
An Experimental Comparison of Four Test Suite Reduction
Techniques

Hao Zhong, Lu Zhang*, Hong Mei*
Institute of Software, School of Electronics Engineering and Computer Science, Peking University,

Beijing, 100871, P.R. China
86-10-62751794

{zhonghao04, zhanglu, meih }@sei.pku.edu.cn

* Corresponding Authors

ABSTRACT
As a test suite usually contains redundancy, a subset of the test
suite (representative set) may still satisfy all the test objectives. As
the redundancy increases the cost of executing the test suite, many
test suite reduction techniques have been brought out in spite of
the NP-completeness of the general problem of finding the
optimal representative set of the test suite. In the literature, some
experimental studies of test suite reduction techniques have
already been reported, but there are still shortcomings of the
studies of these techniques. This paper presents an experimental
comparison of the four typical test suite reduction techniques:
heuristic H, heuristic GRE, genetic algorithm-based approach and
ILP-based approach. The aim of the study is to provide a guideline
for choosing the appropriate test suite reduction techniques.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging,
Debugging aids;
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Algorithms, Measurement, Performance, Experimentation,

Keywords
Test suite reduction, Software testing, Test suite minimization,
Empirical studies.

1. INTRODUCTION
In real world software development, developers typically

rely on testing to find bugs in the software. Usually, testing
is an expensive process, and one key factor for the
expensiveness of testing is that it typically takes a very long
period of time to execute the whole set of test cases.
Therefore, it has long been identified as a research focus to
find a small but effective set of test cases for testing a
software system.

Copyright is held by the author/owner(s).
ICSE’06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

As one test case can hardly satisfy all the requirements, it is
usually required to use a suite of test cases to satisfy as
many as possible requirements. Intuitively, the more test
cases are used, the more possible the requirements are
satisfied. Practically, a test suite usually undergoes a
process of expansion, as new test cases are inserted into the
test suite to ensure the requirements being satisfied. As a
result, a test suite may contain more than enough test cases
for satisfying the requirements. That is to say, when some
test cases are removed from the test suite, the test suite may
still satisfy all the requirements that can be satisfied by the
original test suite. Thus, finding a sub-suite of an existing
test suite that can satisfy the same requirements as the
original test suite becomes a research problem. This
problem is usually referred to as test suite reduction and the
sub-suite of test cases is usually called the representative
set. Obviously, test suite reduction can decrease the time of
executing the test suite, and thus decrease the cost of
testing.

 In the previous research, many efforts have been put
into research on how to reduce the size of a test suite while
maintaining its effectiveness. Typical test suite reduction
techniques can be found in [1], [2], [4] and [6] etc.
Although there have been some experimental evaluation or
comparison of some test suite reduction techniques (such as
[3]), there are still some shortcomings of current
experimental studies of these techniques: First, there is no
comparison of recently proposed techniques, such as [1], [2],
[6], only some of which are evaluated against [2] and [4].
Second, some experimental comparison is based on
simulation data (see [3]), which may not reflect the same
situation in reality. Third, most subject programs are very
small (such as the Siemens programs [5]) and the results on
small programs may not be applicable for large programs.

To address these shortcomings, we implemented four
typical test suite reduction techniques on the same platform
and performed an experimental comparison of them by
applying them on both small and large subject programs. In
this paper, we present the results of our experiment, and
based on the analysis of these results, we also present some
insights into the selection of test suite reduction techniques.

636

The organization of the remaining of this paper is as
follows. The design of our experiment is reported in section
2. In section 3, we present the results and analysis of our
experiment, and we conclude this paper in section 4.

2. THE EXPERIMENT
2.1 Implementation of the Techniques

Our experiment is performed on a PC with an INTEL
Pentium IV CPU 2.26GHz and 512M memory. All the
studied test suite reduction techniques are implemented on
this PC by a single software engineer using VC++6.0 and all
the executables run on Windows 2000 Professional.
Heuristic H [4] and heuristic GRE [2] are simply
implemented as C++ programs. The approach using the
hybrid genetic algorithm (GA) [6] is implemented using
Galib developed by Wall [10]. For the approach using ILP
[1], IBM’s SYMPHONY [7] is employed for solving the
ILP model. As there are two ILP models proposed in [1]
and only the first ILP model aims at achieving smallest
representative sets, we only used the first ILP model in the
implementation to make the ILP-based approach
comparable to the other three techniques,.
2.2 Subject Programs and Test Cases

In our experiment, six C programs were used as
subjects. The first four programs are from the well known
Siemens program suite, which was originally provided by
researchers at Siemens Corporate Research and can be
downloaded from Aristotle analysis system’s homepage
[13]. We use both the source code and the test cases
downloaded from this homepage in our experiment. The
other two programs are XMLPPM and GNU Tar.
XMLPPM is an XML compressor that can be obtained from
[14]. In our experiment, we use a collection of XML files
stored on the PC as test cases. GNU Tar is an archiver that
creates and handles file archives in various formats. The
source codes of GNU tar can also be obtained from [15]. In
our experiment, we used a collection of files under one
large directory on the PC as test cases.
2.3 Experimental Procedure

In our experiment, we use statement coverage as the
requirements. As there are usually some none executable
statements in a program and some executable statements
may not be covered by any used test cases, the number of
requirements for each program is typically smaller than its
number of lines of code.

In order to extract the coverage information of test cases
of the subject programs, we instrumented the source code,
and used a specially developed script to run the
instrumented executable with the test cases and create the
profiling files in the *.gcov format. Then we use
GcovReader to collect and interpret all the profiling files to
produce the test suite pool. The test suite pool is a two
dimension matrix, in which, a column stands for a
requirement and a row stands for a test case. If a test case

can satisfy a requirement, the corresponding position in the
test suite pool will be marked as 1, otherwise marked as 0.
During the procedure, a coarse reduction is done to remove
the test cases that satisfy the exactly the same requirements
satisfied by another test case and the requirements that
cannot be satisfied by any test case. The information of
these subject programs and their test suite pools are listed in
Table 1.

Table 1. Subject programs and their test suite pools
Programs Source File

Size (LOC)
Test Suite Pool
Size (T×R)

print_tokens 447 3970×128
Replace 512 4068×259
Schedule 282 2287×157
Tcas 135 719×70
Xmlppm 3251 1694×983
Tar 26824 611×2403

To study the ability of dealing with test suites of
different sizes for the four test suite reduction techniques,
we used a test suite selector to randomly choose a subset of
test cases from the test suite pool for each subject program
to form a test suite. During the procedure, another coarse
reduction was done to remove the requirements that cannot
be satisfied by any of the selected test cases. This step is
essential since all the four test suite reduction techniques
require that all the requirements be satisfied by at least one
test case in the test suite. This test suite was then sent to the
implementation of the four different test suite reduction
algorithms. After the execution, a log file was produced to
record the execution time and the representative set for each
test suite reduction technique. Our comparison was based
on the information recorded in all the log files.

3. Results and Analysis
The central features of the four techniques studied in our

experiment are 1) whether the four techniques can be
effective in reducing the size of the test suite; and 2)
whether the four techniques can perform their tasks in
acceptable time. Therefore, our comparison concentrated on
the following things:
3.1 Representative Sets

The sizes of the representative sets are depicted in Fig. 1,
from which, we can see that these algorithms produce
almost the same sizes of representative sets except the
approach using the hybrid genetic algorithm, although all
the four techniques can significantly reduce the sizes of test
suites. Actually, the genetic algorithm-based approach can
produce good representative sets as other approaches for
some subjects, such as Tcas, but it loses in most cases
especially when complicacy becomes high.

To make the comparison of the other three techniques
clearer, we use only the data of these three approaches to
form Fig. 2. In this figure, these three approaches are still

637

inseparable for many cases. In average, the difference
between the three techniques is less than 1%.

 When we closely examine this figure, we find that the
ILP-based approach can always produce the smallest
representative set for every situation. For heuristic GRE and
heuristic H, no one can guarantee which is more
advantageous. Actually, besides the circumstances that GRE
and H produce the same sizes of representative sets, each
one wins the other for about 50% of the rest circumstances.
3.2 Execution Time

Fig. 3 depicts the relationship between the complicacy
of the test suites and the execution times. The complicacy of
the test suite pool is calculated as log10 (mn) where m stands
for the number of requirements that the representative set
should satisfy and n stands for the number of test cases in
the test suite. The complicacy is not continuous as the test
suites are randomly selected from the test suite pool.

Generally speaking, with increase of the complicacy of
the selected test suite, all these algorithms will consume
more time, but it takes much longer for the genetic
algorithm-based approach to produce representative sets
than other approaches.

As the other three techniques become inseparable in this
figure, we produce Fig. 4 only using the data of these three
approaches. From both figures, we can see that heuristic H
needs the least time to calculate the representative set, while
heuristic GRE and the ILP-based approach are about the
same. Actually, GRE are a little faster in most
circumstances, but the difference can hardly have big
impact on testing, as it is not comparable to the typical time
of executing test cases. Thus, the time efficiency of these
four algorithms can be summarized as tGA >> tILP ≈ tGRE >
tH.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we performed an empirical comparison of

four test suite reduction techniques: heuristic H, heuristic
GRE, the genetic algorithm-based approach and the ILP-
based approach. The comparison targets at two main factors
of test suite reductions: representative sets and execution
time. Findings of this comparison can be summarized as
follows:

 All the four techniques can dramatically reduce the
sizes of test suites. Except the genetic algorithm-based
approach, which performs much weaker in this aspect, the
other three can produce almost the same sizes of
representative sets.

 The ILP-based approach can always produce the
smallest representative sets among all the four approaches.
For Heuristic H and heuristic GRE, it is hard to tell which
one is superior to the other. This is a little different from the
result in [3], in which, GRE always plays better than H. We
think the reason lies in that our comparison is based real
data while [3] is based on simulation data.

 The genetic algorithm-based approach also
performs the worst in the aspect of execution time. For the
other three, all of them can produce representative sets in
acceptable time. Among them, heuristic H is the fastest,
while heuristic GRE is a little faster than the ILP-based
approach. Considering their ability to produce small
representative sets, we suggest that heuristic H should be
the first choice and the ILP-based approach should be
preferable when the smallest representative sets are required.

In the literature, it is still a controversy whether test suite
reduction can decrease the ability of the test suite to detect
faults. In [9], Thevenod-Fosse et al. reported a case study in
which redundancy can increase the fault detecting ability of
the test suite. In [11] and [12], Wong et al. showed that the
representative sets have almost the same capability to reveal
bugs as the original test suites. In a recent experimental
study, Rothermel et al. found that the fault-detection
capabilities of test suites can be severely compromised by
test suite reduction [8]. In our experiment, we find that
different techniques can produce very different
representative sets for the same circumstances, although the
sizes of the representative sets are about the same. In the
future, we will investigate whether and in what
circumstances a particular test suite reduction technique can
produce representative sets with high fault-detection ability.

5. ACKNOWLEDGMENTS
This effort is sponsored by the National 973 Key Basic

Research and Development Program No. 2002CB312003,
the State 863 High-Tech Program No. 2005AA113030, and
the National Science Foundation of China No. 60403015.

6. REFERENCES
[1] J. Black, E Melachrinoudis, and D. Kaeli. “Bi-Criteria

Models for All-Uses Test Suite Reduction,”
International Conference on Software Engineering,
2004, pp. 106-115.

[2] T.Y. Chen and M.F. Lau, “A New Heuristic for Test
Suite Reduction,” Information and Software
Technology, Vol. 40, No. 5, 1998, pp. 347-354.

[3] T.Y. Chen and M.F. Lau, “A Simulation Study on Some
Heuristics for Test Suite Reduction,” Information and
Software Technology, Vol. 40, No. 13, 1998, pp. 777–
787.

[4] M.J. Harrold, R. Gupta, and M.L. Soffa. “A
Methodology for Controlling the Size of a Test Suite,”
ACM Transactions on Software Engineering and
Methodology, Vol. 2, No.3, 1993, pp. 270-285.

[5] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
“Experiments on the Effectiveness of Dataflow- and
Control Flow-Based Test Adequacy Criteria,”
International Conference on Software Engineering,
1994, pp. 191-200.

[6] N. Mansour and K. El-Fakin. “Simulated Annealing and
Genetic Algorithms for Optimal Regression Testing,”

638

Journal of Software Maintenance: Research and
Practice, Vol. 11, No. 1, 1999, pp. 19–34.

[7] T. Ralphs and M. Guzelsoy, “The SYMPHONY
Callable Library for Mixed Integer Programming,” The
Ninth INFORMS Computing Society Conference,
2005, pp. 61-73.

[8] G. Rothermel, M.J. Harrold, J. von Ronne, and C.
Hong. “Empirical Studies of Test-Suite Reduction,”
Software Testing Verification and Reliability, Vol. 12,
No. 4, 2002, pp. 219-249.

[9] P. Thevenod-Fosse, H. Waeselynck, and Y. Crouzet,
“An Experimental Study on Software Structural
Testing: Deterministic verses Random Input
Generation,” IEEE International Symposium on Fault
Tolerant Computing, 1991, pp. 410-417.

[10] M. B. Wall, A Genetic Algorithm for Resource-
Constrained Scheduling. MIT, PhD thesis, 1996.

[11] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur,
“Effect of Test Set Minimization on Fault Detection
Effectiveness,” Proc. of the 17th International
Conference on Software Engineering, 1995, pp. 41–50.

[12] W.E. Wong, J.R. Horgan, A.P. Mathur, and A.
Pasquini, “Test Set Size Minimization and Fault
Detection Effectiveness: A Case Study in a Space
Application,” Annual International Computer Software
and Applications Conference (COMPSAC), 1997, pp.
522–528.

[13] http://www.cc.gatech.edu/aristotle/Tools/subjects/
[14] http://xmlppm.sourceforge.net/
[15] http://www.gnu.org/software/tar/

Fig.1.Sizes of representative sets for GRE, ILP, H and

GA

Fig. 2. Sizes of representative sets for GRE, ILP and H

Fig. 3. Execution times of GRE, ILP, H and GA

Fig. 4. Execution times of GRE, ILP and H

639

