose contents will be changed to z-locks. If the

rotations are implemented by exchanging the contents

of nodes, the parent of the conflict node can freely be

accessed by other processes, Thus, four nodes must be

z-locked in the worst case (Case 5).
If a rebalancing process decides that the chosen

rebalancing transformation does not apply, it releases

immediately all locks and continues searching for other

conflicts,

We have not requested that the rebalance should

always perform a transformation if one of them applies.

If the rebalance had to choose a transformation deter-

ministically always when one of them applies it should

w-lock seven nodes in the worst case in order to select

the right type of a transformation.

Let us assume, that a set S of search, insert, and

197

delete operations are executed concurrently with rebal-

ance operations. Only one process can hold an x-lock

in a node at a time. All nodes modified by a writer

are z-locked until the operation is complete. Thus, nei-

ther a search operation nor the searching phase of an

update operation can take a wrong path from the root

to a leaf. This means that the search operations of S

give the same answers aa they would give in some serial

execution of S. The dead-lock situations are avoided

by always locking the nodes in top-down direction, and

by excluding other writers before a writer converts w-

locks to x-locks. We can thus conclude that the locking

strategy behaves correctly,

6. CONCLUSIONS

We have presented a method to update binary search

trees in such a way that the rebalancing task can be left

for a separate process that performs maybe several local

modifications in the tree. The trees can temporarily be

out of balance but we expect that the update operations

insert and delete keys so evenly in the tree that the ex-

ecution times of the dictionary operations remain toler-

able. In that case, however, the conventional updating

operations do not need to perform much rebalancing,

but they must spend time in checking whether or not

a rebalancing transformation must be performed, In

a concurrent environment, even the top-down updaters

must lock several nodes during the checking phase.

JVe have split the rebalancing transformations to as

small pieces as possible in order to decrease the number

of locks needed and to make the processes fast. The

sooner the processes unlock the nodes the higher degree

of concurrency is obtained. There are, of course, several

ways to combine our rebalancing transformations to

larger pieces.

Difficult problems that arise if keys can be stored in

internal nodes of the tree were avoided by using leaf-

oriented search trees in which the routing information

of the internal nodes need not be keys present in the

structure. Other solutions for the problem can be found

in [4, 5, 8, 9].

There is a method to uncouple updating and rebal-

ancing in AVL-trees (see [7, 1 l]), but it is more compli-

cated than the one for red-black trees, and the rebal-

ances must lock more nodes at a time. This strength-

ens the usefulness of red-black trees as an in-core data

structure.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11,

12.

13.

14<

15

G. M. Adel’son-Vels’kii and E. M. Landis, An al-

gorithm for the organization of information, Soviet

Math. Dokl. 3 (1962), 1259-1262.

R. A. Bayer, Symmetric binary B-trees: Data struc-

ture and maintenance algorithms, Acts Inform, 1

(1972), 290-306,

E. W. Dijkstra, L. Lamport, A. J. Martin,

C. S. Scholten, and E. F. M. Steffens, On the

fly garbage collection: An exercise in cooperation.

Comm. ACM 21 (1978), 699-975.

C. S. Ellis, Concurrent search in AVL-trees, IEEE

Trans. Computers C-29 (1980), 811-817.

C. S. Ellis, Concurrent search and insertions in 2-3

trees, Acts Inform. 14 (1980), 63-86.

L, J. Guibas and R. Sedgewick, A dichromatic

framework for balanced trees, 19ih IEEE Symp.

Foundations of Computer Science, 1978, 8-21.

J. L. V. Kessels, On-the-fly optimization of data

structures, Comm. ACM 26 (1983), 895-901.

H. T. Kung and P. L. Lehman, A concurrent

database manipulation problem: Binary search

trees, ACM Trans. Daiabase SysI. 5 (1980), 339-

353.

U. Manber and R. E. Ladner, Concurrency con-

trol in a dynamic search structure, AChl Trans.

Database Syst. 9 (1984), 439-455.

E. M. hlcCreight, Priority search trees, SIAM 1.

Comput. 14 (1985), 257-276.

0. Nurmi, E. Soisalon-Soininen, and D. 11’ood, Con-

currency control in database structures with re-

laxed balance. Proc. 6th ACM Conf. Principles of

Database Systems, 1987, 170-176.

N. Sarnak and R. E. Tarjan, Planar point loca-

tion using persistent search trees. Corn m. ACM 29

(1986), 669-679.

Q. F. Stout and B. L. Jf’arren, Tree rebalancing in

optimal time and space. Comm. ACM 29 (1986),

902-908.

R. E. Tarjan, Updating a balanced search tree in

0(1) rotations. Inf. Proc. Lett. 16 (1983), 253-257.

R. E. Tarjan, Data Structures and Network Algo-

rithms, Society for Industrial and Applied hlathe-

matics, Philadelphia, Pa., 1983.

198

