In Search of Near-Optimal Optimization Phase Orderings

Prasad A. Kulkarni David B. Whalley
Gary S. Tyson

Florida State University
Computer Science Department
Tallahassee, FL 32306-4530

{kulkarni,whalley,tyson}@cs.fsu.edu

Abstract

Phase ordering is a long standing challenge for traditional optimiz-
ing compilers. Varying the order of applying optimization phases to
a program can produce different code, with potentially significant
performance variation amongst them. A key insight to addressing
the phase ordering problem is that many different optimization se-
quences produce the same code. In an earlier study, we used this
observation to restate the phase ordering problem to concentrate on
finding all distinct function instances that can be produced due to
different phase orderings, instead of attempting to generate code
for all possible optimization sequences. Using a novel search al-
gorithm we were able to show that it is possible to exhaustively
enumerate the set of all possible function instances that can be pro-
duced by different phase orderings in our compiler for most of the
functions in our benchmark suite [1]. Finding the optimal func-
tion instance within this set for almost any dynamic measure of
performance still appears impractical since that would involve ex-
ecution/simulation of all generated function instances. To find the
dynamically optimal function instance we exploit the observation
that the enumeration space for a function typically contains a very
small number of distinct control flow paths. We simulate only one
function instance from each group of function instances having the
identical control flow, and use that information to estimate the dy-
namic performance of the remaining functions in that group. We
further show that the estimated dynamic frequency counts obtained
by using our method correlate extremely well to simulated proces-
sor cycle counts. Thus, by using our measure of dynamic frequen-
cies to identify a small number of the best performing function in-
stances we can often find the optimal phase ordering for a function
within a reasonable amount of time. Finally, we perform a case
study to evaluate how adept our genetic algorithm is for finding op-
timal phase orderings within our compiler, and demonstrate how
the algorithm can be improved.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - compilers, optimization; D.4.7 [Organiza-
tion and Design]: Real-time systems and embedded systems

General Terms Performance, Measurement, Algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’06 June 14-16, 2006, Ottawa, Ontario, Canada.
Copyright © 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

Jack W. Davidson

University of Virginia
Department of Computer Science
Charlottesville, VA 22904-4740

jwdQvirginia.edu

Keywords Phase Ordering, Exhaustive Search, Genetic Algo-
rithms.

1. Introduction

Optimizing compilers employ numerous optimization phases to im-
prove the performance of the generated program. The performance
criteria is frequently speed of execution, but it may also be code
size or energy consumption for applications compiled for embed-
ded processors. It is commonly acknowledged that the code gener-
ated by even the best optimizing compilers can almost always be
improved. One reason for sub-optimal code being produced is due
to an issue in compilers called the phase ordering problem.

Optimization phases in a compiler use and share resources and
most require specific conditions in the code to be applicable, which
can be created or destroyed by other optimizations. As a result these
phases can potentially enable or disable opportunities for other op-
timizations. Most of these phase interactions are difficult to pre-
dict as they depend on the function being optimized, the underly-
ing architecture, and the specific implementation of optimizations
in the compiler. Moreover, a single order of applying optimizations
is widely acknowledged to not produce optimal code for every ap-
plication [2, 3, 4, 5, 6, 7]. Therefore, researchers have been trying
to understand the properties of the optimization phase order search
space so that optimal or near-optimal optimization sequences can
be applied when compiling applications.

An obvious solution to the phase ordering problem is to exhaus-
tively evaluate all orderings of optimization phases. Until recently
this was considered infeasible, except for very small kernels and
very few optimization phases. The reason for this can be easily ap-
preciated when one considers the fact that most modern compilers
have numerous optimization phases, and many phases are applica-
ble multiple times in the compilation process. It is also difficult to
employ reasonable heuristics to prune the optimization space that
do not also prune optimal orderings, since the interactions between
different optimizations are poorly understood. During one recent
investigation of the phase ordering problem [5, 8] we showed that
there is much redundancy in the function instances generated by
different optimization phase sequences. This redundancy occurs
when phases fail to transform the code or when transformations
performed by different phases are independent. This key insight
allowed us to approach the phase ordering problem differently, as
the problem of generating all distinct function instances that can
be produced by different phase orderings in our compiler. Using an
innovative algorithm we were able to exhaustively enumerate all
distinct function instances that can be produced by different phase
orderings performed by our compiler for more than 98% of the
functions in our benchmark suite [1].

The above study enumerated the optimization phase order space
and determined the statically (code size) optimal function instance
that can be generated by our compiler. It is, however, more chal-
lenging to determine which one of the enumerated function in-
stances provides the best performance for dynamic performance
criteria. Obtaining dynamic performance measures traditionally re-
quires execution or simulation of the application. Executing the
program for each distinct function instance takes considerably
longer than the compiler generating the function instance. More-
over, simulation can be orders of magnitude more expensive than
native execution, and is sometimes the only resort for evaluating the
performance of applications on embedded processors. Very often
embedded application developers are willing to wait for reasonably
long searches, typically spanning a few hours, for small perfor-
mance improvements, but most people would be unwilling to wait
longer. In this paper we demonstrate the application of a technique
that requires only a few executions of the program to get dynamic
performance measures for all distinct function instances. Thus, the
major contributions of this work are:

1. an approach to quickly obtain dynamic performance measures
for all distinct function instances in an exhaustive enumeration
of the optimization phase order search space;

2. astudy to show that our estimates of dynamic frequency counts
correlate very closely with simulator cycles for embedded sys-
tems, allowing near optimal phase orderings to be obtained;

3. astudy of how adept a basic genetic algorithm is for finding the
optimal phase ordering for our compiler.

The remainder of this paper is organized as follows: In Section
2 we review a summary of some other work related to this topic. In
Section 3 we give an overview of our experimental framework. We
provide a background to this work in Section 4 by describing our
approach [1] to enumerate all distinct function instances produced
by our compiler. We describe our algorithm to obtain dynamic
measures for all function instances in Section 5. In Section 6 we
analyze the correlation between our measure of dynamic counts
and processor cycles. In Section 7 we show how well suited a
genetic algorithm is to search for good optimization sequences in
our compiler. In the last two sections we list some of our directions
for future work and our conclusions.

2. Related Work

Several groups have worked on addressing the phase ordering prob-
lem, and attempted to better understand optimization phase interac-
tions. Specifications of code improving transformations have been
automatically analyzed to determine if one type of transformation
could enable or disable another [9, 3]. This work was limited by
the fact that in cases where phases do interact, the determination
of the order-dependent phases was not possible to be automated
and required detailed knowledge of the compiler. We have recently
demonstrated that exhaustive enumeration of all distinct function
instances that can be produced due to different phase orderings
is possible over the entire set of optimizations in a typical com-
piler, and does not require more than a few hours for even the
largest function in our test suite [1]. Zhao et al. [10] used a model-
based framework to selectively apply optimizations when they were
predicted to be profitable. This work shows that model-based ap-
proaches can be fast and accurate, and can be effectively used to
explore different properties of compiler optimizations.
Researchers have also investigated the problem of finding an ef-
fective optimization phase sequence by aggressive pruning and/or
evaluation of only a portion of the search space. A method, called
Optimization-Space Exploration [7], uses static performance es-
timators to reduce the search time. In order to prune the search

they limit the number of configurations of optimization-parameter
value pairs to those that are likely to contribute to performance
improvements. This area has also seen the application of other
search techniques to infelligently search the optimization space.
Hill climbers [11, 6] and grid-based search algorithms [12] have
been employed during iterative algorithms to find optimization
phase sequences better than the default one used in their compil-
ers. Other researchers have used genetic algorithms [4, 5] with ag-
gressive pruning of the search space [8, 13] to make searches for
effective optimization phase sequences faster and more efficient.

A related issue to the phase ordering problem is how to best ap-
ply a given optimization phase. The small area of the transforma-
tion space formed by applying loop unrolling (with unroll factors
from 1 to 20) and loop tiling (with tile sizes from 1 to 100) was
analyzed for a set of three program kernels across three separate
platforms [14]. Enumerations of search spaces formed by a larger
set of distinct optimization phases have also been evaluated [11].
One important deduction was that the search space generally con-
tains enough local minima that biased sampling techniques, such
as hill climbers and genetic algorithms, should find good solutions.
Rather than changing the order of optimization phases, several re-
searchers work on a related problem of finding the best set of opti-
mizations by turning on or off optimization flags to a conventional
compiler [15, 16, 17].

Studies of using static performance estimations to avoid pro-
gram executions have been done previously [18, 19, 20]. Wagner et
al. [19] presented a number of static performance estimation tech-
niques to determine the relative execution frequency of program
regions, and measured their accuracy by comparing them to profil-
ing. They found that in most cases static estimators provided suf-
ficient accuracy for their tasks. Knijnenburg et al. [18] used static
models to reduce the number of program executions needed by iter-
ative compilation. The method of static performance estimation we
use in this paper is most similar to the approach of virtual execution
used by Cooper et al. [20] in their ACME system of compilation. In
the ACME system, Cooper et al. strived to execute the application
only once (for the un-optimized code) and then based on the execu-
tion counts of the basic blocks in that function instance and careful
analysis of transformations applied by their compiler they tried to
determine the dynamic instruction counts for all other function in-
stances. Due to this ACME has to maintain detailed state, which
introduces some amount of additional complexity in the compiler.
In spite of this, in a few cases ACME is not able to accurately de-
termine the dynamic instruction count, resulting in some error in
their computation.

3. Experimental Framework

The work in this paper attempts to demonstrate that it is possible
to extend the exhaustive phase order enumeration algorithm [1] to
determine the dynamically optimal function instance that can be
generated by a typical compiler without significant additional over-
head. The research in this paper uses the Very Portable Optimizer
(VPO) [21], which is a compiler back end that performs all its op-
timizations on a single low-level intermediate representation called
RTLs (Register Transfer Lists). Since VPO uses a single represen-
tation, it can apply most analysis and optimization phases repeat-
edly and in an arbitrary order. VPO compiles and optimizes one
function at a time. This is important for the current study since re-
stricting the phase ordering problem to a single function, instead
of the entire file, helps to make the optimization phase order space
more manageable. Similar to the earlier study [1], we have used the
compiler to generate code for the StrongARM SA-100 processor
using Linux as its operating system. We used the SimpleScalar set
of functional and cycle-accurate simulators [22] for the ARM to get
dynamic performance measures.

Table 1 describes each of the 15 candidate code-improving
phases that were used during the exhaustive exploration of the op-
timization phase order search space. In addition, register assign-
ment, which is a compulsory phase that assigns pseudo registers to
hardware registers, must be performed. VPO implicitly performs
register assignment before the first code-improving phase in a se-
quence that requires it. Two other optimizations, merge basic blocks
and eliminate empty blocks, were removed from the optimization
list used for the exhaustive search since these optimizations only
change the internal control-flow representation as seen by the com-
piler and do not directly affect the final generated code. These op-
timizations are now implicitly performed after any transformation
that has the potential of enabling them. After applying the last code-
improving phase in a sequence, VPO performs another compulsory
phase that inserts instructions at the entry and exit of the function
to manage the activation record on the run-time stack. Finally, the
compiler also performs predication and instruction scheduling be-
fore the final assembly code is produced. These last two optimiza-
tions should only be performed late in the compilation process, and
so are not included in the set of phases used for exhaustive opti-
mization space enumeration. While most of the optimizations in
Table 1 can be performed in an arbitrary order, a few restrictions
are imposed in the compiler to simplify its implementation [1].

In this study we are only investigating the phase ordering prob-
lem and do not vary parameters for how phases should be applied.
For instance, we do not attempt different configurations of loop un-
rolling, but always apply it with a loop unroll factor of two since
we are generating code for an embedded processor where code size
can be a significant issue. Note that VPO is a compiler backend.
Many other optimizations not performed by VPO, such as loop
tiling/interchange, inlining, and some other interprocedural opti-
mizations, are typically performed in a compiler frontend, and so
are not present in VPO. We also do not perform ILP (frequent path)
optimizations since the ARM is typically a single issue processor
and ILP transformations would be less beneficial. In addition, fre-
quent path optimizations require a profile-driven compilation pro-
cess that would complicate this study.

We used the same benchmarks as in our phase order space
enumeration study [1]. These include a subset of the MiBench
benchmarks, which are C applications targeting specific areas of
the embedded market [23]. One benchmark was used from each of
the six categories of applications (a total of 111 functions). Table 2
contains descriptions of these programs.

4. Background

In this section we outline our approach [1] to exhaustively enu-
merate the optimization phase order search space for the optimiza-
tions present in VPO. An important realization from past work on
the phase ordering problem is that there is much redundancy in
the function instances produced by different attempted optimiza-
tion phase orders [1]. First, some phases are unsuccessful when
attempted. Second, even though optimization phases interact with
each other by virtue of sharing resources or by changing the in-
struction patterns in the program to enable or disable other op-
timizations, it is frequently the case that many optimizations can
be applied independently of each other most of the time. As a re-
sult many different orderings of optimization phases generate the
same code. The number of distinct function instances that can be
produced by different phase orderings for any function is orders
of magnitude smaller than the actual number of distinct attempted
phase orderings. This can also be seen from the high amount of
redundant sequences found by different heuristic algorithms [5, 8].

In view of these observations, instead of attempting to enumer-
ate all distinct optimization phase sequences, the phase ordering
problem can be made more practical by attempting to generate all

Optimization Gene | Description

Phase

branch chaining b Replaces a branch or jump target with the
target of the last jump in the jump chain.

common subex- c Performs global analysis to eliminate fully

pression elimi- redundant calculations, which also includes
nation global constant and copy propagation.

remove unreach- d Removes basic blocks that cannot be reached

able code from the function entry block.

loop unrolling g To potentially reduce the number of com-
parisons and branches at runtime and to aid
scheduling at the cost of code size increase.

dead assignment h Uses global analysis to remove assignments

elimination when the assigned value is never used.

block reordering i Removes a jump by reordering blocks when

the target of the jump has only a single pre-

decessor.

minimize loop] Removes a jump associated with a loop by

jumps duplicating a portion of the loop.

register alloca- k Uses graph coloring to replace references to

tion a variable within a live range with a register.

loop transforma- 1 Performs loop-invariant code motion, recur-

tions rence elimination, loop strength reduction,
and induction variable elimination on each
loop ordered by loop nesting level.

code abstraction n Performs cross-jumping and code-hoisting
to move identical instructions from basic
blocks to their common predecessor or suc-
Cessor.

evaluation order o Reorders instructions within a single basic

determination block in an attempt to use fewer registers.

strength reduc- q Replaces an expensive instruction with one

tion or more cheaper ones. For this version of the
compiler, this means changing a multiply by
a constant into a series of shift, adds, and
subtracts.

reverse branches T Removes an unconditional jump by revers-
ing a conditional branch when it branches
over the jump.

instruction s Combines pairs or triples of instructions to-

selection gether where the instructions are linked by
set/use dependencies. Also performs con-
stant folding and checks if the resulting ef-
fect is a legal instruction before committing
to the transformation.

remove useless u Removes jumps and branches whose target

jumps is the following positional block.

Table 1. Candidate Optimization Phases Along with their Desig-
nations

[Category | Program | Description |
auto bitcount | test processor bit manipulation abilities
network dijkstra | Dijkstra’s shortest path algorithm

fast fourier transform
image compression and decompression

telecomm | fft
consumer | jpeg

security sha secure hash algorithm
office string- searches for given words in phrases
search

Table 2. MiBench Benchmarks Used in the Experiments

distinct function instances that could be produced due to different
optimization phase orderings. It is also important to note that the
ability to correctly form all different phase orderings is inherently
limited by the lack of knowledge of the correct sequence length

for each function. Optimization sequence lengths vary by function
since optimizations may be always unsuccessful for some func-
tions, while be successful one or more times for others.

Although re-stating the phase ordering problem makes it easier
to find a tractable solution, designing and implementing the solu-
tion is by no means trivial. Our solution to this problem [1] breaks
the phase ordering space into multiple levels, as shown in Figure 1.
At the root (level 0) we start with the unoptimized function in-
stance. For level 1, we generate the function instances produced
by an optimization sequence length of 1, by applying each opti-
mization phase individually to the base unoptimized function in-
stance. After producing each function instance we check to see if it
is identical to some other previously encountered function instance
by calculating and comparing the 32 bit CRC [24] hash function
values for each function. It is also likely that many optimizations
do not find any opportunity to make changes to the current function
instance. We refer to such unsuccessful phases as being dormant at
that point. In contrast, phases that cause changes are called active.
Thus, if the optimization phase was dormant, then we can be cer-
tain that the function instance has been left unmodified and so no
check is required for such cases.

Level 0
Level 1|

St e

Figure 1. Naive Optimization Phase Order Space (for Four Dis-
tinct Optimizations)

For all subsequent levels, we try to generate new function in-
stances by applying each optimization phase to all the distinct func-
tion instances present after the preceding level. This exponential
space is typically reduced to a manageable Directed Acyclic Graph
(DAG) due to our pruning criteria, as shown in Figure 2. We kept
the enumeration times manageable by placing a constraint on their
search algorithm to abort the enumeration if the number of opti-
mization sequences to attempt at any level exceed a million. The
search space for such functions is considered too large to com-
pletely enumerate in a reasonable amount of time. Even with this
constraint our algorithm is able to completely enumerate the phase
order space for 109 out of their 111 benchmark functions, most in
a few minutes and the remainder in a few hours.

Level 0

Level 1

Level 2

Figure 2. Optimization Phase Order Space after Applying Pruning
to Eliminate Redundant Function Instances

5. Optimal Dynamic Function Instance

Exhaustive enumeration of the optimization phase order space, as
explained in the previous section, can give a statically smallest (op-
timal) function instance, with respect to the possible phase order-
ings in our compiler. It should be kept in mind that a different com-
piler, with a different or greater set of optimization phases can pos-
sibly generate better code than the optimal instance produced by
VPO. Thus, optimal in the context of this work refers to the best

code that can be produced by any optimization phase ordering in
VPO and is not meant to imply a universally optimum solution.

It is obvious that the statically smallest function instance might
not produce the best possible dynamic performance. Finding the
optimal code for dynamic performance measures would tradition-
ally require execution or simulation of all distinct function in-
stances for each function. Execution of the application can be many
times more expensive than the compiler generating the function in-
stance. Simulation is generally orders of magnitude more expen-
sive than native execution. Our experimental environment for the
ARM requires us to do simulations rather than native executions.
This is a common development environment for many embedded
applications since an embedded processor often is not available or
does not support compilation. Simulations of all enumerated func-
tion instances in our benchmark suite may take many months or
even years to accomplish. Therefore, we need some way to limit
the number of simulations and still be able to accurately estimate
dynamic performance for non-simulated function instances.

Our strategy to reduce the number of simulations is related to a
technique used by Cooper et al. in their ACME system of adaptive
compilation [20]. The concept behind our approach is based on the
premise that two different function instances having identical con-
trol flow graphs will execute the same blocks the same number of
times. This, together with our observation that the compiler typi-
cally generates a very small number of distinct control flow paths
during the complete enumeration of all instances for any one func-
tion helped guide us to our method. Thus, we only simulate the
application when the compiler produces a function instance with
a control flow that has not been previously encountered. This ap-
proach of only executing a function instance when a new control
flow has been encountered is more practical in VPO, which tunes
applications on a per-function basis, as compared to the ACME
system which tunes entire applications or each file within the ap-
plication. It is difficult to compare our approach with that imple-
mented in the ACME system since that would require us to adopt
their heuristics for how basic block execution counts are to be esti-
mated with control flow changes. Our approach is, however, easier
(and provides more accurate estimates) since we always execute
the application on a control flow change and so, are never required
to estimate the block execution counts. It is also more practical for
our experiments since we typically have very few distinct control
flows per function.

Thus, the control flow graph of each new function instance
is compared with all previously encountered control flows. This
check compares the number of basic blocks, the position of the
blocks in the control flow graph, the positions of the predecessors
and successors of each block, and the relational operator of each
condition branch instruction. Loop unrolling introduces a small
complexity for loops with a single basic block. It is possible for
loop unrolling to unroll such a loop and change the loop exit
condition. Later if some optimization coalesces the unrolled blocks,
then the control flow looks identical to that before unrolling, but
due to different loop exit conditions, the block frequencies are
actually different. Such cases are handled by marking unrolled
blocks differently than non-unrolled code. We are unaware of any
other control flow changes caused by our set of optimization phases
that would be incorrectly detected by our algorithm.

We instrument the function instance having a new control flow
with added instructions using EASE [25] to count the number
of times each basic block in that control flow is executed. The
basic block execution counts for this new control flow are recorded
after simulation of the application. Other function instances having
identical control flow will have identical block execution counts.
We statically determine the number of cycles required to execute
each basic block, which, in addition to the instruction latency,

also considers instruction-dependency and resource-conflict related
stalls. Multiplying the number of static cycles for each basic block
with the block execution counts gives us, what we call, the dynamic
frequency measure for each function instance.

Table 3 shows the dynamic frequency results for all the exe-
cuted functions in our benchmark suite, except for two functions
in fft for which we were not able to completely enumerate the op-
timization phase order space within the constraints placed on the
search algorithm, as explained in Section 4. Note that the remain-
ing functions not shown in the table were not executed with the in-
put data provided with these benchmarks. One important number,
which makes the technique of exhaustive enumeration possible, is
the relatively small number of distinct function instances for each
function. For an average sequence length of 12 the number of pos-
sible attempted optimization phase orderings would be 152, where
15 is the number of distinct phases used in our study. Even more
important is the fact that unlike the attempted optimization phase
ordering space, the number of distinct function instances does not
typically increase exponentially as the sequence length increases.
Thus, even for a maximum sequence length of 26 that was encoun-
tered in the 39 executed functions we enumerated, the total number
of distinct function instances is only 343,162.

It can also be seen from the table that each function typically
has a very small number of distinct control flows. This fact is very
important in our case, since for each function we are only required
to simulate the application a small number of times. Requiring only
a few simulations makes it possible to get dynamic frequency mea-
sures for all the generated function instances during the exhaustive
enumeration of each function. The next column gives a count of the
number of leaf function instances. These are function instances for
which no additional optimization phase found any opportunity to
be successful. The small number of leaf function instances imply
that even though the enumeration DAG (see Figure 2) may grow
out to be very wide, it generally starts converging towards the end.
It is also worthwhile to note that it is most often the case that the
optimal function instance is a leaf. Note again that we are defining
optimal in this context to be the function instance that results in
the best dynamic frequency measures. We found that for 87.18%
of the functions in our test suite the optimal function instance is a
leaf instance, with almost one in every three leaf function instances
on average, yielding the same optimal dynamic performance. Apart
from this, there was at least one leaf function instance having dy-
namic performance within 1% of the optimal for 37 out of the 39
executed functions in Table 3. It is easy to imagine why this is the
case, since all optimizations are designed to improve performance,
and there is no optimization in VPO which undoes changes made
by other optimizations before it.

We analyzed the few cases for which none of the leaf function
instances achieved optimal performance. The most frequent reason
we observed that caused such behavior is illustrated in Figure 3.
Figure 3(a) shows a code snippet which yields the best performance
and 3(b) shows the same part of the code after applying loop
invariant code motion. r[0] and [1] are passed as arguments to both
of the called functions. Thus, it can be seen from Figure 3(b) that
code motion moves the invariant calculation, r[4]+28, out of the
loop, replacing it with a register to register move, as it is designed
to do. But later, the compiler is not able to collapse the reference by
copy propagation due to the fact that it is passed as an argument to a
function. The implementation of code motion in VPO is not robust
enough to detect that the code will not be further improved. In most
cases, this situation will not have a big impact, unless this loop does
not typically execute many iterations. It is also possible that code
motion may move an invariant calculation out of a loop that is never
entered during execution. In such cases, no leaf function instance
is able to achieve optimal phase ordering dynamic results.

L2:

r[0]=r(4
r(1]=64;
call reverse;

1+28; r(0]=x(7];
r(1]=64;

call reverse;

r[0]=r(4]1+28;
r(l]=r([5];
call memcpy;

r[0]=x[7];
r{l]=r[5];
call memcpy;

\l Y

Ll: Ll:
c[0]=r[6]7191; c[0]=r[6]7191;
PC=c[0]<0, L2; PC=c[0]<0, L2;

(a) Before Code Motion (b) After Code Motion

Figure 3. Case When No Leaf Function Instance Yields Optimal
Performance

The two columns under the heading % from opt. in Table 3 show
the percentage distance between the optimal function instance and
the Batch and Worst leaf instances, respectively. It is important to
note that in VPO the fixed (batch) sequence is always a leaf, since
the batch compiler iteratively attempts optimization phases in a
specific order until no additional changes are made to the function
being compiled by any optimization phase. In contrast, many other
compilers (including GCC) cannot do this effectively since it is not
possible to easily re-order optimization phases in these compilers.
The order in which phases are applied in the batch compiler has also
been tuned over many years to obtain good performance. In spite
of this, the batch compiler produces code which is 4.60% worse,
on average, than optimal and 50% worse than optimal in the worst
case. The next column shows the range between the best and the
worst leaf function instance. On average this range is 47.64%.

The last three columns illustrate the percentage of leaf func-
tion instances achieving optimal or near-optimal phase order per-
formance. Thus, we can see that more than 30% of the leaf in-
stances yield the same optimal performance. More than 42% of the
leaf function instances come within 2% of optimal. From this dis-
cussion it follows that if we can design a compiler that can generate
all of the leaf function instances quickly for a function, then it is
very likely that at least one of those function instances will achieve
optimal or very close to optimal dynamic performance.

6. Correlation between Dynamic Frequency
Measures and Processor Cycles

Our estimate of dynamic performance is partly based on static
measures. Although we have tried to account for data hazards re-
lated stalls in our estimate, it still does not consider other penalties
encountered during execution, such as branch misprediction and
cache miss penalties. Processor cycles obtained from a simulator
would provide a more accurate estimate of dynamic performance,
but is also more expensive to obtain. Note that, unlike general-
purpose processors, the cycles obtained from a simulator can often
be very close to executed cycles in an embedded processor since
these processors may have simpler hardware and no operating sys-
tem. For similar reasons, dynamic frequency measures on embed-
ded processors will also have a much closer correlation to simu-
lated cycles, than for general-purpose processors. In this section we
show that within our test environment and experimental framework,
there is indeed a very close correlation between dynamic frequency
counts and simulator cycles. Before listing the correlation results
we first describe a modification we made to the SimpleScalar cycle
accurate simulator to make it faster.

Function Inst | Blk | Brch | Loop Fn_inst | sLen CF Leaf % from opt. within ? % of opt.
Batch [Worst opt | 2% | 5%
AR_btbl_b...(b) 83 3 1 0 40 7 1 2 0.00 4.55 50.00 50.00 | 100.00
BW_btbl_b...(b) 68 3 1 0 56 7 1 4 0.00 4.00 50.00 50.00 | 100.00
bit_count(b) 36 9 5 1 155 11 5 4 1.40 1.40 50.00 | 100.00 | 100.00
bit_shifter(b) 47 10 7 1 147 8 9 3 0.00 3.96 66.67 66.67 | 100.00
bitcount(b) 133 3 1 0 86 8 1 10 2.40 433 10.00 10.00 | 100.00
main(b) 220 22 15 2 92834 21 91 171 8.33 | 233.31 351 14.62 14.62
ntbl_bitcnt(b) 43 6 3 0 253 9 2 20 | 18.69 18.69 10.00 10.00 10.00
ntbl_bitc...(b) 138 3 1 0 48 7 1 8 4.09 4.68 25.00 25.00 | 100.00
dequeue(d) 76 6 3 0 102 7 3 14 0.00 12.00 42.86 42.86 42.86
dijkstra(d) 354 30 22 3 86370 20 18 1168 0.04 51.12 0.34 23.63 29.11
enqueue(d) 124 15 10 1 570 12 6 9 0.20 4.49 2222 66.67 | 100.00
main(d) 175 21 15 3 8566 18 28 143 4.29 75.32 2.80 4.20 51.05
print_path(d) 63 6 3 0 185 12 2 8 5.39 16.78 25.00 25.00 25.00
qcount(d) 12 3 1 0 7 3 1 1 0.00 0.00 | 100.00 | 100.00 | 100.00
CheckPoin...(f) 35 6 3 0 60 7 3 10 | 50.00 75.00 20.00 20.00 20.00
IsPowerOf...(f) 30 9 7 0 378 9 6 24 0.00 42.86 12.50 12.50 12.50
NumberOfB...(f) 59 11 7 1 2302 14 10 48 | 28.89 33.33 2.08 2.08 29.17
ReverseBits(f) 44 8 5 1 238 10 7 2 0.00 0.00 | 100.00 | 100.00 | 100.00
byte_reve...(h) 146 8 5 1 1661 13 11 24 1.82 42.44 4.17 33.33 41.67
main(h) 101 16 11 1 12168 18 153 241 7.14 | 100.00 0.00 0.00 0.00
sha_final(h) 155 7 4 0 1738 13 3 64 0.00 14.63 40.62 40.62 65.62
sha_init(h) 87 3 1 0 80 8 1 9 0.00 26.67 44.44 44.44 44.44
sha_print(h) 60 3 1 0 44 7 1 7 9.09 27.27 14.29 14.29 14.29
sha_stream(h) 55 8 5 1 251 13 4 10 9.15 9.15 0.00 80.00 80.00
sha_trans...(h) 541 33 25 6 | 343162 26 95 | 2964 6.03 | 103.35 0.00 14.98 59.01
sha_update(h) 118 11 7 1 5595 17 48 37 0.07 82.02 0.00 86.49 86.49
finish_in...(j) 5 3 1 0 3 2 1 1 0.00 0.00 | 100.00 | 100.00 | 100.00
get_raw_row(j) 60 6 3 0 84 9 1 8 0.00 7.69 87.50 87.50 87.50
jinit_rea...(j) 45 3 1 0 22 6 1 2 0.00 0.00 | 100.00 | 100.00 | 100.00
main(j) 465 40 28 1 33620 17 12 153 5.52 6.00 0.00 0.00 0.00
parse_swi...(j) 1228 198 144 1 200397 18 53 | 2365 6.67 64.85 0.34 1.69 3.55
pbm_getc(j) 41 11 7 1 73 9 8 4 0.00 22.13 50.00 50.00 50.00
read_pbm_...(j) 134 27 21 2 3174 13 19 42 6.70 69.27 4.76 14.29 16.67
select_fi...(j) 149 25 21 0 400 10 10 12 0.00 7.14 25.00 25.00 75.00
start_inp...(j) 795 63 50 1 7018 15 37 52 1.72 27.59 23.08 76.92 76.92
write_std...(j) 16 3 1 0 8 4 1 1 0.00 0.00 | 100.00 | 100.00 | 100.00
init_search(s) 103 13 9 2 1348 14 11 27 0.37 | 459.31 3.70 51.85 51.85
main(s) 175 19 12 3 30975 19 12 175 0.00 64.02 4.57 6.86 6.86
strsearch(s) 128 23 17 2 46545 16 86 | 1644 1.48 | 138.68 0.18 0.73 4.01
unexecuted(71) 168.6 | 162 | 11.7 0.9 | 265552 | 12.1 | 31.6 | 1474 0.00 0.00 0.00 0.00 0.00
average 166.7 | 169 | 12.0 0.9 | 25362.6 | 12.0 | 27.5 | 182.8 4.60 47.64 30.68 42.02 56.08

Function - function name followed by benchmark indicator [(b)-bitcount, (d)-dijkstra, (f)-fft, (h)-sha, (j)-jpeg, (s)-stringsearch], Inst - number of instructions
in unoptimized function, Blk - number of basic blocks, Brch - number of conditional and unconditional transfers of control, Loop - number of loops, Fn_inst -
number of distinct control flow instances, sLen - largest active optimization phase sequence length, CF - number of distinct control flows, Num - Number of
leaf function instances, % from opt - % performance difference between Batch and Worst leaf and Optimal, within ? % of optimal - what percentage of leaf

function instances are within ’?”% from optimal

Table 3. Dynamic Frequency Measures for Executed Functions for MiBench Benchmarks Used in the Experiments

6.1 Mixed Mode Simulator

The SimpleScalar simulator toolset [22] includes many different
simulators intended for different tasks. Most useful for our pur-
poses are the two simulators sim-uop and sim-outorder. Sim-uop
is a functional simulator which implements the architecture, only
performing the actual program execution. Sim-outorder is a perfor-
mance simulator which implements the microarchitecture, model-
ing the system resources and internals in addition to executing the
program. Thus, sim-uop is relatively fast but only provides dynamic
instruction counts, whereas sim-outorder is able to provide proces-
sor cycles, but takes many times longer to run. In our experiments
we use sim-outorder with the inorder flag for the ARM, which is
generally an in-order processor for most implementations.

For our tests we only concentrate on one function at a time. Al-
though the cache and global branch access patterns of the remain-
ing functions in the application, as well as the library functions can
affect the performance of the current function being optimized, the

side effect should generally be small. In such a scenario it would
be ideal if we could run only the current function through the cy-
cle accurate simulator, and run all remaining functions using the
faster functional simulator. This method has the potential of reduc-
ing the time required for simulations close to the level provided
by the faster functional simulator, while still being able to provide
accurate processor cycles for the function in question.
Sim-outorder already has a mode by which we can do only the
functional simulation for some number of initial instructions before
starting the cycle accurate simulation. But once the cycle simula-
tion was started, it was not possible to go back to the functional
mode. We extended sim-outorder to include the ability of going
back to the functional mode from the cycle mode, so that we can
essentially flip back and forth between the two modes whenever de-
sired. Before each simulator run required during our experiments,
we first use the Unix nm utility to get the start and end instruc-
tion addresses for the current function. Later during simulation, we

- dlow cycles
16 1 fast cycles
b — frequency couts

Dynamic Counts (in millions)

1 201 401 601 801 1001 1201 1401

Function Instances

82

80 I leaf instance ’_‘
- [non-leaf instance

10

8

6

4]

% function instances

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 >1.1

perf./optimal perf.

Figure 4. Correlation between Processor Cycles and Frequency
Counts for init_search

switch to the cycle mode only when the program counter is between
this address range for the current function. Whenever the address
falls out of this range we wait for the pipeline to empty and then
revert back to functional simulation. This approach gives us sub-
stantial savings in time with very little loss in accuracy.

6.2 Complete Function Correlation

Even after using the mixed mode SimpleScalar simulator, it is very
time consuming to simulate the application for all function in-
stances in every function, instead of simulating the program only
on encountering new control flows. We have simulated all instances
of a single function completely to provide an illustration of the
close correlation between processor cycles and our estimate of dy-
namic frequency counts. Figure 4 shows this correlation for all the
function instances for the init_search function in the benchmark
stringsearch. This function was chosen mainly because it is rela-
tively small, but still has a sufficient number of distinct function
instances to provide a good example.

In addition to comparing the dynamic frequency estimates and
fast (mixed-mode) simulator cycles, Figure 4 also shows that the
mixed-mode cycles are almost identical to the actual cycles from
sim-outorder. This shows that our fast mode of using sim-outorder
provides very accurate estimates. All these performance numbers
are sorted on the basis of dynamic frequency counts. Thus, we can
see that our estimate of dynamic frequency counts closely follows
the processor cycles most of the time. What is more important is
that the correlation gets better as the function is better optimized.
The excellent correlation between dynamic frequency estimates
and fast/slow cycles for the optimized function instances allows
us to predict the function instances with good/optimal cycle counts
with a high level of confidence.

6.3 Correlation for Leaf Function Instances

Figure 5 shows the distribution of the dynamic frequency counts
as compared to the optimal, averaged over all function instances.
From this figure we can see that the performance of the leaf func-
tion instances is typically very close to the optimal performance,
and that leaf instances comprise a significant portion of optimal
function instances as determined by the dynamic frequency counts.
From the discussion in Section 5 we know that for more than 87%
of the functions in our benchmark suite there was at least one leaf
function instance that achieved optimal dynamic frequency counts.
Moreover, it is important to note that the leaf instances constitute
the only set of function instances that can be produced by the class
of aggressive compilers that iteratively apply optimization phases
until no additional improvements can be made. Since the leaf func-

Figure 5. Average Distribution of Dynamic Frequency Counts

tion instances achieve good performance across all our functions, it
is worthwhile to concentrate on leaf function instances. We can see
at the same time from Table 3 that most functions typically have
very few leaf instances. This makes it possible to get simulator cy-
cle counts for only the leaf function instances and compare these
values to our dynamic frequency counts. In this section we show
the correlation between dynamic frequency counts and simulator
cycle counts for only the leaf function instances for all executed
functions in our benchmark suite.

The correlation between dynamic frequency counts and pro-
cessor cycles can be illustrated by various techniques. A common
method of showing the relationships between variables (data sets)
is by calculating Pearson’s correlation coefficient for the two vari-
ables. The Pearson’s correlation coefficient can be calculated by
using the formula:

>zXy Zy
Pcorr = 2y - D

V(D — B2 4 (my2 - 22

In Equation 1 x and y correspond to the two variables, which in
our case are the dynamic frequency counts and simulator cycles,
respectively. Pearson’s coefficient measures the strength and direc-
tion of a linear relationship between two variables. Positive values
of Pcorr in Equation 1 indicate a relationship between x and y such
that as values for x increase, values of y also increase. The closer
the value of Pcorr is to 1, the stronger is the linear correlation be-
tween the two variables. Thus, Pcorr = +1 indicates perfect pos-
itive linear correlation between x and y.

It is also worthwhile to study how close the processor cycle
count for the function instance that achieves the best dynamic mea-
sure, is to the best overall cycle count over all the leaf function
instances. To calculate this measure, we first find the best perform-
ing function instance(s) for dynamic frequency counts and obtain
the corresponding simulator cycle count for that instance. In cases
where multiple function instances provide the same best dynamic
frequency count, we obtain the cycle counts for each of these func-
tion instances and only keep the best cycle count amongst them.
We then obtain the simulator cycle counts for all leaf function in-
stances and find the best cycle count in this set. We then calculate
the following ratio for each function:

best overall cycle count

(@)

Lcorr =

cycle count for best dynamic freq count

The closer the value of Equation 2 comes to 1, the closer is our

estimate of optimal by dynamic frequency counts to the optimal by
simulator cycles.

Table 4 lists our correlation results for leaf function instances
over all executed functions in our benchmarks. The column, labeled
Pcorr provides the Pearson’s correlation coefficient according to
Equation 1. An average correlation coefficient value of 0.96 implies
that there is excellent correspondence between dynamic frequency
counts and cycles. The next column shows the value of Lcorr cal-
culated by Equation 2. The following column gives the number of
distinct leaf function instances which have the same best dynamic
frequency counts. This number provides an estimate of how many
function instances we would need to simulate to obtain optimal cy-
cles, in case the cycles for any one of these function instances ac-
tually achieves overall optimal performance (only for leaf function
instances in this case). Thus, it can be seen that on average the value
of Lcorr is very close to 1, and we would need to simulate less than
5 function instances per function to obtain the leaf instance achiev-
ing the best cycle counts. The next two columns show the same
measure of Lcorr by Equation 2, but instead of considering only
the best leaf instances for dynamic frequency counts, they consider
all leaf instances which come within 1% of the best dynamic fre-
quency estimate. Considering more instances increases the number
of simulator runs we need to perform to get best cycles, but also
allows our estimated good leaf instances to get even closer to being
able to predict optimal simulator cycles.

The conclusions of this study are limited since we only con-
sidered leaf function instances. It would not be feasible to get cy-
cle counts for all function instances over all functions. In spite of
this restriction, the results are interesting and noteworthy since they
show that a combination of static and dynamic estimates of perfor-
mance can predict pure dynamic performance with a high degree
of accuracy. This result also leads to the observation that we should
typically only need to simulate a very small percentage of good
function instances as indicated by dynamic frequency counts to ob-
tain the optimal function instance by simulator cycles.

7. Genetic Algorithm Performance Results

Since it was generally considered infeasible to enumerate the op-
timization phase order search space, many researchers employ
heuristic algorithms, such as grid-based searches, hill-climbing
algorithms etc. to adaptively search a subset of the complete opti-
mization phase order space [4, 5, 8, 13]. Such heuristic algorithms
are believed, to provide better solutions faster than just a random
exploration of the search space. However, till this date there has
not been any comprehensive work to study how good the solutions
provided by such heuristic algorithms compare with the best pos-
sible solution since researchers always considered the optimization
phase order space too large to fully evaluate. Since we now know
the optimal function instance for each function, it is worthwhile
to perform a case-study to compare the results of our genetic al-
gorithm to investigate how close it comes to the optimal dynamic
frequency counts solution and how long it takes to achieve this op-
timum for each function. Further, we attempt to exploit some of the
information about the optimization interactions collected during
our exploration of the optimization phase order space to determine
their effect on the performance of the genetic algorithm.

The genetic algorithm setup used for these experiments is simi-
lar to some earlier experimental setups used by other researchers to
assess the merit of using genetic algorithms to address the phase
ordering problem [4, 5]. Chromosomes in the genetic algorithm
correspond to optimization sequences, and genes in the chromo-
some correspond to optimization phases. The set of chromosomes
currently under consideration constitutes a population. The num-
ber of generations indicates how many sets of populations are to
be evaluated. As in earlier experiments [4, 5], we have 20 chro-
mosomes per generation. However, in our algorithm the number of
generations is kept floating, as opposed to the fixed number of gen-

Function Pcorr Lcorr 0% Lcorr 1%
Diff | nLf Diff | nLf
AR_btblb... 1.00 | 1.00 1 1.00 1
BW _btbl_b... 1.00 | 1.00 2 1.00 2
bit_count 1.00 | 1.00 2 1.00 2
bit_shifter 1.00 | 1.00 2 1.00 2
bitcount 0.89 | 0.92 1 0.92 1
main 1.00 | 1.00 6 1.00 23
ntbl_bitc... 0.99 | 0.95 2 0.95 2
ntbl_bitent 1.00 | 1.00 2 1.00 2
dequeue 0.99 | 1.00 6 1.00 6
dijkstra 1.00 | 0.97 4 1.00 | 269
enqueue 1.00 | 1.00 2 1.00 4
main 0.98 | 1.00 4 1.00 4
print_path 1.00 | 1.00 2 1.00 2
qcount 1.00 | 1.00 1 1.00 1
CheckPoin... 0.95 | 1.00 2 1.00 5
IsPowerOf... 0.93 | 0.98 3 1.00 24
NumberOfB... 0.84 | 1.00 1 1.00 20
ReverseBits 1.00 | 1.00 2 1.00 2
byte_reve... 0.89 | 1.00 1 1.00 3
main 0.71 | 1.00 25 1.00 74
sha_final 0.72 | 0.82 26 1.00 50
sha_init 0.98 | 1.00 4 1.00 9
sha_print 0.95 | 0.88 1 1.00 6
sha_stream 1.00 | 1.00 1 1.00 8
sha_trans... 0.97 | 1.00 2 1.00 35
sha_update 0.98 | 1.00 14 1.00 32
finish_in... 1.00 | 1.00 1 1.00 1
get_raw_row 1.00 | 1.00 7 1.00 7
jinit_rea... 1.00 | 1.00 2 1.00 2
main 1.00 | 0.99 2 1.00 | 153
parse_swi... 0.95 | 1.00 8 1.00 16
pbm_getc 0.99 | 1.00 2 1.00 2
read_pbm_... 0.73 | 0.98 2 0.98 2
select_fi... 0.97 | 0.90 3 1.00 12
start_inp... 0.95 | 0.99 12 0.99 15
write_std... 1.00 | 1.00 1 1.00 1
init_search 1.00 | 1.00 1 1.00 14
main 1.00 | 1.00 8 1.00 12
strsearch 1.00 | 1.00 3 1.00 3
average 0.96 | 0.98 | 4.38 | 0.996 21

Pcorr - Pearson’s correlation coefficient, Lcorr - ratio of cycles for dynamic
frequency to best overall cycles (0% - optimal, 1% - within 1 percent of
optimal frequency counts), Diff - ratio for Lcorr, nLf - number of leaves
achieving the specified dynamic performance

Table 4. Correlation Between Dynamic Frequency Counts and
Simulator Cycles for Leaf Function Instances

erations (100) used earlier. The algorithm now terminates after the
generation in which it finds the optimal dynamic frequency counts
solution, or if the best solution found by the genetic algorithm does
not improve over its current best for more than a 100 generations.
The potential increase in the number of generations that could re-
sult from the change in the terminating condition can be easily sus-
tained since now the application only needs to be simulated for
new control flows, as explained in Section 5. The sequence length
for use by the genetic algorithm is determined by multiplying the
largest active sequence length found for that function (see Table 3)
by 1.25. The multiplication factor is to take into account dormant
phases since the chromosomes applied during the genetic algorithm
represent the attempted sequence and not the active sequence. To
produce the next generation we first sort the chromosomes in the
current generation in ascending order of their dynamic frequency
counts. During crossover we replace four chromosomes from the
lower half of the sorted list by repeatedly selecting two chromo-
somes from the upper half of the list and replacing the lower half

of the first chromosome with the upper half of the second chromo-
some and vice-versa to produce two new chromosomes each time.
During mutation we replace a phase with another random phase
with a probability of 5% for chromosomes in the upper half of the
population and 10% for the chromosomes in the lower half.

We also performed a second set of experiments with the genetic
algorithm by changing the mutation routine to take into account
optimization phase interaction results. The complete enumeration
of the phase order space provides us with useful information about
how often some phase enables or disables some other phase. This
information was used in our previous study to obtain faster batch
compilation [1]. For the current study, instead of selecting a purely
random replacement phase during mutation, we use this informa-
tion to select the phase based on the probability of it being active at
that point. The current phase probabilities are modified after every
phase by using the algorithm below.

/* opt is the last phase performed and becomes dormant */
problopt] = 0.0
/* determine probability of each phase being active */
for(i=0 ; i < seq-length ; i++)
prob[i] = (1.0-prob[i])*enable[opt] [i] +
(prob[il)*disable[opt] [i]

Enable and disable are the phase probabilities for each phase inter-
action with all other phases. The enabling/disabling probabilities
for each function were determined by averaging these probabilities
over all the functions, except for the current function whose opti-
mization phase order is being searched by the genetic algorithm.
The initial probabilities for each phase reflects the percentage of
time it was found to be active at the start of the optimization pro-
cess (i.e. for the unoptimized function instance). The technique
of only simulating the program on encountering a yet unseen con-
trolflow gives us a huge time savings beyond our earlier approaches
for making genetic algorithms faster [8] (for example, from 173
seconds to 18 seconds for init_search in stringsearch).

Table 5 shows the results of these experiments. The three
columns under Original GA list the results using unbiased random
mutation, and the next four columns under Modified GA illustrate
the results with the mutation phase changed to reflect phase inter-
action probabilities. From these results it can be seen that genetic
algorithms typically take only a few generations to reach their best
result. The original genetic algorithm was occasionally not able to
find the optimal instance under the test conditions, which resulted
in a performance loss of 0.51% on average. After accounting for
the phase interactions during mutation, the modified genetic algo-
rithm was able to find the optimal instance for all but one of the
executed functions in our benchmark suite. This shows that us-
ing phase probabilities helps bias the genetic algorithm searches
towards better sequences faster. It is possible that the original ge-
netic algorithm left to run for a greater number of generations will
eventually reach the optimal solution as well. It should however
be noted that the increase in the number of generations has only
been made possible due to the ability to accurately estimate the fre-
quency counts without actually executing the application in most
cases. This study shows that adaptive algorithms work very well
in our test suite and often are able to find the optimal phase order-
ing for the compiler we used. The reason for this is quite evident
from Table 3 which shows that most functions typically have many
minima, as well as many other points close to the optimal solution.

8. Future Work

In the future, we plan to investigate making a variety of improve-
ments to the current work. We will attempt improvements to make
the optimization phase order enumeration algorithm more efficient.

. Original GA Modified GA
Function
Gen [Opt | Df [Gnl | Gn2 [Opt | Df

AR_btblb... 1 Y 0.00 1 1 Y 0.00
BW_btbl_b... 1 Y 0.00 1 1 Y 0.00
bit_count 25 Y 0.00 25 25 Y 0.00
bit_shifter 19 Y 0.00 11 11 Y 0.00
bitcount 4 Y 0.00 4 4 Y 0.00
main 58 Y 0.00 23 23 Y 0.00
ntbl_bitcnt 21 N 6.55 7 44 Y 0.00
ntbl_bitc... 6 Y 0.00 4 4 Y 0.00
dequeue 32 Y 0.00 9 9 Y 0.00
dijkstra 1 Y 0.00 1 1 Y 0.00
enqueue 38 Y 0.00 17 17 Y 0.00
main 28 N 3.96 14 123 Y 0.00
print_path 4 Y 0.00 3 3 Y 0.00
gcount 1 Y 0.00 1 1 Y 0.00
CheckPoin... 1 Y 0.00 1 1 Y 0.00
IsPowerOf... 9 Y 0.00 15 15 Y 0.00
NumberOf... 49 Y 0.00 94 94 Y 0.00
ReverseBits 17 Y 0.00 20 20 Y 0.00
byte_reve... 14 N 4.69 17 113 Y 0.00
main 18 Y 0.00 14 14 Y 0.00
sha_final 1 Y 0.00 1 1 Y 0.00
sha_init 9 Y 0.00 12 12 Y 0.00
sha_print 14 Y 0.00 4 4 Y 0.00
sha_stream 84 Y 0.00 37 37 Y 0.00
sha_trans... 25 N 0.73 226 227 N 0.70
sha_update 10 Y 0.00 14 14 Y 0.00
finish_in... 1 Y 0.00 1 1 Y 0.00
get_raw_row 2 Y 0.00 2 2 Y 0.00
jinit_rea... 22 Y 0.00 14 14 Y 0.00
main 71 Y 0.00 20 20 Y 0.00
parse_swi... 14 N 4.07 13 26 Y 0.00
pbm_getc 31 Y 0.00 41 41 Y 0.00
read_pbm._... 16 Y 0.00 12 12 Y 0.00
selectfi... 34 Y 0.00 10 10 Y 0.00
start_inp... 11 Y 0.00 4 4 Y 0.00
write_std... 1 Y 0.00 1 1 Y 0.00
init_search 5 Y 0.00 4 4 Y 0.00
main 16 Y 0.00 3 3 Y 0.00
strsearch 17 Y 0.00 13 13 Y 0.00
average 187 | 0.87 | 051 | 183 | 249 | 097 | 0.02

Gen - generation to reach the best solution, Opt - whether optimal was found
for this function, Df - how worse the best GA solution was from optimal,
Gnl - generations required by the modified GA to reach a solution that is at
least as good as that found by the Original GA, Gn2 - generation to reach
best solution for modified GA.

Table 5. Genetic Algorithm Results

Currently, for each distinct function instance at the current level,
the enumeration algorithm applies all optimization phases at the
next level to check if any of them lead to a new function instance.
In practice, most of these phases turn out to be dormant. We can use
the enabling/disabling and independence phase interaction relation-
ships gathered from previous enumeration runs to avoid optimiza-
tion sequences which are predicted to not have a sufficient probabil-
ity of success. It may also be possible to use the phase interaction
relationships to determine phases which can then be grouped to-
gether to reduce the number of distinct optimizations during phase
order enumeration. Secondly, we plan to improve non-exhaustive
searches of the phase order space. Presently the only feedback we
get from each optimization phase was whether it was active or
dormant. We do not keep track of the number and type of actual
changes for which each phase is responsible. Keeping track of this
information would be very useful to get more accurate phase inter-
action information to avoid dataflow analysis that is unaffected or
to better choose the next phase to apply.

9. Conclusions

The ultimate goal of the exhaustive enumeration of the optimiza-
tion phase order search space for a function is to find an instance
that will achieve optimal dynamic execution performance. In this
paper we have shown that for most of the functions in our bench-
mark suite, it is possible to obtain the optimal function instance
w.r.t. our measure of dynamic frequency counts, in a reasonable
amount of time. We do this by limiting the number of simulations
during the exhaustive enumeration of the optimization phase order
search space to only those function instances which have a con-
trol flow that was not previously encountered. For all remaining
function instances for that control flow we estimate the dynamic
frequency measures from the execution counts of the basic blocks.
We further show that our measure of dynamic frequency counts cor-
relates very well with actual simulator cycles when the frequency
counts compare versions of the program that have the same control
flow. This leads us to the conclusion that if we could determine a
small number of good function instances quickly (from the exhaus-
tive set of all possible function instances) using our measure of dy-
namic frequencies, then it is possible to simulate only the function
instances in this set. We found that the function instance achieving
the best simulator cycles from this smaller set will likely be opti-
mal, or very close to optimal for the possible phase orderings in
the compiler we used. Finally, we showed that even basic genetic
algorithms are often able to find the optimal function instance (for
dynamic frequency counts) for our compiler in a small number of
generations, and that their performance can still be improved by
exploiting phase interaction information during the algorithm.

10. Acknowledgments

We thank the anonymous reviewers for their constructive comments
and suggestions. This research was supported in part by NSF grants
EIA-0072043, CCR-0208892, CCR-0312493, CCF-0444207, and
CNS-0305144.

References

[1] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson. Exhaustive
optimization phase order space exploration. In Proceedings of
the Fourth Annual IEEE/ACM International Symposium on Code
Generation and Optimization, March 26-29 2006.

[2

—

Steven R. Vegdahl. Phase coupling and constant generation in an
optimizing microcode compiler. In Proceedings of the 15th annual
workshop on Microprogramming, pages 125-133. IEEE Press, 1982.

[3

[t}

D. Whitfield and M. L. Soffa. An approach to ordering optimizing
transformations. In Proceedings of the second ACM SIGPLAN
symposium on Principles & Practice of Parallel Programming, pages
137-146. ACM Press, 1990.

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian.
Optimizing for reduced code space using genetic algorithms. In
Workshop on Languages, Compilers, and Tools for Embedded
Systems, pages 1-9, May 1999.

[4

[l

[5

—

Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho,
David Whalley, Jack Davidson, Mark Bailey, Yunheung Paek, and
Kyle Gallivan. Finding effective optimization phase sequences. In
Proceedings of the 2003 ACM SIGPLAN conference on Language,
Compiler, and Tool for Embedded Systems, pages 12-23. ACM Press,
2003.

T. Kisuki, P. Knijnenburg, , and M.F.P. O’Boyle. Combined selection
of tile sizes and unroll factors using iterative compilation. In Proc.
PACT, pages 237-246, 2000.

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani,
and David I. August. Compiler optimization-space exploration. In
Proceedings of the international symposium on Code Generation and
Optimization, pages 204-215. IEEE Computer Society, 2003.

[6

=

[7

—

[8] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase sequences. In
Proceedings of the ACM SIGPLAN ’04 Conference on Programming
Language Design and Implementation, June 2004.

[9

—

Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring
code improving transformations. ACM Trans. Program. Lang. Syst.,
19(6):1053-1084, 1997.

[10] Min Zhao, Bruce R. Childers, and Mary Lou Soffa. A model-
based framework: An approach for profit-driven optimization. In
Proceedings of the international symposium on Code generation and
optimization, pages 317-327, Washington, DC, USA, 2005.

[11] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey,
Steven W. Reeves, Devika Subramanian, Linda Torczon, and Todd
Waterman. Finding effective compilation sequences. In LCTES
'04: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference
on Languages, Compilers, and Tools for Embedded Systems, pages
231-239, New York, NY, USA, 2004. ACM Press.

[12] E. Bodin, T. Kisuki, PM.W. Knijnenburg, M.F.P. O’Boyle, , and
E. Rohou. Iterative compilation in a non-linear optimisation
space. Proc. Workshop on Profile and Feedback Directed Compi-
lation.Organized in conjuction with PACT’98, 1998.

[13] Prasad A. Kulkarni, Stephen R. Hines, David B. Whalley, Jason D.
Hiser, Jack W. Davidson, and Douglas L. Jones. Fast and efficient
searches for effective optimization-phase sequences. ACM Trans.
Archit. Code Optim., 2(2):165-198, 2005.

[14] T. Kisuki, PM.W. Knijnenburg, M.EP. O’Boyle, F. Bodin, , and
H.A.G. Wijshoff. A feasibility study in iterative compilation. In
Proc. ISHPC’99, volume 1615 of Lecture Notes in Computer Science,
pages 121-132, 1999.

[15] Elana D. Granston and Anne Holler. Automatic recommendation of
compiler options. 4th Workshop of Feedback-Directed and Dynamic
Optimization, December 2001.

[16] K. Chow and Y. Wu. Feedback-directed selection and characterization
of compiler optimizatons. Proc. 2nd Workshop on Feedback Directed
Optimization, 1999.

[17] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Generating
new general compiler optimization settings. In ICS ’05: Proceedings
of the 19th annual international conference on Supercomputing,
pages 161-168, New York, NY, USA, 2005. ACM Press.

[18] PM.W. Knijnenburg, T. Kisuki, K. Gallivan, and M.EP. O’Boyle.
The effect of cache models on iterative compilation for combined
tiling and unrolling. In Proc. FDDO-3, pages 31-40, 2000.

[19] Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A.
Harrison. Accurate static estimators for program optimization.
SIGPLAN Not., 29(6):85-96, 1994.

[20] K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian,
L. Torczon, and T. Waterman. Acme: Adaptive compilation made
efficient. In Proceedings of the ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems, pages
69-78, June 15-17 2005.

[21] M. E. Benitez and J. W. Davidson. A portable global optimizer
and linker. In Proceedings of the SIGPLAN’88 conference on
Programming Language Design and Implementation, pages 329—
338. ACM Press, 1988.

[22] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version
2.0. SIGARCH Comput. Archit. News, 25(3):13-25, 1997.

[23] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M.
Austin, Trevor Mudge, and Richard B. Brown. MiBench: A free,
commercially representative embedded benchmark suite. IEEE 4th
Annual Workshop on Workload Characterization, December 2001.

[24] W. Peterson and D. Brown. Cyclic codes for error detection. In
Proceedings of the IRE, volume 49, pages 228-235, January 1961.

[25] Jack W. Davidson and David B. Whalley. A design environment for
addressing architecture and compiler interactions. Microprocessors
and Microsystems, 15(9):459-472, November 1991.

