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Discovering Faults in Idiom-Based Exception Handling

Magiel Bruntink
Magiel.Bruntink@cwi.nl

ABSTRACT

In this paper, we analyse the exception handling mechanfsm o
state-of-the-art industrial embedded software systenke biany
systems implemented in classic programming languagessudr
ject system uses the popular return-code idiom for dealiitiy &x-
ceptions. Our goal is to evaluate the fault-proneness sfitlom,
and we therefore present a characterisation of the idionault f
model accompanied by an analysis tool, and empirical data. O
findings show that the idiom is indeed fault prone, but thatrgpke
solution can lead to significant improvements.

1. INTRODUCTION

A key component of any reliable software system is its excep-
tion handling. This allows the system to detect errors, aattr
to them correspondingly, for example by recovering thereoro
by signalling an appropriate error message. As such, except
handling is not an optional add-on, but a sine qua non: amyste
without proper exception handling is likely to crash contuosly,
which renders it useless for practical purposes.

Despite its importance, several studies have shown thapérn
handling is often the least well understood, documentedestéd
part of a system. For example, [30] states that more than 50% o
all system failures in a telephone switching applicatios dwe to
faults in exception handling algorithms, and [21] explaimat the
Ariane 5 launch vehicle was lost due to an unhandled exagptio

Various explanations for this phenomenon have been given.

First of all, since exception handling is not the primamgn-
cernto be implemented, it does not receive as much attention in
requirements, design and testing. [27] explains that éi@epan-
dling design degrades (in part) because less attentionidst@it,
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while [9] explains that testing is often most thorough foe thrdi-
nary application functionality, and least thorough for éxeeption
handling functionality. Granted, exception handling bébar is
hard to test, as the root causes that invoke the exceptiatiihgn
mechanism are often difficult to generate, and a combiredtex-
plosion of test cases is to be expected. Moreover, it is vard h
to prepare a system for all possible errors that might octrura
time. The environment in which the system will run is ofterr un
predictable, and errors may thus occur for which a systenmaid
prepare.

Second, exception handling functionality is crosscutiimghe
meanest sense of the word. [22] shows that even the simplest e
ception handling strategy takes up 11% of an applicatianjglé-
mentation, that it is scattered over many different filesfandtions
and that it is tangled with the application’s main functititya This
has a severe impact on understandability and maintaitabflthe
code in general and the exception handling code in particaied
makes it hard to ensure correctness and consistency of ttee la
code.

Last, many software systems in use today are written in ¢daher
guages, such as C or Cobol, that do not provide explicit stifipo
exception handling. Such support makes exception handésgn
easier, by providing language constructs and accomparsgatic
compiler checks. In the absence of such support, systerntatiyp
resort to systematic coding idioms for implementing exicephan-
dling, as advocated by the well-knoweturn codetechnique, used
in many C programs and operating systems. As shown in [4h suc
idioms are not scalable and compromise correctness.

In this paper, we focus on the exception handling mechanfsm o
real-time embedded system, that is over 15 years old, idajese
using a state-of-the-art development process, and cerdistver
10 million lines of C code. The system applies (a variant b8 t
return code idiom consistently throughout the impleméomatThe
central question we seek to address is the following: “howwea
reduce the number of implementation faults related to ei@ep
handling implemented by means of the return code idiom?”. In
order to answer this general question, a number of more fapeci
questions needs to be answered first.

1. What kinds of faults can occur? Answering this question
requires an in-depth analysis of the return code idiom, and a
fault model that covers the possible faults to which theridio
can lead;

. Which of these faults do actually occur in the code? A fault
model only predicts which faults can occur, but does not
say which faults actually occur in the code. By carefully
analysing the subject system (automatically) an estimfte o
the probability of a particular fault can be given;



3. What are the primary causes of these faults? The fault imode
explainswhena fault occurs, but does not explicitly stathy 2
it occurs. Because we need to analyse the source codé in
detail for detecting faults, we can also study the causes 5of
these faults, as we will see; 6

7
. Can we eliminate these causes, and if so, how? Once we
know why these faults occur and how often, we can come ﬁp
with alternative solutions for implementing exception Jnaq1
dling that help developers in avoiding such faults. An altee
native solution is only a first step, (automated) migratian 013

then follow. 5

We believe that answers to these questions are of interest tﬁ)
broader audience then the original developers of our subjes 15
tem. Any software system that is developed in a language- with
out exception handling support will suffer the same proldeand Zf
guidelines for avoiding such problems are more than welcdme 2.
this paper we offer experience, an analysis approach, tppast,
empirical data, and alternative solutions to such projects

2. RELATED WORK

Fault (Bug) Finding Recently a lot of techniques and tools have
been developed that aim at either static fault finding or oy
verification. However, we are not aware of fault finding amtees
specifically targeting exception handling faults.

Fault finding and program verification have different goas
the one hand, fault finding’s main concern is finding as mawy (p
tentially) harmful faults as possible. Therefore fault fimgltech-
nigues usually sacrifice formal soundness in order to gaifope
mance and thus the ability to analyse larger systems. Sgabifi
Metal [13], PREfix [7], and ESC [16] follow this approach. We
were inspired by many of the ideas underlying Metal for thplam
mentation of our tool (see Section 5).

Model checking is also used as a basis for fault finding tech-
niqgues. CMC [24] is a model checker that does not require the
construction of a separate model for the system to be chet¢ked
stead, the implementation (code) itself is checked diyeallowing
for effective fault finding. In [32] the authors show how CM@&rc
be used to find faults in file system implementations.

On the other hand, program verification is focused on proving
specified properties of a system. For instance, MOPS [8dalula
of proving the absence of certain security vulnerabilitiddore
general approaches are SLAM [2] and ESP [10]. While ESP is
burdened by the formal soundness requirement, it has heless
been used to analyse programs of up to 140 KLOC.

Idiom Checkers A number of general-purpose tools have been
developed that can find basic coding errors [18, 25, 14]. &hes
tools are however incapable of verifying domain-specifidiog
idioms, such as the return code idiom. More advanced tod@s [1
29] are restricted to detecting higher-level design flawtsabbe not
applicable at the implementation level.

In [4], we present an idiom checker for the parameter checkin
idiom, also in use at ASML. This idiom, although much simpler
resembles the exception handling idiom, and the verifieasetd
on similar techniques as presented in this paper.

Exception Handling Several proposals exist for extending the
C language with an exception handling mechanism. [20, 26] an
[31] all define exception handling macro’s that mimic a Javay
exception-handling mechanism. Although slightly varyingyn-
tax and semantics, these proposals are all based aroundbem id
using the Gset j np/ | ongj np facility.

Exceptional C [17] is a more drastic, and as such more power-
ful, extension of C with exception handling constructs asspnt

int f(int a, intx b) {
int r =0
bool al l ocated = FALSE;
r = nEmaIIoc(lO (int *)b);
allocated = (r == OK);
ifQCr ) & ((a<0) || (a>10))) {
r = PARAM _ERROR,

LOG(r, OK);
}
if(r ==& {
ro=g(a);

Pif(r 1= 0K {
LOG( LI NKED_ERROR, 1) ;
r = LI NKED_ERRCR

}

}

if(r == X
r = h(b);

if((r '= OK) && allocated)
mem free(b);

return r;

}

Figure 1: Exception handling idiom at ASML.

in modern programming languages. It allows developers ttade
and raise exceptions and define appropriate handlers. Aidarsc
signature should specify the exceptions that the functionraise,
which allows the preprocessor to check correctness. Stadr@a
code is generated as a result.

All these proposals differ from our proposal (Section 7)hatt
our proposal still uses the return-code idiom, but makesatem
robust by hiding (some of) the implementation details. Thakes
migration of the old mechanism to the new one easier, an itapor
concern considering ASML's 10 MLoC code base.

Robillard and Murphy describe an exception flow model and a
corresponding tool in [28] and [27], to analyse exceptiondiiag
in Java applications. They show how exception structuredean
grade and present a technique based on software compartgent
to counter this phenomenon. Their work differs from ourshatt
they reason about the application-specific design of eiaepian-
dling, whereas we focus on the (implementation of) the etxaep
handling mechanism itself.

3. CHARACTERISING THERETURN CODE
IDIOM

The central question we seek to answer is how we can reduce
the number of faults related to exception handling implet@e iy
means of the return code idiom. To arrive at the answer, wedfirs
all need a clear description of the workings of (the partcwiri-
ant of) the return code idiom at ASML. We use an existing model
for exception handling mechanisms (EHM) [19] to distinguike
different components of the idiom. This allows us to idgn@hd
focus on the most error-prone components in the next sectkeur-
thermore, expressing our problem in terms of this generdVlEH
model makes it easier to apply our results to other systeing us
similar approaches.

3.1 Terminology

An exception at ASML is “any abnormal situation found by the
equipment that hampers or could hamper the production”. Ex-
ceptions are logged in agvent log that provides information on
the machine history to different stakeholders (such asaeangi-
neers, quality assurance department, etc).

The EHM itself is based on two requirements:



1. a function that detects an error should log that error é th
event log, and recover it or pass it on to its caller;

2. a function that receives an error from a called functiorsimu
provide useful context information (if possible) igking an
error to the received error, and recover the error or pass it o
to the calling function.

An error that is detected by a function is calleabat error, while
an error that is linked to an error received from a functiocabed
alinkederror.

If correctly implemented, the EHM produces a chain of ralate
consecutive errors in the event log. This chain is commoely r
ferred to as therror link tree, and resembles a stack trace as output
by the Java virtual machine, for example.

Handler determination ithe process of receiving the notifica-
tion, identifying the exception and determining the asstec han-
dler. The notification of an exception occurs through the use of
ther et ur n statement and catching the returned value in the er-
ror variable when invoking a function (lines 4, 11 and 18).isTh
approach is referred to asplicit stack unwinding

The particular exception that occurs is not identified exbji
most of the time, rather @atch-allhandler is provided. Such han-
dlers are mere guards, that check whether the error valuetis n
equal toOK. Typically, such handlers are used to link extra context
information to the encountered error (lines-125), or to clean up
allocated resources (lines 2022).

3.5 Resource Cleanup
Resource cleanup smechanism to clean up resources, to keep

Because ASML uses the C programming language, and C doesthe integrity, correctness and consistency of the program

not have explicit support for exception handling, each fiamcin

the ASML source code follows thesturn codeidiom. Figure 1
shows an example of such a function. We will now discuss this
approach in more detail.

3.2 Exception Representation

An exception representatiatiefines what an exception is and
how it is representedAt ASML, a singularrepresentation is used,
in the form of anerror variable of typei nt . Line 2 in Figure 1
shows a typical example of such an error variable, that imlised
to theOK constant. This variable is used throughout the function to
hold anerror value i.e., eitherOK or any other constant to signal
an error. The variable can be assigned a constant, as infliard
14, or can be assigned the result of a function call, as irslihe
11 and 18. If the function does not recover from an errorfittiee
value of the error should be propagated through the callehby
r et ur n statement (line 23).

Note that multiple error variables are sometimes needeénwh
dealing with functions executing in parallel or when clesniip re-
sources (see later). Only one error value can be returnedunca
tion, however, so special arrangements are necessary velirg u
multiple error variables. Although this is important foethorrect
operation of the EHM, it is not the primary focus of this payser
we will not discuss it here in detail.

3.3 Exception Raising

Exception raising ishe notification of an exception occurrence
Different mechanisms exist, of which ASML uses tkgplicit
control-flow transfewariant: if a root error is encountered, the er-
ror variable is assigned a constant (see lines 8), the function
logs the error, stops executing its normal behaviour, atifiemits
caller of the error.

Logging occurs by means of tHeOG function (line 8), where
the first argument is the new error encountered, which istinio
the second argument, that represents the previous ertg.véhe
function treats root errors as a special case of linked grramd
therefore the root error detected at line 8 is linked to thevipius
error value K in this case.

Explicit guards are used to skip the normal behaviour oftinef
tion, as in lines 10 and 17. These guards check if the erraablar
still contains theOK value, and if so, execute the behaviour, other-
wise skip it. Note that such guards are also needed in loops co
taining function calls.

If the error variable contains an error value, this valugppgates
to ther et ur n statement, which notifies the callers of the function.

3.4 Handler Determination

ASML has no automatic cleanup facilities, although spebiic-
dlers typically occur at the end of a function if cleaning dlho-
cated resources is necessary (lines-222).

Note that resource cleanup may happen when an exception is
raised, and that the cleanup operation itself might give tisan
exception as well. Although not shown in our example for oaas
of simplicity, this requires the use of multiple error vénlies.

3.6 Exception Interface & Reliability Checks

The exception interfacepresents the part in a module interface
that explicitly specifies the exceptions that might be disg the
module ASML uses informal comments to specify which excep-
tions might be raised by a function.

Consequently, reliability checks thiasst for possible faults intro-
duced by the EHM itselfre not possible. The focus of this paper
is to analyse which faults can be introduced and to show hew th
can be detected and prevented.

3.7 Other Components

An EHM consists of several other components than the ones
mentioned above. Although these are less important for aw p
poses, we shortly describe them here for completeness.

Handler scope is the entity to which an exception handler is at-
tached At ASML, handlers havdocal scope: handlers are
associated to function calls (lines 3215), where they log
extra information, or can be found at the end of a function
(lines 20— 22), where they clean up allocated resources.

Handler binding attaches handlers to certain exceptions to catch
their occurrences in the whole program or part of the pro-
gram ASML usessemi-dynamidinding, which means that
different handlers can be associated with a single exagptio
in different contexts.

Information passing is defined agransfer of information useful
to the treatment of an exception from its raising contextgo i
handler At ASML there is no information passing except
for the integer value that is passed to a caller. Although an
error log is constructed, the entries are used only for @fflin
analysis.

Criticality management representsthe ability to dynamically
change the priority of an exception handler, so that it an be
changed based on the importance of the exception, or the im-
portance of the process in which the error occurrdthis is
not considered at ASML.



error to which a link should be established. If and only ifting
is written to the error log during executionQG(void, void) holds.
The fault model makes two simplifications: it assumes a func-
tion receives and logs at most one error during its execufldris
is reasonable, because if implemented correctly, no othetibn
should be called once an error value is received. Additlgnéil
only one error value can be received, it makes little sengmko
more than one other error value to it.

receive Function LOG

return

Figure 2: Inputs and outputs of a function with respect to ex-
ception handling.

4.2 Fault Categories

4. AFAULT MODEL FOREXCEPTION HAN- _The fault m_odel (_:onsists of th_ree categories, eac_h inctudin
failure scenario, which are explained next. The predicatgxur-
DLING ing the faults in each category are displayed in Figure 3.nipta

Based on the characterisation presented in the previotissec  code fragments corresponding to Categories 1-3 are displiay
we establish a fault model for exception handling by meartbef Figures 4-6, respectively.
return code idiom in this section. The fault model defines mwhe

a fault occurs, and includes failure scenarios which erplanat Category 1.The first category captures those faults where a
happens when a fault occurs. function raises a new erroy)( but fails to perform appropriate log-
] ging. There are two cases to distinguish. Fiysis considered a
4.1 General Overview root error, i.e., no error has been received from any catllaedtfon,
Our fault model specifies possible faults occurring in a fioms and thereforeeceivé OK) holds. The function is thus expected to
implementation of theexception raisingand handler determina-  PerformLOG(y, OK). However, a category 1 fault causes the func-
tion components. Those components are clearly the most pronetion to performLOG(y,z) with z OK. _
to errors, because their implementation requires a lot afjgam- Secondy is considered a linked error, i.e., it must be linked to a
ming work, a good understandability of the idiom, and stdist previously re.ceived errot. So,receivéx) holds withx # OK, and
cipline. Although this also holds for thesource cleanugom- the function is expected to perfortOG(y, x). A category 1 fault
ponent, at ASML this component primarily deals with memory N its implementation results in the function performib@G(y, z)
(de)allocation, and we therefore consider it to belong tmem- with x 7# z. ] o
ory handlingconcern, for which a different fault model should be ~ Category 1 faults have the potential to break error linksrige
established. the error log. The first case causes an error link tree to beopap
The return code idiom at ASML relies on the fact that when an €rly initiated, i.e., it does not have ti@K value at its root. The
error is received, the corresponding error value shouldbbgdd second case will break (a branch of) an existing link tredaling
and should propagate to thet ur n statement. The programming  {© properly link to the received error value. Furthermohe, faulty
language constructs that are used to implement this balraaie LOG call will start a new error link tree which has again been im-
function calls, return statements and log calls. The fawtieh properly rooted. Especially in the latter case it will bechéo re-
includes a predicate for each of these constructs, and ster cover the chain of errors that occurred, making it neigh issfiule
three formulas that specify a faulty combination of thesestaicts. to find the root cause of an error.
If one of the formulas is valid for the execution of a functidhe _ )
EH implementation of the function necessarily containsutfa Category 2.Here the function properly links a new error value
A function is regarded as a black box, i.e., only its inputpoti y to the received error value but then fails to return the new error
behaviour is considered. This perspective allows easy mgpys value (and instead returrg. The calling function will therefore
faults to failure scenarios, at the cost of losing some Bethie be unaware of the actual exceptional condition, and codckefore
to simplification. Figure 2 gives an overview of the relevamut have problems determining the appropriate handler. Inphkeial

and outputs of a function. Any error values received fronlecal ~ case ofreceivgOK), the function properly logs a root errgrby
functions (eceivepredicate) are regarded as input. Outputs are performingLOG(y, OK), but subsequently returns an ereatiffer-

comprised of the error value that is returned by a functietugn), ent from the logged root errgr

and values written to the error log®G). We map the input and Possible problems include corruption of the error log, due t

outputs to logical predicates as follows. linking to the erroneously returned error valae Calling func-
First, receiveis a unary predicate that is true for an error value tions have no way of knowing the actual value to link to in the

that is received by the function during its execution. Fatamce,  error log, because they receive a different error value.niwere

if a function receives an errd®?’ARAMLERROR somewhere during  seriously, calling functions have no knowledge of the aotueor
its execution, themeceivéPARAM ERRCR) holds true. If a func- condition and might therefore invoke functionality thatynam-

tion does not receive an error value during its executiohéeibe- promise further operation of software or hardware. Thidjem
cause it does not call any functions, or no exception is daise is most apparent iDK is returned while an error has been detected
a called function), themeceivgOK) holds. Likewise returnis a (and logged).

unary predicate that holds true for the error value returmgd

function at the end of its execution. FinallyOG s a binary pred- Category 3.The last category consists of function executions
icate that is true for those two error values (if any) thatwariten that receive an error value do not link a new error value ®in

to the error log. The first position of tHeOG predicate signifies the log, but return an error valuethat is different fromx. The
the new error value, while the second position signifies tie) ( failure scenario is identical to category 2.



Category 1 Category 2 Category 3

receivéx) A receivéx) A receiveéx) A

LOG(y,2) A LOG(y,X) A LOG(void,void) A

X#2Z return(z) A returnly) A
y#z X#y

Figure 3: Predicates for the three fault categories.

5. SMELL: STATICALLY DETECTING EX-
CEPTION HANDLING FAULTS

Based on the fault model we developed SMELL, 8tate Ma-
chine for Error Linking and Loggingwhich is capable of statically
detecting violations to the return code idiom in the souamec and
is implemented as a CodeSuffgiugin. We want to detect faults
statically, instead of through testing as is usual for fendtels, be-
cause early detection and prevention of faults is lessyc{atl6],
and because testing exception handling is inherently diffic

5.1 Implementation

SMELL statically analyses executions of a function in orter
prove the truth of any one of the logic formulas of our faultdab
The analysis is static in the sense that no assumptions atte ma
about the inputs of a function. Inputs consist of formal arbgll
variables, or values returned by called functions.

We represent an execution of a function by a finite path thnoug
its control-flow graph. Possibly infinite paths due to remmsor
iteration statements are dealt with as follows. First, SMpler-
forms an intra-procedural analysis only, i.e., calls toeotfunc-
tions are not followed, and therefore recursion is no probdkir-
ing analysis. Second, loops created by iteration statenaeatdealt
with by caching analysis results at each node of the cofibal-
graph. We discuss this mechanism later.

The analysis performed by SMELL is based on the evaluation of
a deterministic (finite) state machine (SM) during the traseof
a path through the control-flow graph. The SM inspects thepro
erties of each node it reaches, and then changes state iagtyrd
A fault is detected if the SM reaches ttegectstate; conversely, a
path is free of faults if the SM reaches theceptstate.

The error variable is a central notion in the current impletae
tion of SMELL. An error variable, such as thevariable in Fig-
ure 1, is used by a programmer to keep track of previoushedais
errors. SMELL attempts to identify such variables autonzly
based on a number of properties. Unfortunately, the idioedus
for exception handling does not specify a naming converfibon
error variables. Hence, each programmer picks his or heufée
variable name, ruling out a simple lexical identificationtbése
variables. Instead, a variable qualifies as an error variaase it
satisfies the following properties:

e itis alocal variable of typé nt ,

e it is assigned only constant (integer) values or functioh ca

results,

e itis not passed to a function as an actual, unless in a log call

e no arithmetic is performed using the variable.

Most functions in the ASML source base use at most one er-
ror variable, but in case multiple are used, SMELL consiéearsh
control-flow path separately for each error variable. Fianstfor

Iwww.grammatech.com

which no error variable can be identified are not consideveéLf-
ther analysis. We discuss the limitations of this approatheaend
of this section.

Describing the complete SM would require too much spacereFhe
fore we limit our description to the states defined in the SM] a
show a subset of the transitions by means of example runs.

The following states are defined in the SM:

Accept andReject represent the absence and presence of a fault
on the current control-flow path, respectively.

Entry is the start state, i.e., the state of the SM before the evalua
tion of the first node. A transition from this state only oczur
when an initialisation of the considered error variablers e
countered.

OK reflects that the current value of the error variable is the OK
constant. Conceptually this state represents the absénce o
an exceptional condition.

Not-OK is the converse, i.e., the error variable is known to be
anything but OK, though the exact value is not known. This
state can be reached when a path has taken the true branch of
aguardlike f(r = OK).

Unknown is the state reached if the result of a function call is
assigned to the error variable. Due to our limitation todntr
procedural analysis, we conservatively assume functidin ca
results to be unknown.

Constantis a parametrised state that contains the constant value
assigned to the error variable. This state can be reached aft
the assignment of a literal constant value to the error bbgia

All states also track the error value that was last writtethtolog
file. This information is needed to detect faults in the loggof
errors.

While traversing paths of the control-flow graph of a funitio
the analysis caches results in order to prevent infiniteetsals of
loops and to improve efficiency by eliminating redundant pam
tations. In particular, the state (including associatddesof para-
meters) in which the SM reaches each node is stored. Thesimaly
then makes sure that each node is visited at most once given a p
ticular state. The same technique is used by Ergjlat. in [13].

5.2 Example Faults

The following three examples show how the SM detects faults

from each of the categories in the fault model. States reboih¢he

SM are included in the examples as comments, and where appro-
priate the last logged error value is mentioned in pareethdsirst,
consider the code snippet in Figure 4. A fault of category 4dspo

bly occurs on the path that takes the true branch of thetatement

on line 4. If the function call at line 3 returns with an erralwe,

sayl NI T_ERROR then receivd(Nl T_ERROR) holds. The call to

the LOG function on line 5 makes LOBANGE_ERRCR, OK) true,
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int calibrate(int a) { Il Entry
int r =K Il K
r = initialise(); /1 Unknown
if(a ==1)
/'l Reject

LOG{ RANGE_ERRCR,  OK) ;

© O NG AWN

Figure 4: Example of fault category 1.

and since OK is different fronh NIl T_ERROR, all clauses of the
predicate for category 1 are true, resulting in a fault oégaty 1.
SMELL detects this fault as follows, starting in the Entrgtst
on line 1. The initialisation of , which has been identified as an
error variable, causes a transition to the OK state on lindt&
assignment t@ of the function call result on line 3 results in the
Unknown state. On the true branch of thé statement on line
4, a (new) root error is raised. The cause of the fault lieg.her
SMELL reaches the Reject state at line 5 because if an ertae va
(sayl NI T_.ERROR) would have been returned from the call to the
initialise function, it is required to link thdRANGE_ERROR
to thel NI T_.ERROR, instead of linking to OK.

int align() { Il Entry
int r = O 1l K
r =initialise(); /1 Unknown
if(r 1= OK) /1 Not-OK
LOG ALIGN_ERROR, r); // Not-OK (ALI GN_ERROR)
return r; /1 Reject

}

Figure 5: Example of fault category 2.

The function in Figure 5 exhibits a fault of category 2 on the
path that takes the true branch of the statement. Again, sup-
pose receiveé(Nl T_ERROR) holds, then the function correctly per-
forms LOGALI GNLERROR, | NI T_.ERROR). The fault consists of
the function not returnind\L1 GNLERRCR, but| NI T_ERROR, be-
cause after linking to the received error, the new errorezédnot
assigned to the error variable.

Again SMELL starts in the Entry state, and subsequentlytresic
the OK state after the initialisation of the error variable The
initialise function is called at line 3, and causes SMELL to
enter the Unknown state. Taking the true branch at line 4iespl
that the value of must be different fron©K, and SMELL records
this by changing to the Not-OK state. At line 5 Ahl GNLERROR
is linked to the error value currently stored in theariable. SMELL
then reaches the return statement, which causes the eluvertea
be returned that was returned from the t i al i se function call
at line 3. Since the returned value differs from the loggddevat
this point, SMELL transits to the Reject state.

Category 3 faults are similar to category 2, but without agy |
ging taking place. Suppose again that for the function inuFed
receive( NI T_.ERROR) holds. For the path taking the true branch
of thei f statement a value different froiiNl T_ERROR will be
returned, i.e.PROCESS_ERROR.

Until the assignment at line 5 the SM traverses through theesa
sequence of states as for the previous examples. Howeeesisth

int process(int a) { Il Entry
int r = O I K
r =initialise(); /1 Unknown
if(a==2) {

r =
}
return r;

}

PROCESS_ERRCR, // Rej ect

Figure 6: Example of fault category 3.

SMELL reports the presence of faults using a more fine grained
view of the source code than the fault model. While the faultiet
takes a black box perspective, i.e., regarding behaviolyratrthe
interface level, SMELL reports detected faults using a evfibx
perspective, i.e., considering the implementation lewthils of a
function. The white box perspective is considered to be rasedul
when interpreting actual fault reports, which developeey inave
to process.

In the following we present a list of “low-level faults”, ore-
grammer mistakes, that SMELL reports to its users. For eawh p
grammer mistake we mention here the associated fault aé&sgo
from the fault model. SMELL itself does not report these €ate
gories to the user. To help users interpreting the repodeatisf
SMELL prints the control-flow path leading up to the faultdahe
associated state transitions of the SM.

function does not return occurs when a function declares and uses
an error variable (i.e., assigns a value to it), but does@ot r
turn its value. If present, SMELL detects this fault at the
return statement of the function under consideration. This
can cause category 2 or 3 faults.

wrong error variable returned occurs when a function declares
and uses an error variable but returns another variable, or
when it defines multiple error variables, but only returne on
of them and does not link the others to the returned one in
the appropriate way. This can cause category 2 or 3 faults.

assigned and logged value mismatctoccurs when the error value
that is returned by a function is not equal to the value last
logged by that function. This can cause category 2 faults.

not linked to previous value occurs when d.OG call is used to
link an error value to a previous value, but this latter value
was not the one that was previously logged. If present,
SMELL detects this fault at the call site of the log function.
This causes category 1 faults.

unsafe assignmentoccurs when an assignment to an error vari-
able overwrites a previously received error value, whike th
previous error value has not yet been logged. Clearly, if
present SMELL detects this fault at the assignment that over
writes the previous error value.

5.4 Limitations

Our approach is both formally unsound and incomplete, which
is to say that our analysis proves neither the absence nqrése

signment at line 5 puts SMELL in the Reject state, because the €nce of ‘true’ faults. In other words, both false negativesséed

previously received error value has been overwritten. Agaty 3
fault is therefore manifest.

5.3 Fault Reporting

faults) or false positives (false alarms) are possible.sd-akega-

tives for example occur when SMELL detects a fault on a par-
ticular control-flow path, and stops traversing that pattongg-
quently, faults occurring later in the path will go unnoticeThe



unsoundness property and incompleteness properties theoes-
sarily harm the usefulness of our tool, given that the tabledtows

us to detect a large number of faults that may cause much meachi
down-time, and that the number of false positives remainsage-
able. The experimental results (see Section 6) show thatreve a
currently within acceptable margins.

SMELL also exhibits a number of other limitations:

Meta assignmentsMeta assignments are assignments involv-
ing two different error variables, suchas= r 2; . SMELL does
not know how to deal with such statements, since it travetses
control-flow paths for each error variable separately. Assailt,
when considering the variable, SMELL does not know what the
current value of 2 is, and vice versa.

|| reported | false positives| limitations | validated

CC1 (3KLOC) 32 2 Z 26
CC2 (19 kLoC) 72 20 24 28
CC3 (15 kLoC) 16 0 3 13
CC4 (14.5 kLoC) 107 14 13 80
CC5 (15 kLoC) 9 0 3 6
total (66.5 KLoC) 236 36 a7 153

Table 1: Reported number of faults by SMELL for five compo-
nents.

column 4 shows the number of SMELL limitations that are emeou
tered, and finally column 5 contains the number of validasedts,

For the moment, SMELL recognises such statements and simply or ‘true’ faults.

stops traversing the current control-flow path.

Variableless log callsVariableless log calls are calls to th€©G
function that do not use an error variable as one of theirahctu
arguments, but instead only use constants, such as for éxamp
LOG( PARAM ERROR, (X) .

The problem with such calls appears when a function defines
more than one error variable. Although a developer is abtelto
which error variable is considered from the context of th#, ca
SMELL has trouble associating the call to a specific erroiatde.

Whenever possible, SMELL tries to recover from such cals in
telligently. For example, in the following case:

r =PARAM ERROR
LOG( PARAM_ERROR, OK) ;

SMELL is able to infer that the log call belongs to theariable,
because it logs the constant that is assigned to that variatw-
ever, the problem reappears when a second error variabis c
sidered. When checking that variable and encounterind.®@
call, SMELL will report an error if the error value containadthe
second error variable differs from the logged value, bee#idoes
not know thelL OGcall belongs to a different error variable.

Infeasible Pathsinfeasible paths are paths through the control-
flow graph that can never occur at runtime, but that are censtt
as valid paths by SMELL. SMELL only considers the values fer e
ror variables, and smartly handles guards involving thesitles.
But it does not consider any other variables, and as suctotamn
fer, for example, that certain conditions using other J@da are in
fact mutually exclusive.

Wrong Error Variable Identification The heuristic SMELL
uses to identify error variables is not perfect. False p&stoc-
cur when integer values are used to catch return values fhoary
functions, for example, such gaut s or pri nt f . Additionally,
false negatives occur when developers pass the error i@rab
an actual or perform some arithmetic operations on it. Thisot
allowed by the ASML coding standard, however.

Currently, false positives are easily identified manuadipce
SMELL's output reports which error variable was considerdd
this error variable is meaningless, inspection of the feaft safely
be skipped.

6. EXPERIMENTAL RESULTS

6.1 General Remarks

Table 1 presents the results of applying SMELL on 5 relagivel
small ASML components. The first column lists the component
that was considered together with its size, column 2 listsilm-
ber of faults reported by SMELL, column 3 contains the humber
of false positives we manually identified among the repofaets,

Four of the five components are approximately of the same size
but there is a striking difference between the numbenepbrted
faults. The number of reported faults for the CC3 and CC5 emp
nents are much smaller than those reported for the CC2 and CC4
components. When comparing the numbevalidatedfaults, the
CC4 component clearly stands out, whereas the number for the
other three components is approximately within the samgean

Although the CC1 component is the smallest one, its number of
validated faults is large compared to the larger componenitss
is due to the fact that a heavily-used macro in the CC1 comyone
contains a fault. Since SMELL is run after macro expansidayul
in a single macro is reported at every location where thatrenisc
used.

The number of validated faults reported for the CC5 compbnen
is also interestingly low. This component is developed leyshme
people responsible for the EHM implementation. As it turos o
even these people violate the idiom from time to time, whiobves
that the idiom approach is difficult to adhere to. Howeves dear
that the CC5 code is of better quality than the other code.

Overall, we get 236 reported faults, of which 47 (20%) are re-
ported by SMELL as a limitation. The remaining 189 faults ever
inspected manually, and we identified 36 false positive§4 15
reported faults). The remaining 153 faults are thus vatidaor in
other words, we found.3 true faults per thousand lines of code.

6.2 Fault Distribution

A closer look at the 153 validated faults shows that 13 faarées
due to a function not returning, 28 due to the wrong erroralade
being returned, 68 due to unsafe assignments, 11 due taéctor
logging, and 42 due to an assigned and logged value mismatch.

Theunsafe assignmeiféult occurs when the error variable con-
tains an error value that is subsequently overwritten. Kimd of
fault is by far the one that occurs the most (68 out of 153 = 44%)
followed by theassigned and logged value mismai@?2 out of
153 = 27%). If we want to minimise the exception handling taul
we should develop an alternative solution that deals wigsettwo
kinds of faults.

Accidental overwriting of the error value typically occuns-
cause the control flow transfer when the exception is raisenbi
implemented correctly. This is mostly due to a forgottenrdua
that involves the error variable ensuring that normal ojp@maonly
continues when no exception has been reported previouslgxA
ample of such a fault is found in Figure 6.

The second kind of fault occurs in two different situatioRBst,
as exemplified in Figure 5, when a function is called and aexc
tion is received, a developer might link an exception to #weived
one, but forgets to assign the linked exception to the eadakle.
Second, when a root error is detected and a developer ashigns
appropriate error value to the error variable, he mightdotg log



that value. 1
2

6.3 False positives s

The number of false positives is sufficiently low to make SNIEL
useful in practice. A detailed look at these false positre®als
the reasons why they occur and allows us to identify whereame
improve SMELL. 4

Of the 36 false positives identified, 23 are due to an incorret
identification of the error variable, 7 are due to SMELL geiti °
confused when multiple error variables are used, 4 occuauser g
an infeasible path has been followed, and 2 false positicesro
due to some other (mostly domain-specific) reason.

These numbers indicate that the largest gain can be obtb')neot
improving the error variable identification algorithm, fexample s
by trying to distinguish ASML error variables from “ordindrer-
ror variables. Additionally, they show that the issue okadible
paths is not really a large problem in practice.

1
2
CB

7. AN ALTERNATIVE EXCEPTION HAN-
DLING APPROACH

In order to reduce the number of faults in exception handling
code, alternative approaches to exception handling shmuktud-
ied. A solution which introduces a number of simple macros ha
been proposed by ASML, and we will discuss it here. We thereby
keep in mind that we know that the two most frequently occur-
ring faults are overwriting of the error value and the misthdte-
tween the value assigned to the error variable and the vatually
logged.

The solution is based on two observations.

First, it encourages developers to no longer write assigtsne
to the error variable explicitly, and it manages them autizably
inside the macros. Such assignments can either be constigna
ments, when declaring a root error, or function-call agsignts,
when calling a function. By embedding such assignmentsiénsi
specific macros and surrounding them with appropriate guave
can prevent accidental overriding of error values. ;

Second, the macros ensure that assignments are accompgnied
the appropriatd.OG calls, in order to avoid a mismatch between
logged and assigned values. As explained in the previodmsec °
such a mismatch occurs when declaring a root error or whiimtin 3
to a received error. Consequently, we introdud@QOT_LOGand s
LI NK_LOG macro that should be used in those situations and titat
take care of all the work. .

The proposed macro’s are defined in Figure 7. RIOT_LOG i,
macro should be used whenever a root error is detected, tiaile:s
LI NK_LOG macro is used when calling a function and additional
information can be provided when an error is detected. Aaldit
ally, aNO_.LOG macro is introduced that should be used when call-
ing a function and not linking extra information if sometfigoes
wrong.

Using these macros, the example code from Section 3 is cange
into the code that can be seen in Figure 8.

Itis interesting to observe that using these macros dedstie-
duces the number of (programmer visible) control-flow bheasc
This not only improves the function’s understandabilityl anain-
tainability, but also causes a significant drop in code $ixes con-
sider that the return code idiom is omnipresent in the ASMteco
base. Moreover, the exception handling code is separaiedtfre
ordinary code, which allows the two to evolve separately. rélo
research is needed to study these advantages in detail.

The solution still exhibits a number of drawbacks.

First of all, the code that cleans up memory resources revan

#define ROOT_LOGQ error_val ue, error_var)\
error_var = error_val ue;\
LOG(error_val ue, OK);

#define LINK_LOE function_call,
if(error_var oK) {\
int _internal _error_var = function_call;\
if(_internal _error_var !'= OK) {\
LOG(error_value, _internal _error_var);\
error_var = error_value;\

error_val ue, error_var)\

n
}

#define NO LOE function_call,
if(error_var == OK) \
error_var = function_call;

error_var)\

Figure 7: Definitions of proposed exception handling macrc.

is. This is partly due to the fact that we did not focus on sumife¢
since we postulate that it belongs to a different concernwéver,
such code also differs significantly between different fiors and
source components, which makes it harder to capture it irset a
of appropriate macros.

Second, reliability checks are still not available. It rénsathe
developer’s responsibility to use the macros in the comext, by
passing the correct arguments in the correct way. Whenghisti
the case, for example because arguments are reverses dbcdit-
egory 1 will occur. Given that we detected only a small fractdf
faults of this category, we believe this will not pose sesiquob-
lems.

Last, the macros do not tackle faults that concern the rigtgirn
of the appropriate error value. Since this was a deliberatéce,
because such errors are rather scarce and can be easily fbisnd
comes as no surprise.

int f(int a, intx b) {

int r =0

bool allocated = FALSE;

r = memalloc(10, (int *)b);

all ocated = (r X) ;

if((a<0) || (a>10))
ROOT_LOG( PARAM ERROR, 1) ;

LI NK_LOG g(a), LI NKED ERROR ) ;

NO_LOE h(b), r);

if((r '= OK) && allocated)
mem free(b);

return r;

}

Figure 8: Function f implemented by means of the alternative
macros.

8. DISCUSSION

In our examples, we found.2 deviations from the return code
idiom per 1000 lines of code. In this section, we discuss some
of the implications of this figure, looking at questions sashthe
following: How does the figure relate to reported defect derssin
other systems? What, if anything, does the figure imply fetey
reliability? What does the figure teach us on idiom and coding
standard design?

8.1 Representativeness



A first question to be asked is to what extent our findings are
representative for other systems. The software under s$tasiyhe
following characteristics:

e It is part of an embedded system in which proper excep-

more faults need not lead to more failures [1]. We are présent
investigating historical system data to clarify the relatbetween
exception handling faults and their corresponding fagur@his,
however, is a time consuming analysis requiring substaiaain
knowledge in order to understand a problem report, the fdett-

tion handling is essential: The system consists of hundreds iified for it (which may have to be derived from the fix appliesd
of sensors, actuators and other hardware components, all of;y see their relation to the exception handling idiom.

which can fail in various ways. The software must be capable
of handling such exceptions appropriately.

e Exception handling is implemented using the return code id-
iom for which little or no automated tool support is used (be-
yond standardl i nt -like facilities).

o Before release, the software components in question are sub
jected to a thorough code review.

e The software is subjected to rigorous unit, integratiord an
system tests.

In other words, we believe our findings hold for software thdhe
result of a state-of-the-art development process.
The reason that we find so many exception handling faults in

spite of this state-of-the-art process is that current vediygorking

are not effective in finding such faults: tool support is ieqdate,
regular reviews tend to be focused on “good weather behevieu
and even if they are aimed at exception handling faults taes®o
hard to find, and testing exception handling is notoriousisdh

8.2 Defect Density

What meaning should we assign to the value & @xception
handling faults per 1000 lines of code (kLoC) we detected?

It is tempting to compare the figure to reported defect deyssit
For example, an often cited paper reports a defect densiiyelea
5 and 10 per kLoC for software developed in the USA and Eu-
rope [11]. More recently, in his ICSE 2005 state-of-theraport,
Littlewood states that studies show around 30 faults perCkiar
commercial systems [23].

8.4 Idiom design

The research we are presenting is part of a larger, ongofag ef
in which we are investigating the impact of crosscuttingeasns
on embedded C code [5, 4]. The traditional way of dealing with
such concerns is by devising an appropriate coding idiomatWh
implications do our findings have on the way we actually desig
such coding idioms?

One finding is that an idiom making it too easy to make small
mistakes can lead to many faults spread all over the system. F
that reason, idiom design should include the step of coctitig
an explicit fault model, describing what can go wrong wheimgis
the idiom. This will not only help in avoiding such errors.tiooay
also lead to a revised design in which the likelihood of gertgpes
of errors is reduced.

A second lesson to be drawn is that the possibility to cheek id
iom usage automatically should be taken into account:cstagck-
ing should be designed into the idiom. As we have seen, this ma
require complex analysis at the level of the program depmrale
graph as opposed to the (elementary) abstract syntax tree.

9. CONCLUDING REMARKS

Contributions

Our contributions are summarised as follows. First, we joley
empirical data about the use of an exception handling mesiman
based on the return code idiom in an industrial setting. This
shows that the idiom is particularly error prone, due to tut that
it is omnipresent as well as highly tangled, and requiresiged

There are, however, several reasons why making such compar-and well-thought programming. Second, we defined a series of

isons is questionable, as argued, for example, by [15]t,Firsre

is neither consensus on what constitutes a defect, nor obetste
way to measure software size in a consistent and comparayle w
In addition to that, defect density is a product measureithde-
rived from the process of finding defects. Thus, “defect dgns
may tell us more about the quality of the defect finding anarep
ing process than about the quality of the product itself’;, [1346].
This particularly applies to our setting, in which we havepted a
new way to search for faults.

The consequence of this is that no conclusive statementeon th
relative defect density of the system under study can be mAee
cannot even say that our system is of poorer quality thanhanot
with a lower reported density, as long as we do not know whethe
the search for defects included a hunt for idiom errors sintib
our approach.

What we can say, however, is that a serious attempt to deter-

mine defect densities should include an analysis of thedabat
may arise from idioms used for dealing with crosscuttingoeons.
Such an analysis may also help when attempting to explain ob-
served defect densities for particular systems.

8.3 Reliability

We presently do not know what the likelihood is that an excep-
tion handling fault actually leads to a failure, such as aneges-
sary halt, an erroneously logged error value, or the agivaif the
wrong exception handler. As already observed by Adams 4,198

steps to regain control over this situation, and answer pleeific
questions we raised in the introduction. These steps daofsike
characterisation of the return code idiom in terms of antigs
model for exception handling mechanisms, the construatioa
fault model which explains when a fault occurs in the mosorerr
prone components of the characterisation, the implementaf

a static checker tool which detects faults as predicted byfahit
model, and the introduction of an alternative solution,edasn
experimental findings, which is believed to remove the faoibst
occurring.

We feel these contributions are not only a first step towagdia-r
bility check component for the return code idiom, but alsovte a
good basis for (re)considering exception handling apgreaevhen
working with programming languages without proper exaapti
handling support. We showed that when designing such idiom-
based solutions, a corresponding fault model is a necdesigsess
the fault-proneness, and the possibility of static chegkimould be
seriously considered.

Future work
There are several ways in which our work can be continued:

e apply SMELL to more ASML components, in order to per-
form more extensive validation. Additionally, some compo-
nents already use the macros presented in Section 7, which
allows us to compare the general approach to the alternative



approach, and assess benefits and possible pitfalls in more[13] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checkiygtem

detail. We initiated such efforts, and are currently anatys
approximately two million lines of C code for this.

e apply SMELL to non-ASML systems, such as open-source
systems, in order to generalise it and to present the results
openly.

e apply SMELL to other exception handling mechanisms for
C, such as those based on #et j np/ | ongj np idiom, to
analyse which approach is most suited.

e investigate aspect-oriented opportunities for exceplian-
dling, since benefits in terms of code quality can be expected
if exception handling behaviour is completely separatenhfr
ordinary behaviour [22]. Furthermore, such an approach may
help to make the exception interface (see Section 3.6) ex-
plicit, similar to the domain-specific language we use t@spe
ify parameter declarations in [4].
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