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ABSTRACT
In this paper, we analyse the exception handling mechanism of a
state-of-the-art industrial embedded software system. Like many
systems implemented in classic programming languages, oursub-
ject system uses the popular return-code idiom for dealing with ex-
ceptions. Our goal is to evaluate the fault-proneness of this idiom,
and we therefore present a characterisation of the idiom, a fault
model accompanied by an analysis tool, and empirical data. Our
findings show that the idiom is indeed fault prone, but that a simple
solution can lead to significant improvements.

1. INTRODUCTION
A key component of any reliable software system is its excep-

tion handling. This allows the system to detect errors, and react
to them correspondingly, for example by recovering the error or
by signalling an appropriate error message. As such, exception
handling is not an optional add-on, but a sine qua non: a system
without proper exception handling is likely to crash continuously,
which renders it useless for practical purposes.

Despite its importance, several studies have shown that exception
handling is often the least well understood, documented andtested
part of a system. For example, [30] states that more than 50% of
all system failures in a telephone switching application are due to
faults in exception handling algorithms, and [21] explainsthat the
Ariane 5 launch vehicle was lost due to an unhandled exception.

Various explanations for this phenomenon have been given.
First of all, since exception handling is not the primarycon-

cern to be implemented, it does not receive as much attention in
requirements, design and testing. [27] explains that exception han-
dling design degrades (in part) because less attention is paid to it,
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while [9] explains that testing is often most thorough for the ordi-
nary application functionality, and least thorough for theexception
handling functionality. Granted, exception handling behaviour is
hard to test, as the root causes that invoke the exception handling
mechanism are often difficult to generate, and a combinatorial ex-
plosion of test cases is to be expected. Moreover, it is very hard
to prepare a system for all possible errors that might occur at run-
time. The environment in which the system will run is often un-
predictable, and errors may thus occur for which a system didnot
prepare.

Second, exception handling functionality is crosscuttingin the
meanest sense of the word. [22] shows that even the simplest ex-
ception handling strategy takes up 11% of an application’s imple-
mentation, that it is scattered over many different files andfunctions
and that it is tangled with the application’s main functionality. This
has a severe impact on understandability and maintainability of the
code in general and the exception handling code in particular, and
makes it hard to ensure correctness and consistency of the latter
code.

Last, many software systems in use today are written in olderlan-
guages, such as C or Cobol, that do not provide explicit support for
exception handling. Such support makes exception handlingdesign
easier, by providing language constructs and accompanyingstatic
compiler checks. In the absence of such support, systems typically
resort to systematic coding idioms for implementing exception han-
dling, as advocated by the well-knownreturn codetechnique, used
in many C programs and operating systems. As shown in [4], such
idioms are not scalable and compromise correctness.

In this paper, we focus on the exception handling mechanism of a
real-time embedded system, that is over 15 years old, is developed
using a state-of-the-art development process, and consists of over
10 million lines of C code. The system applies (a variant of) the
return code idiom consistently throughout the implementation. The
central question we seek to address is the following: “how can we
reduce the number of implementation faults related to exception
handling implemented by means of the return code idiom?”. In
order to answer this general question, a number of more specific
questions needs to be answered first.

1. What kinds of faults can occur? Answering this question
requires an in-depth analysis of the return code idiom, and a
fault model that covers the possible faults to which the idiom
can lead;

2. Which of these faults do actually occur in the code? A fault
model only predicts which faults can occur, but does not
say which faults actually occur in the code. By carefully
analysing the subject system (automatically) an estimate of
the probability of a particular fault can be given;



3. What are the primary causes of these faults? The fault model
explainswhena fault occurs, but does not explicitly statewhy
it occurs. Because we need to analyse the source code in
detail for detecting faults, we can also study the causes of
these faults, as we will see;

4. Can we eliminate these causes, and if so, how? Once we
know why these faults occur and how often, we can come up
with alternative solutions for implementing exception han-
dling that help developers in avoiding such faults. An alter-
native solution is only a first step, (automated) migration can
then follow.

We believe that answers to these questions are of interest toa
broader audience then the original developers of our subject sys-
tem. Any software system that is developed in a language with-
out exception handling support will suffer the same problems, and
guidelines for avoiding such problems are more than welcome. In
this paper we offer experience, an analysis approach, tool support,
empirical data, and alternative solutions to such projects.

2. RELATED WORK
Fault (Bug) Finding Recently a lot of techniques and tools have

been developed that aim at either static fault finding or program
verification. However, we are not aware of fault finding approaches
specifically targeting exception handling faults.

Fault finding and program verification have different goals.On
the one hand, fault finding’s main concern is finding as many (po-
tentially) harmful faults as possible. Therefore fault finding tech-
niques usually sacrifice formal soundness in order to gain perfor-
mance and thus the ability to analyse larger systems. Specifically,
Metal [13], PREfix [7], and ESC [16] follow this approach. We
were inspired by many of the ideas underlying Metal for the imple-
mentation of our tool (see Section 5).

Model checking is also used as a basis for fault finding tech-
niques. CMC [24] is a model checker that does not require the
construction of a separate model for the system to be checked. In-
stead, the implementation (code) itself is checked directly, allowing
for effective fault finding. In [32] the authors show how CMC can
be used to find faults in file system implementations.

On the other hand, program verification is focused on proving
specified properties of a system. For instance, MOPS [8] is capable
of proving the absence of certain security vulnerabilities. More
general approaches are SLAM [2] and ESP [10]. While ESP is
burdened by the formal soundness requirement, it has nevertheless
been used to analyse programs of up to 140 KLOC.

Idiom Checkers A number of general-purpose tools have been
developed that can find basic coding errors [18, 25, 14]. These
tools are however incapable of verifying domain-specific coding
idioms, such as the return code idiom. More advanced tools [12,
29] are restricted to detecting higher-level design flaws but are not
applicable at the implementation level.

In [4], we present an idiom checker for the parameter checking
idiom, also in use at ASML. This idiom, although much simpler,
resembles the exception handling idiom, and the verifier is based
on similar techniques as presented in this paper.

Exception Handling Several proposals exist for extending the
C language with an exception handling mechanism. [20, 26] and
[31] all define exception handling macro’s that mimic a Java/C++
exception-handling mechanism. Although slightly varyingin syn-
tax and semantics, these proposals are all based around an idiom
using the Csetjmp/longjmp facility.

Exceptional C [17] is a more drastic, and as such more power-
ful, extension of C with exception handling constructs as present

1 int f(int a, int* b) {
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int *)b);
5 allocated = (r == OK);
6 if((r == OK) && ((a < 0) || (a > 10))) {
7 r = PARAM_ERROR;
8 LOG(r,OK);
9 }

10 if(r == OK) {
11 r = g(a);
12 if(r != OK) {
13 LOG(LINKED_ERROR,r);
14 r = LINKED_ERROR;
15 }
16 }
17 if(r == OK)
18 r = h(b);
19 if((r != OK) && allocated)
20 mem_free(b);
21 return r;
22 }

Figure 1: Exception handling idiom at ASML.

in modern programming languages. It allows developers to declare
and raise exceptions and define appropriate handlers. A function’s
signature should specify the exceptions that the function can raise,
which allows the preprocessor to check correctness. Standard C
code is generated as a result.

All these proposals differ from our proposal (Section 7) in that
our proposal still uses the return-code idiom, but makes it more
robust by hiding (some of) the implementation details. Thismakes
migration of the old mechanism to the new one easier, an important
concern considering ASML’s 10 MLoC code base.

Robillard and Murphy describe an exception flow model and a
corresponding tool in [28] and [27], to analyse exception handling
in Java applications. They show how exception structure cande-
grade and present a technique based on software compartmenting
to counter this phenomenon. Their work differs from ours in that
they reason about the application-specific design of exception han-
dling, whereas we focus on the (implementation of) the exception
handling mechanism itself.

3. CHARACTERISING THE RETURN CODE
IDIOM

The central question we seek to answer is how we can reduce
the number of faults related to exception handling implemented by
means of the return code idiom. To arrive at the answer, we first of
all need a clear description of the workings of (the particular vari-
ant of) the return code idiom at ASML. We use an existing model
for exception handling mechanisms (EHM) [19] to distinguish the
different components of the idiom. This allows us to identify and
focus on the most error-prone components in the next sections. Fur-
thermore, expressing our problem in terms of this general EHM
model makes it easier to apply our results to other systems using
similar approaches.

3.1 Terminology
An exception at ASML is “any abnormal situation found by the

equipment that hampers or could hamper the production”. Ex-
ceptions are logged in anevent log, that provides information on
the machine history to different stakeholders (such as service engi-
neers, quality assurance department, etc).

The EHM itself is based on two requirements:



1. a function that detects an error should log that error in the
event log, and recover it or pass it on to its caller;

2. a function that receives an error from a called function must
provide useful context information (if possible) bylinking an
error to the received error, and recover the error or pass it on
to the calling function.

An error that is detected by a function is called aroot error, while
an error that is linked to an error received from a function iscalled
a linkederror.

If correctly implemented, the EHM produces a chain of related
consecutive errors in the event log. This chain is commonly re-
ferred to as theerror link tree, and resembles a stack trace as output
by the Java virtual machine, for example.

Because ASML uses the C programming language, and C does
not have explicit support for exception handling, each function in
the ASML source code follows thereturn codeidiom. Figure 1
shows an example of such a function. We will now discuss this
approach in more detail.

3.2 Exception Representation
An exception representationdefines what an exception is and

how it is represented. At ASML, a singular representation is used,
in the form of anerror variable of typeint. Line 2 in Figure 1
shows a typical example of such an error variable, that is initialised
to theOK constant. This variable is used throughout the function to
hold anerror value, i.e., eitherOK or any other constant to signal
an error. The variable can be assigned a constant, as in lines7 and
14, or can be assigned the result of a function call, as in lines 4,
11 and 18. If the function does not recover from an error itself, the
value of the error should be propagated through the caller bythe
return statement (line 23).

Note that multiple error variables are sometimes needed, when
dealing with functions executing in parallel or when cleaning up re-
sources (see later). Only one error value can be returned by afunc-
tion, however, so special arrangements are necessary when using
multiple error variables. Although this is important for the correct
operation of the EHM, it is not the primary focus of this paper, so
we will not discuss it here in detail.

3.3 Exception Raising
Exception raising isthe notification of an exception occurrence.

Different mechanisms exist, of which ASML uses theexplicit
control-flow transfervariant: if a root error is encountered, the er-
ror variable is assigned a constant (see lines 6− 9), the function
logs the error, stops executing its normal behaviour, and notifies its
caller of the error.

Logging occurs by means of theLOG function (line 8), where
the first argument is the new error encountered, which is linked to
the second argument, that represents the previous error value. The
function treats root errors as a special case of linked errors, and
therefore the root error detected at line 8 is linked to the previous
error value,OK in this case.

Explicit guards are used to skip the normal behaviour of the func-
tion, as in lines 10 and 17. These guards check if the error variable
still contains theOK value, and if so, execute the behaviour, other-
wise skip it. Note that such guards are also needed in loops con-
taining function calls.

If the error variable contains an error value, this value propagates
to thereturn statement, which notifies the callers of the function.

3.4 Handler Determination

Handler determination isthe process of receiving the notifica-
tion, identifying the exception and determining the associated han-
dler. The notification of an exception occurs through the use of
thereturn statement and catching the returned value in the er-
ror variable when invoking a function (lines 4, 11 and 18). This
approach is referred to asexplicit stack unwinding.

The particular exception that occurs is not identified explicitly
most of the time, rather acatch-allhandler is provided. Such han-
dlers are mere guards, that check whether the error value is not
equal toOK. Typically, such handlers are used to link extra context
information to the encountered error (lines 12− 15), or to clean up
allocated resources (lines 20− 22).

3.5 Resource Cleanup
Resource cleanup isa mechanism to clean up resources, to keep

the integrity, correctness and consistency of the program.
ASML has no automatic cleanup facilities, although specifichan-

dlers typically occur at the end of a function if cleaning up of allo-
cated resources is necessary (lines 20− 22).

Note that resource cleanup may happen when an exception is
raised, and that the cleanup operation itself might give rise to an
exception as well. Although not shown in our example for reasons
of simplicity, this requires the use of multiple error variables.

3.6 Exception Interface & Reliability Checks
The exception interfacerepresents the part in a module interface

that explicitly specifies the exceptions that might be raised by the
module. ASML uses informal comments to specify which excep-
tions might be raised by a function.

Consequently, reliability checks thattest for possible faults intro-
duced by the EHM itselfare not possible. The focus of this paper
is to analyse which faults can be introduced and to show how they
can be detected and prevented.

3.7 Other Components
An EHM consists of several other components than the ones

mentioned above. Although these are less important for our pur-
poses, we shortly describe them here for completeness.

Handler scope is the entity to which an exception handler is at-
tached. At ASML, handlers havelocal scope: handlers are
associated to function calls (lines 12− 15), where they log
extra information, or can be found at the end of a function
(lines 20− 22), where they clean up allocated resources.

Handler binding attaches handlers to certain exceptions to catch
their occurrences in the whole program or part of the pro-
gram. ASML usessemi-dynamicbinding, which means that
different handlers can be associated with a single exception
in different contexts.

Information passing is defined astransfer of information useful
to the treatment of an exception from its raising context to its
handler. At ASML there is no information passing except
for the integer value that is passed to a caller. Although an
error log is constructed, the entries are used only for offline
analysis.

Criticality management representsthe ability to dynamically
change the priority of an exception handler, so that it an be
changed based on the importance of the exception, or the im-
portance of the process in which the error occurred. This is
not considered at ASML.
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Figure 2: Inputs and outputs of a function with respect to ex-
ception handling.

4. A FAULT MODEL FOR EXCEPTION HAN-
DLING

Based on the characterisation presented in the previous section,
we establish a fault model for exception handling by means ofthe
return code idiom in this section. The fault model defines when
a fault occurs, and includes failure scenarios which explain what
happens when a fault occurs.

4.1 General Overview
Our fault model specifies possible faults occurring in a function’s

implementation of theexception raisingand handler determina-
tion components. Those components are clearly the most prone
to errors, because their implementation requires a lot of program-
ming work, a good understandability of the idiom, and strictdis-
cipline. Although this also holds for theresource cleanupcom-
ponent, at ASML this component primarily deals with memory
(de)allocation, and we therefore consider it to belong to amem-
ory handlingconcern, for which a different fault model should be
established.

The return code idiom at ASML relies on the fact that when an
error is received, the corresponding error value should be logged
and should propagate to thereturn statement. The programming
language constructs that are used to implement this behaviour are
function calls, return statements and log calls. The fault model
includes a predicate for each of these constructs, and consists of
three formulas that specify a faulty combination of these constructs.
If one of the formulas is valid for the execution of a function, the
EH implementation of the function necessarily contains a fault.

A function is regarded as a black box, i.e., only its input–output
behaviour is considered. This perspective allows easy mapping of
faults to failure scenarios, at the cost of losing some details due
to simplification. Figure 2 gives an overview of the relevantinput
and outputs of a function. Any error values received from called
functions (receivepredicate) are regarded as input. Outputs are
comprised of the error value that is returned by a function (return),
and values written to the error log (LOG). We map the input and
outputs to logical predicates as follows.

First, receiveis a unary predicate that is true for an error value
that is received by the function during its execution. For instance,
if a function receives an errorPARAM ERROR somewhere during
its execution, thenreceive(PARAM ERROR) holds true. If a func-
tion does not receive an error value during its execution (either be-
cause it does not call any functions, or no exception is raised by
a called function), thenreceive(OK) holds. Likewise,return is a
unary predicate that holds true for the error value returnedby a
function at the end of its execution. Finally,LOG is a binary pred-
icate that is true for those two error values (if any) that arewritten
to the error log. The first position of theLOG predicate signifies
the new error value, while the second position signifies the (old)

error to which a link should be established. If and only if nothing
is written to the error log during execution,LOG(void, void) holds.

The fault model makes two simplifications: it assumes a func-
tion receives and logs at most one error during its execution. This
is reasonable, because if implemented correctly, no other function
should be called once an error value is received. Additionally, if
only one error value can be received, it makes little sense tolink
more than one other error value to it.

4.2 Fault Categories
The fault model consists of three categories, each including a

failure scenario, which are explained next. The predicatescaptur-
ing the faults in each category are displayed in Figure 3. Example
code fragments corresponding to Categories 1–3 are displayed in
Figures 4–6, respectively.

Category 1.The first category captures those faults where a
function raises a new error (y), but fails to perform appropriate log-
ging. There are two cases to distinguish. First,y is considered a
root error, i.e., no error has been received from any called function,
and thereforereceive(OK) holds. The function is thus expected to
performLOG(y,OK). However, a category 1 fault causes the func-
tion to performLOG(y,z) with z 6= OK.

Second,y is considered a linked error, i.e., it must be linked to a
previously received errorx. So,receive(x) holds withx 6= OK, and
the function is expected to performLOG(y,x). A category 1 fault
in its implementation results in the function performingLOG(y,z)
with x 6= z.

Category 1 faults have the potential to break error link trees in
the error log. The first case causes an error link tree to be improp-
erly initiated, i.e., it does not have theOK value at its root. The
second case will break (a branch of) an existing link tree, byfailing
to properly link to the received error value. Furthermore, the faulty
LOG call will start a new error link tree which has again been im-
properly rooted. Especially in the latter case it will be hard to re-
cover the chain of errors that occurred, making it neigh impossible
to find the root cause of an error.

Category 2.Here the function properly links a new error value
y to the received error valuex, but then fails to return the new error
value (and instead returnsz). The calling function will therefore
be unaware of the actual exceptional condition, and could therefore
have problems determining the appropriate handler. In the special
case ofreceive(OK), the function properly logs a root errory by
performingLOG(y,OK), but subsequently returns an errorzdiffer-
ent from the logged root errory.

Possible problems include corruption of the error log, due to
linking to the erroneously returned error valuez. Calling func-
tions have no way of knowing the actual value to link to in the
error log, because they receive a different error value. Even more
seriously, calling functions have no knowledge of the actual error
condition and might therefore invoke functionality that may com-
promise further operation of software or hardware. This problem
is most apparent ifOK is returned while an error has been detected
(and logged).

Category 3.The last category consists of function executions
that receive an error valuex, do not link a new error value tox in
the log, but return an error valuey that is different fromx. The
failure scenario is identical to category 2.



Category 1

receive(x) ∧
LOG(y,z) ∧
x 6= z

Category 2

receive(x) ∧
LOG(y,x) ∧
return(z) ∧

y 6= z

Category 3

receive(x) ∧
LOG(void,void) ∧
return(y) ∧

x 6= y

Figure 3: Predicates for the three fault categories.

5. SMELL: STATICALLY DETECTING EX-
CEPTION HANDLING FAULTS

Based on the fault model we developed SMELL, theState Ma-
chine for Error Linking and Logging, which is capable of statically
detecting violations to the return code idiom in the source code, and
is implemented as a CodeSurfer1 plugin. We want to detect faults
statically, instead of through testing as is usual for faultmodels, be-
cause early detection and prevention of faults is less costly [3, 6],
and because testing exception handling is inherently difficult.

5.1 Implementation
SMELL statically analyses executions of a function in orderto

prove the truth of any one of the logic formulas of our fault model.
The analysis is static in the sense that no assumptions are made
about the inputs of a function. Inputs consist of formal or global
variables, or values returned by called functions.

We represent an execution of a function by a finite path through
its control-flow graph. Possibly infinite paths due to recursion or
iteration statements are dealt with as follows. First, SMELL per-
forms an intra-procedural analysis only, i.e., calls to other func-
tions are not followed, and therefore recursion is no problem dur-
ing analysis. Second, loops created by iteration statements are dealt
with by caching analysis results at each node of the control-flow
graph. We discuss this mechanism later.

The analysis performed by SMELL is based on the evaluation of
a deterministic (finite) state machine (SM) during the traversal of
a path through the control-flow graph. The SM inspects the prop-
erties of each node it reaches, and then changes state accordingly.
A fault is detected if the SM reaches therejectstate; conversely, a
path is free of faults if the SM reaches theacceptstate.

The error variable is a central notion in the current implementa-
tion of SMELL. An error variable, such as ther variable in Fig-
ure 1, is used by a programmer to keep track of previously raised
errors. SMELL attempts to identify such variables automatically
based on a number of properties. Unfortunately, the idiom used
for exception handling does not specify a naming conventionfor
error variables. Hence, each programmer picks his or her favourite
variable name, ruling out a simple lexical identification ofthese
variables. Instead, a variable qualifies as an error variable in case it
satisfies the following properties:

• it is a local variable of typeint,

• it is assigned only constant (integer) values or function call
results,

• it is not passed to a function as an actual, unless in a log call,

• no arithmetic is performed using the variable.

Most functions in the ASML source base use at most one er-
ror variable, but in case multiple are used, SMELL considerseach
control-flow path separately for each error variable. Functions for

1www.grammatech.com

which no error variable can be identified are not considered for fur-
ther analysis. We discuss the limitations of this approach at the end
of this section.

Describing the complete SM would require too much space. There-
fore we limit our description to the states defined in the SM, and
show a subset of the transitions by means of example runs.

The following states are defined in the SM:

Accept andReject represent the absence and presence of a fault
on the current control-flow path, respectively.

Entry is the start state, i.e., the state of the SM before the evalua-
tion of the first node. A transition from this state only occurs
when an initialisation of the considered error variable is en-
countered.

OK reflects that the current value of the error variable is the OK
constant. Conceptually this state represents the absence of
an exceptional condition.

Not-OK is the converse, i.e., the error variable is known to be
anything but OK, though the exact value is not known. This
state can be reached when a path has taken the true branch of
a guard likeif(r != OK).

Unknown is the state reached if the result of a function call is
assigned to the error variable. Due to our limitation to intra-
procedural analysis, we conservatively assume function call
results to be unknown.

Constant is a parametrised state that contains the constant value
assigned to the error variable. This state can be reached after
the assignment of a literal constant value to the error variable.

All states also track the error value that was last written tothe log
file. This information is needed to detect faults in the logging of
errors.

While traversing paths of the control-flow graph of a function,
the analysis caches results in order to prevent infinite traversals of
loops and to improve efficiency by eliminating redundant compu-
tations. In particular, the state (including associated values of para-
meters) in which the SM reaches each node is stored. The analysis
then makes sure that each node is visited at most once given a par-
ticular state. The same technique is used by Engleret al. in [13].

5.2 Example Faults
The following three examples show how the SM detects faults

from each of the categories in the fault model. States reached by the
SM are included in the examples as comments, and where appro-
priate the last logged error value is mentioned in parentheses. First,
consider the code snippet in Figure 4. A fault of category 1 possi-
bly occurs on the path that takes the true branch of theif statement
on line 4. If the function call at line 3 returns with an error value,
sayINIT ERROR then receive(INIT ERROR) holds. The call to
the LOG function on line 5 makes LOG(RANGE ERROR, OK) true,



1 int calibrate(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(a == 1)
5 LOG(RANGE_ERROR, OK); // Reject
6 ...
7 }

Figure 4: Example of fault category 1.

and since OK is different fromINIT ERROR, all clauses of the
predicate for category 1 are true, resulting in a fault of category 1.

SMELL detects this fault as follows, starting in the Entry state
on line 1. The initialisation ofr, which has been identified as an
error variable, causes a transition to the OK state on line 2.The
assignment tor of the function call result on line 3 results in the
Unknown state. On the true branch of theif statement on line
4, a (new) root error is raised. The cause of the fault lies here.
SMELL reaches the Reject state at line 5 because if an error value
(sayINIT ERROR) would have been returned from the call to the
initialise function, it is required to link theRANGE ERROR
to theINIT ERROR, instead of linking to OK.

1 int align() { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(r != OK) // Not-OK
5 LOG(ALIGN_ERROR, r); // Not-OK (ALIGN_ERROR)
6 return r; // Reject
7 }

Figure 5: Example of fault category 2.

The function in Figure 5 exhibits a fault of category 2 on the
path that takes the true branch of theif statement. Again, sup-
pose receive(INIT ERROR) holds, then the function correctly per-
forms LOG(ALIGN ERROR, INIT ERROR). The fault consists of
the function not returningALIGN ERROR, butINIT ERROR, be-
cause after linking to the received error, the new error value is not
assigned to the error variable.

Again SMELL starts in the Entry state, and subsequently reaches
the OK state after the initialisation of the error variabler. The
initialise function is called at line 3, and causes SMELL to
enter the Unknown state. Taking the true branch at line 4 implies
that the value ofr must be different fromOK, and SMELL records
this by changing to the Not-OK state. At line 5 anALIGN ERROR
is linked to the error value currently stored in ther variable. SMELL
then reaches the return statement, which causes the error value to
be returned that was returned from theinitialise function call
at line 3. Since the returned value differs from the logged value at
this point, SMELL transits to the Reject state.

Category 3 faults are similar to category 2, but without any log-
ging taking place. Suppose again that for the function in Figure 6
receive(INIT ERROR) holds. For the path taking the true branch
of theif statement a value different fromINIT ERROR will be
returned, i.e.,PROCESS ERROR.

Until the assignment at line 5 the SM traverses through the same
sequence of states as for the previous examples. However, the as-
signment at line 5 puts SMELL in the Reject state, because the
previously received error value has been overwritten. A category 3
fault is therefore manifest.

5.3 Fault Reporting

1 int process(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(a == 2) {
5 r = PROCESS_ERROR; // Reject
6 }
7 ...
8 return r;
9 }

Figure 6: Example of fault category 3.

SMELL reports the presence of faults using a more fine grained
view of the source code than the fault model. While the fault model
takes a black box perspective, i.e., regarding behaviour only at the
interface level, SMELL reports detected faults using a white box
perspective, i.e., considering the implementation level details of a
function. The white box perspective is considered to be moreuseful
when interpreting actual fault reports, which developers may have
to process.

In the following we present a list of “low-level faults”, or pro-
grammer mistakes, that SMELL reports to its users. For each pro-
grammer mistake we mention here the associated fault categories
from the fault model. SMELL itself does not report these cate-
gories to the user. To help users interpreting the reported faults,
SMELL prints the control-flow path leading up to the fault, and the
associated state transitions of the SM.

function does not return occurs when a function declares and uses
an error variable (i.e., assigns a value to it), but does not re-
turn its value. If present, SMELL detects this fault at the
return statement of the function under consideration. This
can cause category 2 or 3 faults.

wrong error variable returned occurs when a function declares
and uses an error variable but returns another variable, or
when it defines multiple error variables, but only returns one
of them and does not link the others to the returned one in
the appropriate way. This can cause category 2 or 3 faults.

assigned and logged value mismatchoccurs when the error value
that is returned by a function is not equal to the value last
logged by that function. This can cause category 2 faults.

not linked to previous value occurs when aLOG call is used to
link an error value to a previous value, but this latter value
was not the one that was previously logged. If present,
SMELL detects this fault at the call site of the log function.
This causes category 1 faults.

unsafe assignmentoccurs when an assignment to an error vari-
able overwrites a previously received error value, while the
previous error value has not yet been logged. Clearly, if
present SMELL detects this fault at the assignment that over-
writes the previous error value.

5.4 Limitations
Our approach is both formally unsound and incomplete, which

is to say that our analysis proves neither the absence nor thepres-
ence of ‘true’ faults. In other words, both false negatives (missed
faults) or false positives (false alarms) are possible. False nega-
tives for example occur when SMELL detects a fault on a par-
ticular control-flow path, and stops traversing that path. Conse-
quently, faults occurring later in the path will go unnoticed. The



unsoundness property and incompleteness properties do notneces-
sarily harm the usefulness of our tool, given that the tool still allows
us to detect a large number of faults that may cause much machine
down-time, and that the number of false positives remains manage-
able. The experimental results (see Section 6) show that we are
currently within acceptable margins.

SMELL also exhibits a number of other limitations:
Meta assignmentsMeta assignments are assignments involv-

ing two different error variables, such asr = r2;. SMELL does
not know how to deal with such statements, since it traversesthe
control-flow paths for each error variable separately. As a result,
when considering ther variable, SMELL does not know what the
current value ofr2 is, and vice versa.

For the moment, SMELL recognises such statements and simply
stops traversing the current control-flow path.

Variableless log callsVariableless log calls are calls to theLOG
function that do not use an error variable as one of their actual
arguments, but instead only use constants, such as for example
LOG(PARAM ERROR,OK).

The problem with such calls appears when a function defines
more than one error variable. Although a developer is able totell
which error variable is considered from the context of the call,
SMELL has trouble associating the call to a specific error variable.

Whenever possible, SMELL tries to recover from such calls in-
telligently. For example, in the following case:

1 r =PARAM_ERROR;
2 LOG(PARAM_ERROR,OK);

SMELL is able to infer that the log call belongs to ther variable,
because it logs the constant that is assigned to that variable. How-
ever, the problem reappears when a second error variable is con-
sidered. When checking that variable and encountering theLOG
call, SMELL will report an error if the error value containedin the
second error variable differs from the logged value, because it does
not know theLOG call belongs to a different error variable.

Infeasible PathsInfeasible paths are paths through the control-
flow graph that can never occur at runtime, but that are considered
as valid paths by SMELL. SMELL only considers the values for er-
ror variables, and smartly handles guards involving those variables.
But it does not consider any other variables, and as such cannot in-
fer, for example, that certain conditions using other variables are in
fact mutually exclusive.

Wrong Error Variable Identification The heuristic SMELL
uses to identify error variables is not perfect. False positives oc-
cur when integer values are used to catch return values from library
functions, for example, such asputs or printf. Additionally,
false negatives occur when developers pass the error variable as
an actual or perform some arithmetic operations on it. This is not
allowed by the ASML coding standard, however.

Currently, false positives are easily identified manually,since
SMELL’s output reports which error variable was considered. If
this error variable is meaningless, inspection of the faultcan safely
be skipped.

6. EXPERIMENTAL RESULTS

6.1 General Remarks
Table 1 presents the results of applying SMELL on 5 relatively

small ASML components. The first column lists the component
that was considered together with its size, column 2 lists the num-
ber of faults reported by SMELL, column 3 contains the number
of false positives we manually identified among the reportedfaults,

reported false positives limitations validated

CC1 (3 kLoC) 32 2 4 26
CC2 (19 kLoC) 72 20 24 28
CC3 (15 kLoC) 16 0 3 13
CC4 (14.5 kLoC) 107 14 13 80
CC5 (15 kLoC) 9 0 3 6
total (66.5 kLoC) 236 36 47 153

Table 1: Reported number of faults by SMELL for five compo-
nents.

column 4 shows the number of SMELL limitations that are encoun-
tered, and finally column 5 contains the number of validated faults,
or ‘true’ faults.

Four of the five components are approximately of the same size,
but there is a striking difference between the numbers ofreported
faults. The number of reported faults for the CC3 and CC5 compo-
nents are much smaller than those reported for the CC2 and CC4
components. When comparing the number ofvalidatedfaults, the
CC4 component clearly stands out, whereas the number for the
other three components is approximately within the same range.

Although the CC1 component is the smallest one, its number of
validated faults is large compared to the larger components. This
is due to the fact that a heavily-used macro in the CC1 component
contains a fault. Since SMELL is run after macro expansion, afault
in a single macro is reported at every location where that macro is
used.

The number of validated faults reported for the CC5 component
is also interestingly low. This component is developed by the same
people responsible for the EHM implementation. As it turns out,
even these people violate the idiom from time to time, which shows
that the idiom approach is difficult to adhere to. However, itis clear
that the CC5 code is of better quality than the other code.

Overall, we get 236 reported faults, of which 47 (20%) are re-
ported by SMELL as a limitation. The remaining 189 faults were
inspected manually, and we identified 36 false positives (15% of
reported faults). The remaining 153 faults are thus validated, or in
other words, we found 2.3 true faults per thousand lines of code.

6.2 Fault Distribution
A closer look at the 153 validated faults shows that 13 faultsare

due to a function not returning, 28 due to the wrong error variable
being returned, 68 due to unsafe assignments, 11 due to incorrect
logging, and 42 due to an assigned and logged value mismatch.

Theunsafe assignmentfault occurs when the error variable con-
tains an error value that is subsequently overwritten. Thiskind of
fault is by far the one that occurs the most (68 out of 153 = 44%),
followed by theassigned and logged value mismatch(42 out of
153 = 27%). If we want to minimise the exception handling faults,
we should develop an alternative solution that deals with these two
kinds of faults.

Accidental overwriting of the error value typically occursbe-
cause the control flow transfer when the exception is raised is not
implemented correctly. This is mostly due to a forgotten guard
that involves the error variable ensuring that normal operation only
continues when no exception has been reported previously. An ex-
ample of such a fault is found in Figure 6.

The second kind of fault occurs in two different situations.First,
as exemplified in Figure 5, when a function is called and an excep-
tion is received, a developer might link an exception to the received
one, but forgets to assign the linked exception to the error variable.
Second, when a root error is detected and a developer assignsthe
appropriate error value to the error variable, he might forget to log



that value.

6.3 False positives
The number of false positives is sufficiently low to make SMELL

useful in practice. A detailed look at these false positivesreveals
the reasons why they occur and allows us to identify where we can
improve SMELL.

Of the 36 false positives identified, 23 are due to an incorrect
identification of the error variable, 7 are due to SMELL getting
confused when multiple error variables are used, 4 occur because
an infeasible path has been followed, and 2 false positives occur
due to some other (mostly domain-specific) reason.

These numbers indicate that the largest gain can be obtainedby
improving the error variable identification algorithm, forexample
by trying to distinguish ASML error variables from “ordinary” er-
ror variables. Additionally, they show that the issue of infeasible
paths is not really a large problem in practice.

7. AN ALTERNATIVE EXCEPTION HAN-
DLING APPROACH

In order to reduce the number of faults in exception handling
code, alternative approaches to exception handling shouldbe stud-
ied. A solution which introduces a number of simple macros has
been proposed by ASML, and we will discuss it here. We thereby
keep in mind that we know that the two most frequently occur-
ring faults are overwriting of the error value and the mismatch be-
tween the value assigned to the error variable and the value actually
logged.

The solution is based on two observations.
First, it encourages developers to no longer write assignments

to the error variable explicitly, and it manages them automatically
inside the macros. Such assignments can either be constant assign-
ments, when declaring a root error, or function-call assignments,
when calling a function. By embedding such assignments inside
specific macros and surrounding them with appropriate guards, we
can prevent accidental overriding of error values.

Second, the macros ensure that assignments are accompaniedby
the appropriateLOG calls, in order to avoid a mismatch between
logged and assigned values. As explained in the previous section,
such a mismatch occurs when declaring a root error or when linking
to a received error. Consequently, we introduce aROOT LOG and
LINK LOG macro that should be used in those situations and that
take care of all the work.

The proposed macro’s are defined in Figure 7. TheROOT LOG
macro should be used whenever a root error is detected, whilethe
LINK LOG macro is used when calling a function and additional
information can be provided when an error is detected. Addition-
ally, aNO LOG macro is introduced that should be used when call-
ing a function and not linking extra information if something goes
wrong.

Using these macros, the example code from Section 3 is changed
into the code that can be seen in Figure 8.

It is interesting to observe that using these macros drastically re-
duces the number of (programmer visible) control-flow branches.
This not only improves the function’s understandability and main-
tainability, but also causes a significant drop in code size,if we con-
sider that the return code idiom is omnipresent in the ASML code
base. Moreover, the exception handling code is separated from the
ordinary code, which allows the two to evolve separately. More
research is needed to study these advantages in detail.

The solution still exhibits a number of drawbacks.
First of all, the code that cleans up memory resources remains as

1 #define ROOT_LOG(error_value, error_var)\
2 error_var = error_value;\
3 LOG(error_value, OK);

1 #define LINK_LOG(function_call, error_value, error_var)\
2 if(error_var == OK) {\
3 int _internal_error_var = function_call;\
4 if(_internal_error_var != OK) {\
5 LOG(error_value, _internal_error_var);\
6 error_var = error_value;\
7 }\
8 }

1 #define NO_LOG(function_call, error_var)\
2 if(error_var == OK) \
3 error_var = function_call;

Figure 7: Definitions of proposed exception handling macro’s.

is. This is partly due to the fact that we did not focus on such code,
since we postulate that it belongs to a different concern. However,
such code also differs significantly between different functions and
source components, which makes it harder to capture it into aset
of appropriate macros.

Second, reliability checks are still not available. It remains the
developer’s responsibility to use the macros in the correctway, by
passing the correct arguments in the correct way. When this is not
the case, for example because arguments are reversed, faults of cat-
egory 1 will occur. Given that we detected only a small fraction of
faults of this category, we believe this will not pose serious prob-
lems.

Last, the macros do not tackle faults that concern the returning
of the appropriate error value. Since this was a deliberate choice,
because such errors are rather scarce and can be easily found, this
comes as no surprise.

1 int f(int a, int* b) {
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int *)b);
5 allocated = (r == OK);
6 if((a < 0) || (a > 10))
7 ROOT_LOG(PARAM_ERROR,r);
8 LINK_LOG(g(a),LINKED_ERROR,r);
9 NO_LOG(h(b), r);

10 if((r != OK) && allocated)
11 mem_free(b);
12 return r;
13 }

Figure 8: Function f implemented by means of the alternative
macros.

8. DISCUSSION
In our examples, we found 2.3 deviations from the return code

idiom per 1000 lines of code. In this section, we discuss some
of the implications of this figure, looking at questions suchas the
following: How does the figure relate to reported defect densities in
other systems? What, if anything, does the figure imply for system
reliability? What does the figure teach us on idiom and coding
standard design?

8.1 Representativeness



A first question to be asked is to what extent our findings are
representative for other systems. The software under studyhas the
following characteristics:

• It is part of an embedded system in which proper excep-
tion handling is essential: The system consists of hundreds
of sensors, actuators and other hardware components, all of
which can fail in various ways. The software must be capable
of handling such exceptions appropriately.

• Exception handling is implemented using the return code id-
iom for which little or no automated tool support is used (be-
yond standardlint-like facilities).

• Before release, the software components in question are sub-
jected to a thorough code review.

• The software is subjected to rigorous unit, integration, and
system tests.

In other words, we believe our findings hold for software thatis the
result of a state-of-the-art development process.

The reason that we find so many exception handling faults in
spite of this state-of-the-art process is that current waysof working
are not effective in finding such faults: tool support is inadequate,
regular reviews tend to be focused on “good weather behaviour” —
and even if they are aimed at exception handling faults theseare too
hard to find, and testing exception handling is notoriously hard.

8.2 Defect Density
What meaning should we assign to the value of 2.3 exception

handling faults per 1000 lines of code (kLoC) we detected?
It is tempting to compare the figure to reported defect densities.

For example, an often cited paper reports a defect density between
5 and 10 per kLoC for software developed in the USA and Eu-
rope [11]. More recently, in his ICSE 2005 state-of-the-artreport,
Littlewood states that studies show around 30 faults per kLoC for
commercial systems [23].

There are, however, several reasons why making such compar-
isons is questionable, as argued, for example, by [15]. First, there
is neither consensus on what constitutes a defect, nor on thebest
way to measure software size in a consistent and comparable way.
In addition to that, defect density is a product measure thatis de-
rived from the process of finding defects. Thus, “defect density
may tell us more about the quality of the defect finding and report-
ing process than about the quality of the product itself” [15, p.346].
This particularly applies to our setting, in which we have adopted a
new way to search for faults.

The consequence of this is that no conclusive statement on the
relative defect density of the system under study can be made. We
cannot even say that our system is of poorer quality than another
with a lower reported density, as long as we do not know whether
the search for defects included a hunt for idiom errors similar to
our approach.

What we can say, however, is that a serious attempt to deter-
mine defect densities should include an analysis of the faults that
may arise from idioms used for dealing with crosscutting concerns.
Such an analysis may also help when attempting to explain ob-
served defect densities for particular systems.

8.3 Reliability
We presently do not know what the likelihood is that an excep-

tion handling fault actually leads to a failure, such as an unneces-
sary halt, an erroneously logged error value, or the activation of the
wrong exception handler. As already observed by Adams in 1984,

more faults need not lead to more failures [1]. We are presently
investigating historical system data to clarify the relation between
exception handling faults and their corresponding failures. This,
however, is a time consuming analysis requiring substantial domain
knowledge in order to understand a problem report, the faultiden-
tified for it (which may have to be derived from the fix applied)and
to see their relation to the exception handling idiom.

8.4 Idiom design
The research we are presenting is part of a larger, ongoing effort

in which we are investigating the impact of crosscutting concerns
on embedded C code [5, 4]. The traditional way of dealing with
such concerns is by devising an appropriate coding idiom. What
implications do our findings have on the way we actually design
such coding idioms?

One finding is that an idiom making it too easy to make small
mistakes can lead to many faults spread all over the system. For
that reason, idiom design should include the step of constructing
an explicit fault model, describing what can go wrong when using
the idiom. This will not only help in avoiding such errors, but may
also lead to a revised design in which the likelihood of certain types
of errors is reduced.

A second lesson to be drawn is that the possibility to check id-
iom usage automatically should be taken into account: static check-
ing should be designed into the idiom. As we have seen, this may
require complex analysis at the level of the program dependence
graph as opposed to the (elementary) abstract syntax tree.

9. CONCLUDING REMARKS

Contributions
Our contributions are summarised as follows. First, we provided
empirical data about the use of an exception handling mechanism
based on the return code idiom in an industrial setting. Thisdata
shows that the idiom is particularly error prone, due to the fact that
it is omnipresent as well as highly tangled, and requires focused
and well-thought programming. Second, we defined a series of
steps to regain control over this situation, and answer the specific
questions we raised in the introduction. These steps consist of the
characterisation of the return code idiom in terms of an existing
model for exception handling mechanisms, the constructionof a
fault model which explains when a fault occurs in the most error
prone components of the characterisation, the implementation of
a static checker tool which detects faults as predicted by the fault
model, and the introduction of an alternative solution, based on
experimental findings, which is believed to remove the faults most
occurring.

We feel these contributions are not only a first step toward a relia-
bility check component for the return code idiom, but also provide a
good basis for (re)considering exception handling approaches when
working with programming languages without proper exception
handling support. We showed that when designing such idiom-
based solutions, a corresponding fault model is a necessityto assess
the fault-proneness, and the possibility of static checking should be
seriously considered.

Future work
There are several ways in which our work can be continued:

• apply SMELL to more ASML components, in order to per-
form more extensive validation. Additionally, some compo-
nents already use the macros presented in Section 7, which
allows us to compare the general approach to the alternative



approach, and assess benefits and possible pitfalls in more
detail. We initiated such efforts, and are currently analysing
approximately two million lines of C code for this.

• apply SMELL to non-ASML systems, such as open-source
systems, in order to generalise it and to present the results
openly.

• apply SMELL to other exception handling mechanisms for
C, such as those based on thesetjmp/longjmp idiom, to
analyse which approach is most suited.

• investigate aspect-oriented opportunities for exceptionhan-
dling, since benefits in terms of code quality can be expected
if exception handling behaviour is completely separated from
ordinary behaviour [22]. Furthermore, such an approach may
help to make the exception interface (see Section 3.6) ex-
plicit, similar to the domain-specific language we use to spec-
ify parameter declarations in [4].

Acknowledgements
This work has been carried out as part of the Ideals project under
the auspices of the Embedded Systems Institute. This project is
partially supported by the Netherlands Ministry of Economic Af-
fairs under the Senter program. The authors would like to thank
Remco van Engelen, Christian Bakker, Michiel Kamps and Pieter
ten Pierick for their help with and comments on SMELL.

10. REFERENCES
[1] E. N. Adams. Optimizing preventive service of software products.

IBM Journal of Research and Development, 28(1):2–14, 1984.
[2] T. Ball and S. K. Rajamani. The slam project: debugging system

software via static analysis. InConference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–3. ACM, January 2002.

[3] B. W. Boehm.Software Engineering Economics. Prentice-Hall, 1981.
[4] M. Bruntink, A. van Deursen, and T. Tourwé. Isolating Idiomatic
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