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Abstract

We study two different approaches for computing the

transitive closure of a directed graph and show that,

in some sense, they are “dual” on edge-reversed graphs

but, nevertheless, can differ asymptotically in cost on

the same family of graphs. We show how the two

approaches can be mixed into a new algorithm using

reachability trees. We show that the new algorithm

is o(~(~,yj~vxv CON~(Z, y)) where COMV(z, y) is the

pairwise connectivity of z and y, and give a more exact

connectivity-based upper bound that is better than the

lower bound for a wide class of other algorithms on every

family of graphs.

1 Introduction

The transitive closure of a directed graph is a binary

relation, TC, such that (i, j) c TC iff there is a path of

edges from node z to node j. In cyclic graphs, all the

nodes in a strongly connected component have the same

set of reachable nodes and this observation can be used

reduce the cyclic case to the acyclic. See, for instance,

[Pur70], [Dzi75], [Ebe81], [Sch83], and [IR88].

The asymptotically fastest known algorithms are based

on the fact that transitive closure reduces to matrix mul-

tiplication (see [Mun71] or [A HU74]). Hence, algorithms

such as the one by Coppersmith and Winograd [C W87],

which is 0(n2376), can be used. Unfortunately, the
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asymptotically fastest algorithms suffer from high con-

stant factors; more practical matrix-based algorithms,

such as Warshall’s [War62] and Warren’s [War75], exist

but do not take advantage of structural properties that

make some graphs easy. However, many algorithms ex-

ist where the structure of the graph affects execution

time. As will be described in Section 2, two basic ap-

proaches seem to underlie several of the published algo-

rithms of this latter type. We will show how it is possi-

ble to combine these approaches into a single algorithm

that is better at taking advantage of the structure of the

graph than algorithms based on a single approach.

We will use the following notation and cost model: We

seek to compute the transitive closure relation TC for a

directed graph given its edge relation E and set of nodes

V. We will use TC(Z) as shorthand for m2(u$1=,(TC))

and REAC17(i) for {i} u TC(i), i.e., the set of nodes

that are reachable from i. Also, we will use EREA CH(i)

for { (j, k) c E I j, k E REACH(Z)}, i.e., the set of

edges that are reachable from z and SUCC(i) to denote

7r2(u$1=, (E)), the immediate successors of i. Let n be

the number of vertices in the graph, e the number of

edges, and ered the number of edges in the transitive

reduction. In our cost model we assume that we can

look up, insert, delete, or modify any tuple in a relation

in constant time. We also assume that we can perform

a selection on any attribute in time that is proportional

to the number of tuples retrieved.

2 Two Approaches
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2.1 Dynamic Programming

In the first approach, we note that, for each node z,

TC(Z) = u REACH(j) .

jEsucc(i)

This observation may suggest a dynamic-programming

algorithm where for any node i, the sets of reachable

nodes are first constructed for each of its immediate suc-

cessors and then used to infer what nodes are reachable

from i. If we require that the reachability sets for the

successors be completely computed before they are used,

we can only deal with acyclic graphs. (The algorithm

called DAGDFTC in [IR88] is an example of this ap-

preach. ) We can handle cyclic graphs as well if we com-

pute the reachability sets incrementally. If we evaluate

the right-linear logic programming rules for transitive

closure

tc(X, Y) :- e(X, Y).

tc(X, Y) :- e(X, Z), tc(Z, Y).

with the semi-naive evaluation method ([ Ban86] ), we get

an algorithm like Algorithm 1, which infers the reacha-

bility sets for each node from those of its successors and

can handle cyclic graphs.

TC := E;

ATC := E;

repeat

NewATC’ := ZZ,V(E(Z, z) M ATC(.z, y)) – TC;

TC := TC’ u New-ATC;

ATC := New-ATC;

until no change in TC;

Algorithm 1

Examples of published algorithms that use variations

of the dynamic programming approach can be found in

[GK79], [Sch83], and [Meh84].

2.2 Search

A second approach for computing the transitive closure

is to search the graph n times, each time starting from a

different node, thereby determining what can be reached

from that node. In this approach, we completely disre-

gard any parts of the TC-relation that have already been

computed for other starting nodes. Instead, we search

the entire part of the graph that is reachable from the

starting node by following every edge we can get to. We

assume that the cost of the search is proportional to the

number of edges that are reachable from the starting
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node, i.e., to IERE.4 CH(i) I for starting node i. While

many different search strategies (depth-first, breadth-

first, etc.) are possible, we will use a logic program to

describe a search-type algorithm. If we evaluate the left-

linear logic program for transitive closure

tc(X, Y) :- e(X, Y).

tc(X, Y) :- tc(X, Z), e(Z, Y).

with the semi-naive method, we get an algorithm like

Algorithm 2 (referred to as “Semi-naive” in [IR88] and

several other papers). The algorithm can be viewed as a

simultaneous breadth-first search from all nodes in the

graph and its cost is O(&eV lEREACH(i)l).

TC := E;

ATC := E;

repeat

NewATC := mZ,g(ATC(z, z) M E(z, y)) – TC;

TC := TC u New-ATC; ”

ATC := New.ATC;

until no change in TC;

Algorithm 2

Other variations of the search approach is

eral papers: In both [B FM76] and [Sch78],

used in sev-

a search ap-

proach is used together with some additional features to

halt searches early. In both cases, these features rely on

nodes having large reachability sets — with cardinalities

n and > n/2, respectively — in order to be useful.

2.3 Comparison

The two approaches we have presented may in some

sense seem very different in that the second appears to

lack the dynamic-programming flavor of the first and in-

stead works on each node independently without exploit-

ing reachability sets computed for other nodes. However,

there is a sense in which the two approaches are “dual”

that is suggested by the following theorem:

Theorem 2.1 For any graph, G, with n nodes, let GR

be the graph formed by reversing all the edges of G. If

the cost of evaluating Algorithm 1 on G is ~(n), then

the cost of Algorithm 2 is e(~(n)) on GR. o

AS for the worst-case cost, it is easy to see that a search

from a source node can involve at most e edges. Hence,

a search-based algorithm like Algorithm 2 is O(n e) =

0(rL3), and, by Theorem 2.1, so is Algorithm 1. We

will later give a connectivity-based lower bound for both

algorithms.



We now give an example to show that, in spite of their

duality on edge-reversed graphs, the algorithms can dif-

fer by a factor of n in cost on the same graph.

EXAMPLE 2.1 Consider the following graph:

There are four “columns” of nodes. Each of the m nodes

in (1) has an edge to each of the m nodes in (2). Each

of the m nodes in (2) has an edge to the single node in

column (3), and this node has edges to each of the m

nodes in (4). Let the total number of nodes (i.e., 3m+ 1)

be n. Then m is ~(n) and the total number of edges

@(n2). Note that the graph is transitively reduced.

When we execute Algorithm 1 on the graph, we de-

rive the ‘TC-tuples of the form (a*, dj ) using E-tuples

of the form (a,, bk ) together with T6’-tuples of the form

(bk, d] ). For each node a,, there are m immediate suc-

cessors bk, each of which with m nodes dj in TC(bk ),

resulting in a cost that is fl(rzz ). Since there are m such

a-nodes, Algorithm 1 is f2(n3).

On the other hand, in Algorithm 2, we compute TC-

tuples oft he form (a,, dj ) by searching the graph starting

at each different a,. There are O(m) edges that are

reachable from each starting node making the total cost

over all starting nodes O(n2 ).

For the edge-reversed graph, Algorithm 2 is fl(ns) and

Algorithm 1 0(n2 ) as indicated by Theorem 2.1. ❑

3 A Mixed-Approach Algorithm

As was shown in Example 2.1, there are families of

graphs where Algorithms 1 and 2 have asymptotically

different costs. This fact suggests the simple strategy

of running both algorithms in parallel until one of them

halts, thereby staying within a factor of two in cost of

the algorithm that happens to be fastest on a particular

graph. Unfortunately, one graph could contain sections

where one algorithm is far better than the other but

other sections where the other algorithm is best, in which

case neither algorithm will do very well on the graph as a

whole. Consider, for instance, a graph consisting of the

graph in Example 2.1 and its reverse as disconnected

subgraphs. Both Algorithms 1 and 2 would be fl(n3) on

the graph as a whole. As a matter of fact, all the algo-

rithms referenced in Section 2 would be f2(rz3) on such

a graph. We now present an algorithm that combines

elements of both the search approach and dynamic pro-

gramming approach and that will never do worse than

the best of either approach on any part of a graph.

3.1 Reachability Trees

In the dynamic-programming approach we have de-

scribed, the TC(Z) set for a node z is computed from the

union of the reachability sets of its immediate successors.

However, a reachability set lacks some useful information

of the structure of the graph. In our mixed approach,

we will use reachability -bees which have a structure that

can be used to avoid some duplicate derivation of tuples.

A reachability tree for a node i is simply a tree rooted in

i that contains all nodes that are reachable from i, and

where all tree edges are edges in the graph. The basic

idea of our mixed approach is to find the nodes that are

reachable from a node by forming reachability trees for

its immediate successors and search those trees.

Forming the union of reachability sets has a cost that,

for each set involved, is proportional to the number of

nodes in the set. But the time it takes to traverse a tree

is also proportional to the number of nodes so using trees

instead of sets can never cost more (except, possibly, by

some constant factor).

Moreover, our traversal of reachability trees in a sense

amounts to a search, and in our mixed approach, we will

maintain the nice property of the search approach never

having to traverse the same edge in the graph twice from

the same source node. Hence, the cost of our approach

will never be more than proportional to the number of

edges reachable from each source node and we will never

do worse than the regular search approach (except, pos-

sibly, by some constant factor).

We now consider the following scenario to illustrate

why using trees is superior to merely using sets: As-

sume that we are computing what nodes are reachable

from a node z by searching the reachability tree for some

successor j of i. If we get to a node k. that we have al-

ready found to be reachable from z through some other

successor j’ of i, we need not search through the descen-

dants of k in the reachability tree for j since we know

that all those descendants must also be in the tree for

j’. It is thus possible to avoid considering some nocles in

the reachability trees and thereby do better than with
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mere reachability y sets.

It should be noted that some care must be taken when

selecting what graph edges should be used as tree edges

and when conducting the search of the trees. Otherwise,

we may end up with an incorrect algorithm that misses

some nodes. Still, there are many ways in which these

issues can be handled giving rise to different algorithms.

For example, on acyclic graphs, one could recursively

compute the reachability tree for a node as a depth-first

search tree of the graph formed by those edges that are

in the reachability trees of the immediate successors of

the node. For cyclic graphs, we would not, in general,

be able to completely compute the reachability trees of

all successors of a node before computing the tree for

the node itself. We would need an algorithm that is

incremental, much like Algorithms 1 and 2, and we will

present one such algorithm in the next section.

3.2 A New Algorithm

Our new algorithm iteratively forms longer and longer

paths. A path of length m is discovered by joining two

paths of length m – 1 that were discovered on the previ-

ous iteration. To represent reachability trees, we use a

predicate S(i, j, k, 1) which should be interpreted as fol-

lows: In the reachability tree for node i, there is a path

to node 1, and on that path, j is the immediate succes-

sor of i, and k the immediate predecessor of 1. On each

iteration of the algorithm, we form tuples (i, j, k, 1) from

the join S(i, j, ., k) w S(j, ., k, 1) meaning that we find

new nodes 1 reachable from z by going down one level

in the reachability trees for successors j of i. For every

(i, j) pair, we only add one (i, j, k, 1) tuple to S — if we

allowed more than one path from z to 1 in S, it would

not represent a tree. We have the following algorithm:

(1) Tc(z, j) :- E(2,j);
(2) S(Z,j, Z>j):- Jqi j), ~#j;
(3) repeat

(4) Neu_S := 0;
(5) for each i s.t. S(i, -,-, -) exists do

(6) for each j s.t. S(i, j, -, -) exists do

(7) for each (i, j, k, /) in S(i, j, -, k) w S(j,., k, 1) do

(8) if (i, 1) @ TC then

(9) begin

(lo) add (i, 1) to T(2’;

(11) if i + 1 then

(12) add (z, j, k, 1) to Newfi

(13) end;

(14) S := New.fi

(15) until no change in TC;

Algorithm 3

Theorem 3.1 Algorithm 3 correctly

transitive closure of a directed graph. ❑

3.3 Analysis and Examples

computes the

A transitive closure algorithm seeks to compute the ex-

istence of paths in the graph, and it seems reasonable to

assume that for many algorithms, the number of paths

— especially disjoint paths — between each pair of nodes

in the graph may affect the cost of the computation.

It therefore seems natural to use various measures of

connectivity as tools for analyzing and comparing algo-

rithms of this type. We will show that, unlike other

algorithms, the new algorithm has a connectivity-based

upper bound and that this upper bound is better than

the lower bound for a wide class of algorithms on every

family of graphs. We begin by defining some different

connectivity measures.

Definition 3.1 A pair of nodes (i, j) has pairwise con-

nectivity k, denoted CONN(i, j) = k, if k is the largest

number such that there exists a set of k paths from z to

j that are vertex disjoint (except for the end nodes i and

j). ❑

Definition 3.2 A path P is significant if it is a single

edge or every proper subpath of P is a shortest path in

the graph. •I

Definition 3.3 A pair of nodes (i, j) has significant

connectivity y k, denoted SCONN(Z, j) = k, if k is the

largest number such that there exists a set of k signifi-

cant paths from i to J that are disjoint (except for the

end nodes i and j). ❑

We now give special path and connectivity definitions

for our new algorithm. In doing so, we will assume that

there exists a set of n ordering relations for the nodes

that we will denote <. For every node i, +i is an ordering

on the immediate successors of i that the algorithm uses.

Such an ordering does not need to be anything more than

the order in which the nodes happen tv appear on the

adjacency list for i and we do not require that two nodes

with the same successor sets have them ordered in the

same way.

Note that the following two definitions are mutually re-

cursive.

Definition 3.4 A path i + al -+. . . . -+ am -+ j is a

good path if it is of the form i + j (a single edge) or

i-a l-i... -+a.mandal+-. .+a~ -+j’ are both

best paths. CI
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Definition 3.5 Given a set of orderings + on the nodes longest shortest path between any pair of nodes in the

in the graph such that each ordering relation ~i is a total graph, TC = Ul<i<~P’, and P% is defined as

ordering on SUCC(i), a path z + al + . . . + am + j,
--

i # 1, is a best path if it is a shortest good path from i
Pi =

{

E, ifi=l;

tojandthere isno good path i+a~-+...+a+j+j JP(Pk, Pi-k) – (Jj<a P~, otherwise.

of the same length such that al <t al. ❑
•1

Definition 3.6 Given a set of orderings < on the nodes

in the graph such that each ordering relation ~i is a total

ordering on SUCC(i), a pair of nodes (i, j) has good-path

connectivity k, denoted GC’ONN< (i, j) = k, if there are

k good paths from i to j. ❑

The value of GC’ONiV< (i, j) may be different with dif-

ferent orderings <. Even so, the following theorem holds

regardless of what orderings are used.

Theorem 3.2 For any pair of nodes (i, j),

GCONN< (i, j) < SCONN(i, j) s CONN(i, j). ❑

Theorem 3.3 Assume that ~ is the set of order-

ings used by Algorithm 3 when enumerating the j’s

in the for loop in line (6). Then Algorithm 3 is

~(~(i,~)~~c Gco~~+(~,~)). ❑

Corollary 3.1 On any acyclic graph, Algorithm 3 is

O(n e,e~), where eted is the number of edges in the tran-

sitive reduction. D

It is interesting to note that while the O(n ered) bound

has been achieved by other algorithms [G K79], our new

algorithm does not require a topological sorting of the

nodes in order to achieve the bound.

We will now compare the new algorithm to a whole

class of algorithms that are based on composing binary

relations. First, we define a basic operation for compo-

sition and its cost.

Definition 3.7 Let JP(A, 1?) be the join-p~ojeci oper-

ation 7r1,3(A(X, Z) w I?(Z, Y)) for computing the com-

position of two binary relations, A and B for which the

cost is proportional to 1A] + IA(X, Z) M B(Z, Y)l. D

The cost assumption means that we assume that a “stan-

dard” algorithm is used for the composition (e.g. a

nested loop-algorithm) rather than fast (better than

0(n3)) boolean matrix multiplication.

Definition 3,8 Let CJP be the class of algorit hms that

computes the transitive closure through a sequence of

relations P1, P2, . . . . Pm, where m is the length of the

Intuitively, each P’ contains the pairs of nodes between

which the shortest path is of length i. By varying the

value of k used in JP(Pk, Pi–k), we get different algo-

rithms in the class CJP. By using a fixed k = 1 for

every i, we get Algorithm 1 whereas using k = z – 1,

corresponds to Algorithm 2.

Theorem 3.4 Any algorithm in CJP is

~(~(t,j)~~c SCONN(i, j)) on every family of graphs. ❑

The theorem implies that if there are k disjoint signifi-

cant paths from i to j, any algorithm in CJP will infer

that (i, j) c TC at least k times. Note that this is just

a lower bound and, as will be shown by Example 3.1,

there are graphs on which any algorithm in CJP will do

much worse.

Theorem 3.5 Assume that the cost formula for JP

in Definition 3.7 holds for the join-project operations

in Algorithms 1 and 2. Then, both algorithms are

~(~(t,j)c~c co~~(z, j)) on every family of graphs. ❑

Note that this lower bound does not depend on the

breadth-first aspect of Algorithm 2. Were we to compute

the transitive closure using a depth-first search from each

node, the result would still hold.

EXAMPLE 3.1 Consider the following graph:

(1) (i (3) (4) (5)

There are 5 columns, each of which has m nodes except

column (3) which has a single node. Hence, 7n = @(n).
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For every node in column (k), 1 < k < 4, there is

an edge to every node in column (k + 1). There are

only two ways an algorithm in CJP can compute P3:

JP(P1, P2)– U~<3 P] and JP(.P2, P1) –Uj<a P]. Both

expressions are fl(n3) on the graph, eventhough, for

any pair of nodes (i, j) of distance 3, SCONN(i, j) =

CONN(i, j) = 1 and Z(i,j)e~CSCONN(i, j) = ~(n2).

Obviously, then, Algorithm 3 is 0(n2) on the graph. ❑

The previous example showed that there are families of

graphs on which any algorithm in CJP will do much

worse than the connectivity-based lower bound we have

given. Our next example will demonstrate that there

are graphs for which the upper bound for Algorithm 3

is much better than the lower bound for any algorithm

in CJP.

EXAMPLE 3.2 Consider the following graph:

●

●

●

●

●

5

A generalization of the algorithm for the k-source

nodes reachability problem and more general types

of recursive queries.

A join algorithm for certain types of relational al-

gebra queries.

An adaptation of the new algorithm to solve the

all-pairs shortest path problem and certain other

generalized transitive closure problems.

The use of reachability trees to speed up the pivot

operation in adjacency list implementations of War-

shall’s and Floyd’s algorithms.

Updates to recursively defined relations. It is in-

teresting to note that the algorithms by Italiano

[Ita86, Ita88] made limited use of reachability trees.

Acknowledgements
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.
(m -2) (m -1) (m)

The graph can be viewed as a square with m rows and

m columns of nodes. Hence, n = m2. For every node

in column (k), 1 < k s m — 1, there is an edge to

every node in column (k + 1). Let (i, j) be a pair of

nodes such that j is reachable from i. If the distance

from z to j is 1 or ~ 3, there is only a single good

path from z to j, i.e., GCONN< (i, j) = 1. In contrast,

unless the distance form i to j is 1, SCONN(i, j) =

A. We get that Z(,), )c~cSCONN(Z, j) = fi(n2 W)

wheras Zf*,JJe~C GCONN~ (i, j) = 0(n2). Hence, on

this graph, our new algorithm beats any algorithm in

CJP by a factor of&. o

4 Further Work

The reachability tree approach can be generalized

used for other applications than transitive closure.

current work includes:

and

Our
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