A Stackless Runtime Environment for a Pi-calculus

Frédéric Peschanski

Université Pierre et Marie Curie - Paris 6 - LIP6
Frederic.Peschanski@lip6.fr

Abstract

The Pi-calculus is a formalism to model and reason about highly
concurrent and dynamic systems. Most of the expressive power of
the language comes from the ability to pass communication chan-
nels among concurrent processes, as any other value. We present in
this paper the CubeVM, an interpreter architecture for an applied
variant of the Pi-calculus, focusing on its operational semantics.
The main characteristic of the CubeVM comes from its stackless
architecture. We show, in a formal way, that the resource man-
agement model inside the VM may be greatly simplified without
the need for nested stack frames. This is particularly true for the
garbage collection of processes and channels. The proposed GC,
based on a reference counting scheme, is highly concurrent and,
most interestingly, does automatically detect and reclaim cycles of
disabled processes. We also address the main performance issues
raised by the fine-grained concurrency model of the Pi-calculus.
We introduce the reactive variant of the semantics that allows, when
applicable, to increase the performance drastically by bypassing
the scheduler. We define the language subset of processes in so
called chain-reaction forms for which the sequential semantics can
be proved statically. We illustrate the expressive power and perfor-
mance gains of such chain-reactions with examples of functional,
dataflow and object-oriented systems. Encodings for the pure Pi-
calculus are also demonstrated.

Categories and Subject Descriptors D.3.4 [Processors]: Inter-
preters

General Terms Languages, Design, Theory, Performance

Keywords Pi-calculus, Interpreter, Operational Semantics, Garbage
Collection

1. Introduction

The Pi-calculus is a computational theory in the family of pro-
cess algebras [10, 5]. It is among the most widely studied theories
of concurrency at the moment. The syntax and semantics of the
calculus are minimalistic and aim at capturing concisely the foun-
dations of interactive systems. The ability to pass communication
channels between processes as any other value — a phenomenon
called name passing or channel mobility — provides much expres-
sive power to the language. In particular, it allows the concise en-
coding of most known computational models and also introduces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’06 June 14-16, 2006, Ottawa, Ontario, Canada.
Copyright © 2006 ACM 1-59593-332-6/06/0006. . . $5.00.

57

Samuel Hym

Université Denis Diderot - Paris 7 - PPS
Samuel. Hym@pps.jussieu.fr

a category of systems characterized by evolving communication
structures, which apply perfectly to mobile networks and ubiqui-
tous computing. While the theory is still worked on, applications
of the Pi-calculus begin to emerge in various fields, some of them
quite unexpected such as biocomputing or business process mod-
eling. The Pi-calculus is also very intriguing from a programming
language perspective. Works such as the Pict and Nomadic Pict pro-
gramming languages [14, 19], TyCO [9] and JoCaml [6], show the
interest of implementations exploiting the expressive constructs of
the Pi-calculus. But the field is far from its maturity and a lot more
experiments must be conducted. The work presented in this paper
is about such an experiment.

The runtime system we propose, named the CubeVM, directly
interprets an applied variant of the Pi-calculus called the cube-
calculus. The architecture of the virtual machine proposes some
original features. First, it does not rely on any form of a control
stack. The pros and cons of stackless architectures for concurrent
programming are discussed in the literature [8, 12, 21]. From our
point of view, it is clear that processes are lighter without an
attached stack. Moreover, an upper bound for the memory reserved
by each process may be computed at compile time. But most
importantly, having no stack to deal with simplifies greatly the
resource management model inside the VM. This is particularly
true for garbage collection. The GC scheme we propose is based
on a lightweight and highly concurrent logic. It falls under the
category of reference counting garbage collectors. Noteworthily, it
also detects and reclaims cycles of disabled processes in a very
simple way. Last but not least, the stackless runtime makes also a
lot easier the capture of process states, a prerequisite for process
migration [7] that is envisaged as a future work.

The fine-grained concurrency model of the Pi-calculus leaves
most of the performance issues into the “hands” of the scheduling
code. To address these issues, we introduce the reactive variants of
the semantics that allow, when applicable, to bypass the scheduler
and thus increase performance drastically. We introduce a subset
of the cube-calculus that may be used to encode processes whose
sequential execution can be proved formally. These processes in so
called chain-reaction forms are guaranteed to execute identically
in either standard or reactive semantics. We illustrate the expres-
sive power of chain-reaction forms with examples of functional,
dataflow and object-oriented systems.

Perhaps the most important aspect of the approach is that it is
based on a well-studied (but still maturing) theory. This allows us
to organize the discussion upon formally defined and analyzable
operational semantics. The reduction system we propose may be
employed to reason about the runtime environment and its most
important properties.

The paper is structured as follows. First, we introduce the cube
calculus and the basis of its operational semantics in section 2. The
innovative resource management scheme is described in section 3.
We put the emphasis on the absence of a control stack and the
garbage collection of cyclic and passive computation structures.

Value v, ... € VALUE

Channel a,b,c,d,... € NAME

Variable z,... € NAME

Definition A, ... m=def A(z1,...,z,) = P;

Process PQ,... :=

(inert) 0

(sum) | P+ Q

(parallel) | P Q

(prefix) | a, P

(alternative) | if v then P else @

(switch) | case(v){vi = P1| ... |vn = Pn}
(call) | A(vi, ..., 05

Prefix Q... =

(communication) (1, .., xn) | c(v1, ..., 0n)
(channel creation) | tnew(cy, ..., cn) | snew(ci, ..., cn)
(reactive process) | react(cl, ..., cn)

(scoping) |let(z1 =v1,...,Zn = Vn)
(primitive) | #prim(vi,...,vp)

Table 1. Syntax of the cube-calculus

P = P{y/x} with z bound and y fresh in P
P+Q=Q+P

P+0=P

P+(Q+R)=(P+Q)+R
Pl@QIR=(PIQIR

if v then P = if v then P else 0

A(0;) = let(z; = v;), P withdefA(z;) = P;

Table 2. Structural congruence

In section 4 we present the reactive variants of the semantics and
the chain-reaction form of processes. Related work, conclusion,
and bibliography follow.

2. Thecube-calculus
21 Syntax

The syntax of the cube-calculus is very close to the pure polyadic
Pi-calculus [10]. Its core constituents are presented in table 1.

Programs are composed of definitions and process expressions.
A basic sequential process is formed by prefixing a continuation ex-
pression with an atomic action. The action prefixes concern chan-
nel creation, communication, primitive operations, and so on. The
main difference with the pure Pi-calculus is that programs here can
manipulate not only names, but also values of so-called value types
such as integers, booleans, strings and symbols'. The match and
mismatch prefixes, used to compare names in the Pi-calculus, are
generalized by traditional if and case constructs. Also, basic prim-
itives such as output of values and arithmetic operators are sup-
ported. They are prefixed by a sharp sign and correspond to silent
steps in the semantics. A compound expression can be form by
composing two expressions in parallel. The sum operator performs
a non-deterministic choice between two expressions. We also pro-
vide syntactic conventions which are formally part of the so-called
structural equivalence (see table 2).

It is not the purpose of the paper to describe in details each
of the proposed language constructs. These are thoroughly investi-
gated and commented in the abundant literature on process algebras

L A symbol is an identifier string prefixed by a colon, e.g. :symbol.

58

Feedback

Figure 1. Example of concurrent program with channel passing

in general and the Pi-calculus in particular (the proposed syntax is
mostly inspired by [14]). Let us anyway illustrate the main lan-
guage features (channel and process creation, communication and
name-passing) on an example program, as follows:

def CS(n,lock) = lock?(x),/*Crit.*/x!(n) /*Sect.*/,lock!(x);

def Feedback(fbk) = fbk?(n),#printin("Lock taken by "+n),
Feedback(fbk);

def Launch(n,max,lock) =
if n<max then [Launch(n+1,max,lock) || CS(n,lock)];

tnew(lock,fbk),
[Launch(0,10000,lock) || Feedback(fbk) || lock!(fbk)]

This program is composed of three parametrized definitions
named CS, Feedback and Launch, followed by the entry-point of
the program. It starts with the creation of two fresh channels lock
and fbk using the tnew prefix. Three processes are then executed
concurrently: the first one calls the Launch definition, the second
one calls Feedback and waits on channel fbk. The last process is a
single output of channel fbk through channel lock, which is written
lock!(fbk). In this expression, we call fbk the object and lock the
subject of the output prefix. The distinctive case of name passing
is when a channel is used as object in an input or output prefix.
Launch is a recursive definition that starts max-n processes, each
of them running the CS definition. This definition is parametrized
by an identity (an integer n) and a reference to the channel lock.
According to the Pi-calculus semantics, exactly one of the CS
processes will synchronize with the single output lock!(fbk). At
this point of execution, the structure of the system is as depicted
in figure 1. Note that an arrow does not represent a channel per se
but more precisely a reference to a channel. The direction implies
an intention to input or output on the channel (hence, multiple or
bidirectional arrows may occur).

The synchronized CS process receives through lock a reference
to the channel fbk and then sends its own identifier on the same
channel, a typical example of name passing. This triggers the Feed-
back process which prints some information on the console. Fi-
nally, the activated CS process forwards the fbk channel on lock
and then dies after synchronizing. The synchronization activates
another CS process, and so on, until all CS processes have been
activated. The expected output of the program is thus a series of
10000 feedback messages, each one corresponding to the atomic
activation of the critical section enclosed between the input and
output prefixes on the lock channel in the CS definition.

2.2 Operational semantics

Following the long-tradition of programming languages inspired
by theory such as functional or logic programming dialects, our
aim is to derive our runtime environment from a solid and sound
theory. For this purpose, the operational semantics of the proposed

language play a prominent role. A non-exhaustive list of uses for a
formal operational semantics includes:

e giving a precise meaning to each language construct,

e serving as non-ambiguous specifications for implementors,
e deriving higher-level constructs through encodings,

e enabling software verification of program properties.

Since we present the runtime system in the paper, we mostly
exploit the first two items but longer-term objectives emphasize the
last ones. For the core part of the cube-calculus, the operational se-
mantic rules are given in table 3. These rely on a set of semantic
functions presented in table 4. The presentation is rather standard,
following a structured operational semantics (SOS) style. In con-
trast to standard semantics for the Pi-calculus, we do not present
compositional semantics for open terms. It is fair to only consider
closed terms for the specification of a runtime environment. Hence,
a reduction semantics is proposed. Moreover, following the applied
lambda-calculi tradition, an explicit environment is modeled, rather
than a more abstract substitution-based scheme. As a matter of fact,
two levels of environments are proposed. This is reflected by the
syntax of the terms manipulated in the semantics, which is as fol-
lows:

Agent A,... ==[Tlaby:Pi| || vm
An agent A defines a global environment [I'],, as well as a set
of processes P; in parallel. At the level of terms, we assume the
commutativity of the parallel operator?. Each P; is running within
its own local environment ~;. The expression v : P is well-formed
only if all the free and bound variables in P are defined in ~. By
default, variables in ~ are initialized to the undefined value L.

In the presented semantics, we only consider the execution of a
single agent. However this denotes of course a potentially infinite
number of concurrent processes®. Note that distributed extensions
for the cube-calculus, allow multiple agents, are presented in [13].
The contents of the global environments is first composed of an
index n used as a fresh identifier generator. The second component
is a relation between channel identifiers and information about
these channels, mostly related to resource management and reactive
semantics (see sections 3 and 4).

As for the syntax, our purpose is not to investigate all the details
of the semantic rules for all the proposed language constructs, most
of them being close to the standard Pi-calculus versions (see [5],
chapter 8 for example). Let us still describe the (Sum) rule of ta-
ble 3. It states that if an agent with environment [['],, running a
process P in local environment ~ reduces (or executes in one-step)
to an agent with environment [[],.» running P’ in local environ-
ment +’, then the same agent running P + @ may also reduce to the
agent running P’ conserving the environments. However, we know
from the structural congruence that the + operator is commutative,
50, by the rule (Struct) of the operational semantics, it may also be
the case that P + @ (or in fact Q + P through (Struct)) reduces
to Q' in some [I"'],,» and ~". This shows the non-deterministic
nature of +. The (Par) rule works similarly for independent (non-
communicating) parallel processes, but of course both sides of the
parallel remain active whereas the + operator makes a choice be-
tween the two branches of execution.

One of the most important rules is the communication rule
(Com) that associates an output to an input prefix in two distinct

: P,

2The (Fork) rule of table 3 distinguishes the rightmost process so we
do not assume the commutativity of the parallel operator in the structural
congruence.

3In the implementation, the maximum number of concurrent processes is
bound by the available memory.

59

concurrent processes and performs value-passing between them.
Let us explain this (Com) rule in full details. First, the hypotheses
are as follows. The reduction rule considers an agent with global
environment [I'],,. Around a parallel, a left process in local environ-
ment ~ performs a blocking output ¢!(?) on channel ¢ with values
v (this is a common abbreviation for polyadic values), followed by
a continuation P (alternatively @ if the communication is not en-
abled). The right process in local environment § is waiting for an
input on channel c. The enabling conditions for the communication
to take place are as follows. First, the variables c in the left process
and d in the right process must reference the same channel. For this
to hold, v(c) and &(d) must be equal. Moreover, the channel must
have no owner which means that we are not meddling with reactive
semantics (see section 4). The result of the reduction is the activa-
tion of the continuation P for the left process. In the right process,
the received values (i.e. all Jv;], that are the evaluations of the
value expressions v; in environment) are bound to variables x;’s
in the local environment §. Because of channel-passing, the global
environment may also be affected through communication. This is
described by the updates function of table 4. The precise meaning
of this function shall be presented in the next section.

3. Resource management

From the preceding discussion, one may ask how the proposed
semantics may be operated in practice. In fact, the structure of
the implementation for the core constructs of the language is very
simple. What is needed are a few data structures for channels and
processes as well as an interpreter for the basic prefixes of the
language. The parallel and sum operators of course require a proper
scheduler structure and algorithm*. From an implementation point
of view, this denotes a few thousand lines of C but nothing notably
new from a scientific perspective. In this section and the following
one, we shall describe innovative features of the implementation
that are specific to our approach.

3.1 Resourcescreation and freshness

In cube-calculus expressions, only two kinds of resource may be
created: channels and processes. The rules (tRes) and (sRes)
(factorized in table 3 as rules (fRes) with 6 € {t, s}) explain how
to create channels. They show that fnew(c;) prefixes are always
executable (or reducible). The result is to bind a set of variables
¢; to a set of corresponding fresh channel identifiers ¢ (fresh in
dom(T")). The newly created channels have a reference count of
1 and no owner. For the (¢Res) rule the channels are said to be
transient and we note 1j; and for the (sRes) rule they are static
channels and we note 15. The difference relates to the collection of
cycles we discuss later on. The functions ckind, cown, cpartner and
cref of table 4 are used to access the different pieces of information
attached to the channel identifier in the global environment.

The creation of new processes is defined by the rule (Fork) of
table 3, which is a simple rewrite of the parallel operator. Note that
the rule atomically creates a set of processes, so that the order of
creation is not fixed by the semantics. One resulting process, the
one on the right, corresponds to the continuation of the spawning
process. The other processes are dynamically created and inherit
the same local environment ~ from their parent. The only difference
is that a variable id is bound to a fresh value corresponding to the
process identifier in each local environment. The freshness property
relies on the following proposition:

40Our objective is to support a fine-grained concurrency model. We thus
favor VM-level threading in the implementation. However, we plan to take
advantage of system-level threads at a higher level of granularity.

Clnby:P—]y ks P

by P— [by P

Mo rr PrQ =y P O [i P60 =y Plsg Lo
B=A ot A— [FA B=A v; € dom(7)]
[FB— [y - B (Struct) S gEprm(6), P — Ty P)
[v]+ = true [v]y = false
[[)n Fv:ifvthen Pelse @ — [, F~: P (Then) [[ClnF~v:ifvthen Pelse @ — In Fv: Q (Else)
[v]y = [willy .
0 case(0) {01 = Pr | - [on = Pa} — [On b B (Switeh)
_ Ui{e:} 0 dom(l) =0 (ORes), 0 € {t,s}
[[]n v : Onew(c;), P — [allocs(T', U, {v(c)) }, U {&’ Dln Fyw U {ein @} : P
lh=n lo=10+1 lym=01+m—1 (FO?”k)
Tty Pl 1] Pon ([@ — [0erit(, 3, m0) e F v 8 id o 0} 2 Pr [[79 ido b} P 175 @
2(e) = 3(d)cown(T(3(c)) =

[Cln by ecl(ws), P+@Q | 62 d?(%:), R+ S — [updates(T', U {6(z:)}, Ui{[vils D] b v s Pl §WU{zi> [vi],}: R

(Com)

def A(3;) = P;

(Cln b= : A(vi) — [updates(T', img(v), U {[vil- }]n B U{zi > [vil,} : P

(Call)

[Cln b+ let(z; = 0), P — [updates(T, U, {v(xi)}, Ui {lvil- Dln &y @ Ui {zi > [oil,) P

(Lex)

Table 3. The semantics of the core cube-calculus

cown(k%)
ckind(k2)
cref(k2) £ k

reactive owner of channel
channel kind (transient,static)
reference count of channel
reference count of variable
environment inheritance

global environment extension
global environment contraction
environment allocation
environment update

L
L

w
0

nbrefs(y, ¢) £ card({d | d € dom(y) N~y(d) = ¢&})
inherit(l', v, n) £ T W {¢ > (k + n x nbrefs(v, ¢))?, | é € dom(T’
refs(,C) 2 T'w {év (k+1)% | é € C N dom(T) 0
unrefs(T,C) 2 Tw {én (k— 1)% | e € C Ndom(T) A T(&) = k2}
allocs(T', C', D®) £ unrefs(T', C) w {d 1§ | d’ € DO}

updates(T", C, D) £ refs(unrefs(T", C'), D)

Table4. Semantic functions

PROPOSITIONL. Let A & [[]n F 1 : Pu || -+ || 7p : Ppan
agent such that V1 < i < j < p we have v;(id) # ~,(id) and
vi(id), v;(id) < n. 1f A — A with A" 2 [[],, F~f : P{ |
co |l vy s Py then V1 < i < g < p’ we have i (id) # ;(id)
and v; (id), v; (id) < n'.

The proof is by a simple structural induction on the semantics.The
only rule to consider effectively is the one that changes the index
n in the global environment, that is, the (Fork) rule. We see that
n is updated when the rule triggers as n’ = n + m where m is
the number of forked processes. Each of these new processes, say
vk : Pr withn < k < n+4m, is given a fresh and unique identifier
in [n, n + m — 1], which is enough to conclude the proof. O

The freshness property is important for the reactive semantics,
as explained in section 4.

The final step in the (Fork) rule is to update the global environ-
ment. The newly created processes inherit the local environment of

60

their parent. The formal definition is in the inherit function of ta-
ble 4.

3.2 Stacklessrecursion

In most if not all programming languages, recursive calls as well
as the implied control stack occupy an important place. In the
cube-calculus, recursion represents in fact the only means by which
repetitive or infinite computations may be expressed. The seman-
tics of the call operator are given by the rule (Call) of table 3. The
first thing it does is to bind all the parameter variables x1, ..., xy
to the argument values in an empty local environment. We can see
in the semantic rules that local environments adopt a flat struc-
ture, i.e. they may not be nested. Actually, in all the rules where
the local environments in the right hand side must be modified,
such as the (C'om) rule, the overriding operator & is employed. In
0 W J,{xs > [vs]4}, all the bindings for the x;’s in ¢ are replaced
by new ones. This flat structure for local environments is the first

reason why a stack is not required. The second reason for the stack-
less architecture comes from the fact that the syntax enforces tail
recursion. For general, non-tail recursion, consider the canonical
example of the ackermann function, that we encode as follows:

def Ack(n,p,r) = if n = 0 then r!(p+1) else
if p = 0 then Ack(n-1,1,r) else
tnew(rl), [Ack(n,p-1,r1) || r1?(pp),Ack(n-1,pp,r) I;

Here, the stack is built on demand using channels and processes.
The main drawback is that we do not exploit the processor stack,
and as such native performance is out of reach for general recur-
sion (at least on current register/stack-based processors). Moreover,
memory consumption increases by at least one channel (a minimum
of one memory word for the reference count and control flags)
for every stack frame to “simulate”. The main advantage is that
processes become really lightweight without nested stack frames
attached to them. We may even compute an upper bound for the
memory needed by a process at compile-time®. Also, this removes
the burden of stack analysis in order to freeze the VM state (or
parts of the VM state). Another major argument is that this sim-
plifies greatly the garbage collection issue, as discussed in the next
section. A minor point is that having no stack also means having no
stack limit®.

3.3 Garbage collection

The CubeVVM environment uses a reference counting scheme for
garbage collection. An important design choice is that reference
counts are placed on channels and not on processes. It is a little
bit like counting occurrences of method calls instead of object ref-
erences in an object-oriented setting. All the collection is handled
by the processes themselves at key points of their executions. In
the semantics, the garbage collection points are those involving the
functions refs, unrefsand updates of table 4. These are spread in the
rules (Com), (Call) and (Lez) of table 3. To illustrate the mean-
ing of these functions, consider the modification of the global envi-
ronment I" written as updates(I", {v(x)}, {¢}). The variable z is in
the local environment ~ and ¢ is a channel identifier. Since the local
environment is flat, the reference count for the previous bindings
for z, i.e. cref(T'(+y(z))), must be decremented. This is expressed as
unrefs(T, {y(x)}). Complementarily, we must increment the refer-
ence count for the new value ¢, which we write refs(T", {¢}). These
functions are generalized in table 4 to handle polyadic values.

In table 5 we define extra operational rules to support the collec-
tion scheme. The small-step semantics presentation demonstrates,
in fact, that the collection is performed locally, without any exter-
nal algorithm. First, the rules (Collect) and (Finish) explain how
to reclaim channels of count zero and also how to reclaim the re-
sources of a terminating process. The rule (Dead End) deals with
the collection of waiting and isolated processes. We may take ad-
vantage of the minimalism of the syntax to extract the general syn-
tactic form of a waiting process as follows:

Yyl @) P+ >), Qi+l
2 J

A waiting process is thus a sum of non-deterministic branches,
each branch being guarded by either an input or output prefix.
In any other case, it is easy to prove from the semantics that the

5The memory needed by a process is statically bound by the size of the local
environment needed to call the definition, reachable by the process, with
the largest lexical environment. Note that this is not the memory needed for
the channels created by a process, nor the number of created channels and
processes, which are dynamic properties.

6 Stack requirements may be high: ackerman(4,1) will “stack overflow”
most implementations, not ours.

61

c0
count=1

cn cl
counFZ/N count=2
7
,

c2
count=2

~<---7

Figure2. Example of a cyclic system

process may advance its execution. A waiting process is also said
to be isolated if all the channels the process is waiting on are only
known to the process itself. This is the case for a channel ¢ with
a reference count of 1. But it is also possible to have multiple
references to ¢ in the local environment ~y. For example, suppose we
write let(d=c) where c is a channel of identifier ¢. Then, we have
a reference count of 2 for ¢ in the global environment, but both
references are within the local environment -, respectively ~(c)
and ~(d). So, we need to compare the global reference count of a
channel (each ¢; and ¢; in rule (DeadEnd)) with the set of local
references for the same channel. Given a channel ¢, then its global
reference count is cref(T'(¢)) and its local count in a process y : P
is nbrefs(+, é) (see table 4). When these two counts are identical,
the channel is only known to the process P. Since a process can not
directly communicate with itself in the Pi-calculus, any attempt to
input or output on such a channel is blocking in a permanent way.
Such a communication is said to be disabled. A waiting process
that has all its alternative branches disabled is then isolated and
may be reclaimed because none of its execution branches may be
ever enabled again.

Finally, the rules (DeadIn) and (DeadOut) of table 5 deal
with the collection of cycles. The problem of cycle collection is
twofold. Firstly, cycles must be detected properly. And secondly, in
order to reclaim concurrent processes, we must discriminate pas-
sive cycles from active ones. Of course, the objective is to remove
only the passive cycles. The beauty of the proposed approach is
that both requirements are handled simultaneously, in a very sim-
ple way. To illustrate the solution, suppose a cyclic structure of pro-
cesses as represented in figure 2.

On each channel we indicate the name of the channel as well as
its reference count. We can see that the process P; references, as
input, a channel ¢, with reference count 1. A reference count of 1
means that only one process knows the channel. The (DeadIn)
rule tells that a process attempting to communicate on a channel
with reference count of 1 should be reclaimed, the communication
being permanently disabled. In the example, this implies the col-
lection of process P;. Of course, the collection is also triggered if
the number of global references equals the number of local refer-
ences, as for the (DeadEnd) rule. After the collection of Py, the
reference count for the channel ¢; will decrease by one, which trig-
gers P,’s collection, and so on until eventually P, disappears and
the whole cycle is collected. The (DeadOut) rule deals similarly
with outputs on uniquely owned channels. As such, B, may be re-
claimed before P, if it tries to output on channel ¢,. This is an
almost optimally concurrent GC scheme since all the detection and
collection are performed locally, without the need for any external
logic.

7 (Collect)
C,év0.lnky:P—[lnk~y: P

cref(C'(v(c:))) = nbrefs(vy, v(c:))

vY#0

[[]n kv :0 — [unrefs(T, img(y))]n = 0 : 0

cref(T(v(e;))) = nbrefs(~y, v(c;))

(Finish)

[F s 3, eal@), P+ 3, 07(8), Q) — [unrefs(T, img(7))]a 0 : 0

cref(I'(v(c))) = nbrefs(y, y(c))

ckind(T'(v(c))) =t

(DeadEnd)

[[]n 7+ (@), P+ Q — [unrefs(T, img(7))]n - 0 : 0

(DeadOut)

ckind(D(v(c)) =t cref(D(y(<))) = nbrefs(z,7(c))

[]n b : €?2(F), P+ Q — [unrefs(T, img(y))]n 0 : 0

(DeadIn)

Table5. Semantics for Garbage Collection

We define now the notion of disabled processes, whose general
form, in global environment T", is as follows:

v:Y ai,Qisuchas 3k € 1, {

el

ar = (@) Vag =c?(x)

cref(I'(v(c))) = nbrefs(v, y(c))

Intuitively, a disabled process is trying to perform at least one
disabled communication. Such a process is a good candidate for
garbage collection since parts of its behavior are, from now on, per-
manently inactive. Because of name-passing, this partial condition
may be too restrictive. In rare occasions, processes need to conserve
a channel reference for future use. As an illustration, imagine an
object with an interface that no one knows except the object itself.
Still, external objects may like to ask for this interface at runtime,
which is exactly what the I[Unknown interface of COM components
is about [16]. Consider the following example:

def Component(iunknown,self) =
iunknown?(x),x!(self),Component(iunknown,self)
+ self?(message), // ... etc ...

In order to interact with this component, we must know the self
channel. If no one knows this channel except the component, then
the GC will reclaim it. But if we look at the code, it is possible to
use the iunknown channel to get back a reference to self from the
outside. In order to deal with this kind of situation, we have to flag
the self channel as static which means that it will not trigger the
cycle detection and collection algorithm. The prefix snew is used
to create channels flagged as static.

The most important aspect of garbage collection is the safety
property of the proposed algorithm. We have to check that it applies
exclusively on those process terms that we identified as candidates
for collection. Formally, we define a collection as safe when it
satisfies the following property:

PROPOSITION 2. Let P be a process suchthatT' + v : P —
I + @ : 0 then P is either isolated or disabled on tran-
sient channels, or it is the inert process 0. Moreover, IT”
unrefs(T, img(7)).

The only rules that match the @ : 0 in the right-hand side
of the conclusion are (Finish) for inert processes, (DeadEnd)
for isolated ones, and (DeadIn) and (DeadOwut) for disabled
processes (but only for transient channels). We can see that all rules
individually respect proposition 2, which thus applies on the whole
semantics by structural induction. |

4. Reactive semantics

In the Pi-calculus, the role of the parallel operator is twofold.
First, it denotes the concurrent execution of the two processes it

62

separates, which results in non-sequential semantics. Second, it
is a composition operator because according to the rule (Com)
of table 3, processes may only communicate around a parallel
operator.

4.1 Sequential behaviors

In order to allow explicit sequential computations, we introduce
the notions of reactive channels and reactive processes. A reactive
channel is a “normal” (active) channel flagged with an owner pro-
cess. The react(c) prefix is used to flag channel ¢ as reactive. After
reducing the prefix, the process becomes the owner of the channel
and switches from an active mode to a reactive mode of execution.
It will only be activated if another process (reactive or active) out-
puts on channel c. This activation is notably unidirectional, from
output to input and not the converse.

Table 6 presents the rules that drive the execution of reactive
processes. The switch from the active to the reactive mode of
execution for a process, as discussed previously, is handled by rule
(RMode). We can see that owning a channel ¢ puts a decoration
~(zd) (which is the identifier of the owner process) in the global
environment. The rule (RCom) describes a communication on
a reactive channel. The left-hand process outputs a set of values
on channel c. To trigger the rule, this channel must be owned
by the right-hand process (obviously in reactive mode). If these
conditions are not satisfied, then the active rule (Com) applies.
The consequences of both the (Com) and (RCom) rules are very
similar. A fundamental difference is that in the case of (RCom)
there is no choice for the receiver process. We formalize a stronger
property that states the uniqueness of the reduction of a given
output prefix through (RCom). For this we need to restrict the
form of the receiver processes. In a process v : P, an ambiguous
sumon «y(c) is a sum expression c¢?(Z) + 3, a;.Q; in which there
exists a; £ d?(y) such that v(c) = ~(d). An ambiguous sum
is thus a sum guarded by at least two input prefixes on the same
channel. Now we may state the reduction uniqueness property as
follows:

PROPOSITION 3. Let A be an agent such that A £ [T, - --- ||
v e(0;), P+ Q | -- - and without any ambiguous sum on v(c).
Consider also A’ and A" two agents such that A" 2 [TV],, -
Iy P -and A E T b | AP I
cown(T'(vy(c))) # Pand A — A" aswell as. A — A", then we
have A’ = A"

To consume an output prefix, the only rule enabled for the
reduction A — A" is (RCom). The (Com) rule cannot be
triggered because channel ¢ has a non-empty owner. First, by the
freshness guarantee of the (A Res) rules, we know that a channel

G=(c) T(@)=k

[[]n kv : react(G), P — [0, é 0 kS pln by : P

cown('(v(c))) = 4(id)

v(c)

(RMode)

5(d) T(e) =Ko

[T by (@), P+ Q|0 : d?(@), R+ S

(RCom)

— [updates(T", U, {0(z:)}, U{[vil+ 1), 7(e) > kJn By Pl 6w Ui{@i > [uids} - R

Table 6. Rules for reactive semantics

identifier (here ~(c)) is unique in the global environment. This
explains that v(c) maps to at most one reference to an owner
process. Moreover, we know that the channel is reactive, which
means that the owner reference is not empty. Now, in the (RComn)
rule, the process P; in A that can interact with v : cl(v;), P + Q
is of the form & : d?(z;), R + S such as 6(id) = cown(T'(v(c))).
Suppose these two processes interact along the reduction A —
A’. If we consider a second reduction A — A" with A" # A",
then there must be another process P, in A different from P, but of
asimilar form ¢ : e?(y;), T+ U such that £(id) = cown(T'(y(c))).
From proposition 1, we know that if §(id) = £(id), then P; =
P2. Thus, P is the unique process that inputs on ~(c) through
(RCom). Since it does not contain any ambiguous sum on «(c),
the input prefix involved is unique. And from this we can conclude
that a unique reduction can be inferred in the semantics so that
A =A". O

The conclusion is that for a given output prefix on a reactive
channel, under the assumption that there is no ambiguous sum
on that channel, then the (RCom) rule can be triggered in a
deterministic way. This means that it can be implemented by a
sequential algorithm.

4.2 Chain reactions

We can not decide, in general, whether a given program is sequen-
tial or not. We define in this section the general form of chain-
reactions that are processes of which we can prove the sequential
behavior statically. For this, we first give a few definitions.

Afreeinput is an occurrence of ¢?(z;) in an expression P where
c is not bound by either a new or another input prefix in P up to
structural congruence and aliasing’.

Let new(c;, ¢;), Q an expression with @ = --- || P || ---.
We say that P is in chain-reaction form on the set of channels ¢
if all the input prefixes in P are free and exclusively on the ¢;’s.
Moreover, P must not contain any ambiguous sum and every input
on ¢; in @ must be in P. Finally, if there is a process in P written
new(b;), RWithR=R: || --- || Rn,thenall the R;’s (i < n) are
also chain-reactions for disjoint subsets of b;. The subprocess R,
is the continuation of P. It may still be in chain-reaction form for a
disjoint subset of the b;’s but must also preserve the chain-reaction
form on the ¢;’s.

To comment on this definition, notice first that the channels ¢;
are only known to the subprocesses of). Moreover, P is the only
subprocess performing (non-ambiguous) inputs on these channels.
Suppose now an agent .4 containing Q. If A reduces to an agent
oftheform [[], F ... || v: (%), R+ S| ... withc € & up
to aliasing, then only P can perform the corresponding input. This
says, in fact, that in the case of processes in chain-reaction forms,
any of the two communication rules (Com) (for active channels)
or (RCom) (for reactive ones) may trigger indifferently, and in a
deterministic way.

In the syntax, the only way to create an alias y for a variable = in an
expression P up to structural congruence is to write let(y = z), P.

63

Another way to explain this is to say that a given program,
slightly modified to trigger reactive semantics instead of active
ones, may be operated sequentially, without the need of the ac-
tive semantics (and underlying scheduler). In order to formalize
this property and prove it correct, we define inductively on the syn-
tax the transformation unchain consisting in removing all the react
prefixes such that unchain(react(c;), P) £ P. This transforma-
tion naturally extends to whole agents, provided that all channel
owners are removed from the global environment. Then, we may
state the following proposition:

PROPOSITION 4. Let react(c;), P; the complete set of the pro-
cesses prefixed by reactinagiven agent A. If all the P;’sare chain-
reactions and if there is an agent A’ such that A —* A’, then
unchain(.A) —* unchain(A’). Reciprocally, if unchain(4) —*
A’ then there exists A" such as unchain(A4’) = A” and A —*
A’

In chain-reactions, all distinct input prefixes are performed on
distinct channels. This may be easily deduced from the definition.
As such, chain-reactions enjoy a receiver uniqueness property, not
only in the case of reactive channels. As a consequence, proposi-
tion 3 still applies even for a channel ¢ with cown(¢) = 0. This
means that for a given output prefix, if the (Com) rule is triggered,
then it may only be so in a deterministic way, as for the (RC'om)
rule for reactive channels. The proof is similar to the one for propo-
sition 3, so we omit it here. Then, it is easy to show that the property
applies globally by structural induction on the semantic rules. In-
deed, all the inference rules of the semantics are the same for both
the active and the reactive cases. d

4.3 Examples

In this section we discuss the expressivity of the subset of the cube-
calculus corresponding to processes in chain-reaction forms. We
show the reactive encoding of example programs involving vari-
ous programming paradigms. We also illustrate the performance
gains one might expect by applying the reactive semantics of the
CubeVM in practice. Table 7 compares the execution times for both
active and reactive semantics on the benchmark programs. The ac-
celeration is also indicated. On table 8, we compare with the python
interpreter (in version 2.3), which is one of the most successful in-
terpreted technologies around. All the programs are available on
line (at [2]). The test machine is an Intel P4-2Ghz powered com-
puter with 512Mb RAM and 40Gb Hard drive. It is running the
Linux operating system with kernel 2.6.8. \We begin with the criti-
cal section example of section 2, testing with 10000 processes. \We
make the fbk channel reactive in the reactive variant, which shows
that the reactive semantics are not incompatible with channel pass-
ing. It also shows that the reactive version is more that 10 times
faster compared to the active one. It is of course not surprising that
most of the time is spent in the scheduler for the non-sequential
variant of the example. A similar program is tested in the Python
environment, but the obtained figures are not really relevant since

program active (s) | reactive(s) | ratio
sc(10000) 14.17 0.98 ~ 145
ack(3,7) 2.29 1.15 ~ 2.0
fib(27) 2.10 0.55 ~ 3.8
tak(96,48,32) 1.05 0.69 ~15
sieve(10000) 351 0.32 ~11.0
objinst(1500000) 5.15 511 ~ 1.0
threads-flow(3000) 341 0.25 ~ 13.6
Table 7. Reactive vs. active semantics

program active (s) | reactive(s) | python (s)
sc(250) 0.05 0.01 0.29
ack(3,7) 2.29 1.15 1.29
fib(27) 2.10 0.55 0.51
tak(96,48,32) 1.05 0.69 0.37
0objinst(1500000) 5.15 5.11 16.50
threads-flow(250) 0.18 0.03 0.14

Table 8. Comparing with Python [3]

the interpreter seems to support only a few hundred threads at least
on the Linux platform.

4.3.1 Functional computations

Functional programming relies on a deterministic computational
model that offers a nice expressivity benchmark for processes in
chain-reaction forms. In order to illustrate the reactive encoding of
functional systems, we propose to rewrite the ackermann example
of section 3, which can clearly be executed sequentially since it is
deterministic. The reactive encoding is as follows:

def Ack(n,p,r) = if n = 0 then r!(p+1) else
if p = 0 then Ack(n-1,1,r) else
tnew(rl), [Ack(n,p-1,r1) ||
react(rl),r1?(pp),Ack(n-1,pp,r) |;

It is very easy to show that the ackermann definition is in
chain-reaction form, so that removing the react prefixes would not
affect the semantics. Of course, we expect better performance for
the reactive version. Table 7 shows the relative performance of
the active vs. reactive semantics for the ackermann example. The
reactive variant is approximately twice faster. Along the same lines,
other functions may be encoded and tested. We show the results for
the non-tail recursive encoding of the well-known Fibonacci and
tak functions (see [2] for the encodings of these). We only consider
non-tail recursions so that we do not rely on tail-call elimination
that is not always supported®. Moreover, this gives an idea of the
relative cost of simulating stack frames in the CubeVM. The tak
function has some potential for concurrent evaluation which is well
illustrated by the fact that the gains obtained by the reactive variant
are not so high. If compared to the python interpreter execution
times, the results of table 8 shows that the CubeVM, at least in
reactive semantics, provides similar performance. The ack example
is faster in cube but the tak example performs better in Python.

4.3.2 Dataflow systems

We next illustrate the expressivity of the language by exhibiting the
encoding of a sequential dataflow system. We give below a simple
(and not fully optimized) version of Eratosthenes’s sieve. The idea
is to implement a generator process feeding the numbers to be
sieved to a chain of filtering processes. Each one of these filters

8 The python interpreter, in version 2.3, does not seem to eliminate tail-calls.

is associated to a given prime number. When a filter receives a
candidate number, it filters out multiples of the prime numbers it is
associated to. The other candidate number are forwarded to the next
filter in the chain. At the end of the chain, a new prime number is
discovered. As a result, a corresponding sieving process is added to
the chain, until the specified number of prime numbers to discover
is reached. This algorithm is encoded in the cube-calculus, in an
almost literal way, as follows:

def GenlInt2(i,n,out) = if i<n then out!(i),Genlnt2(i+2,n,0ut);

def PrimeFilter(in,n,out) =
in?(x),if (x % n) = 0 then PrimeFilter(in,n,out)
else out!x,PrimeFilter(in,n,out);

def PrimeSink(in) =
in?(x),#print(x),#printin(" is prime”),tnew(out),
[react(out),PrimeSink(out) || PrimeFilter(in,x,out) ;

tnew(gen,out),
[GenInt2(3,1000,gen) || react(gen),PrimeFilter(gen,2,0ut)
react(out),PrimeSink(out)]

It is arguably an intuitive encoding of the algorithm. This ex-
ample is yet again in chain-reaction form and it can be made more
than ten times faster with the reactive optimization. No comparison
is made with python which is clearly not a language for dataflow
systems.

4.3.3 Object-based computations

Object-orientation is probably the most important programming
style today. Most object-oriented programming languages allow the
definition of classes encapsulating data (slots) and behavior (meth-
ods). Another important feature is the so-called data hiding. Of
course, object models invariably support some form of inheritance.
Below is a very simple example in the Python programming lan-
guage [3] illustrating all these fundamental features®:

class Cell:
def __init_(self,v):
self.value=v
def set(self,v):
self.value:=v
def get(self):
return self.value

class CellPrint(Cell):
def __init__(self,v):
Cell. __init__(self,v)
def print(self):
print self.get()

c = CellPrint(10)
print c.get()
c.set(12)
c.print()

In the main program, the variable c references a CellPrint object
containing value 10. The get method is called, which is defined
in the Cell superclass. The value 12 is then stored and the print
method of the subclass is invoked. We expect the output “1012" on
the console.

The problem with the cube-calculus, as for most variants of
the Pi-calculus, is that it does not provide any basic notion of ob-
jects, classes, methods and dlots or inheritance. Everything must

9We do not discuss the encoding of method bodies, which could use imper-
ative, functional or dataflow programming styles.

be encoded using processes and channels. Related work detail
various encodings of objects in Pi-calculus or other process al-
gebras [10, 17]. An object is generally associated to a recursive
process. Each method can be associated to a channel, or we may
dispatch on a unique channel to optimize space. Moreover, most
object-based interactions are sequential. We should thus try to rely
on the reactive semantics. Consider the following encoding:

def Cell(self,value) =
self?(message,ret),case(message) {
(:set,v) = Cell(self,v)
| (:get) = retl(value),Cell(self,value) };

def MakeCell(self,value) = Cell(self,value);

The Cell class is encoded by two definitions. The first one,
named Cell like the class name, is the encoding of the instance
behavior. The second one is named MakeCell, it encodes the con-
structor. For this simple example, both definitions match. The first
parameter is a channel named self. There is also one parameter for
each slot entry (here, only one parameter for the value slot). The
parameters are only known to the body of the definition, imple-
menting data hiding as required. Each Cell process is waiting on
self for a message as well as a private reply channel named ret.
The message is a tuple containing the name of the method, repre-
sented by a symbol prefixed by a colon (internalized as a unique in-
teger), and the optional parameters. It is dispatched using the case
construct which pattern-matches on tuples. If the method is :set,
then we recursively call the Cell definition with updated value pa-
rameter. We see here that the static behavior of objects is obtained
through recursion (as in [9]). The :get method sends on the ret
channel the current value of the slot and then loops. Inheritance is
obtained through reactive composition and delegation as follows:

def CellPrint(self,super) =
self?(message,ret),
case(message) {
(:print) = tnew(sc),react(sc),super!(:get,sc),sc?(v),
#print(v),CellPrint(self,super)
| - = super!(message,ret),CellPrint(self super) };

def MakeCellPrint(self,value) =
tnew(super), [react(super),MakeCell(super,value) ||
CellPrint(self,super)];

The MakeCellPrint constructor takes a value parameter which
is used to start a (reactive) Cell process identified as super. Another
reactive process executing the CellPrint definition is also started.
Two links must be provided: the self channel for the subclass part
and the super channel for the superclass. Before explaining the
dispatch mechanism, let us encode the main program as follows:

tnew(c), [react(c),MakeCellPrint(c,10) ||
tnew(rc),react(rc),c!((:get),rc),rc?(v),
#print(v),c!((:set,12),rc),c!((:print),rc)]

The channel c identifies the object we create. The CellPrint
constructor is started in parallel with the main program. In order
to call method get, we send on c the (:get) dispatch message, and
also the return channel that we name rc. This message activates
the CellPrint process which is reacting on c (also known as self
in the definition of CellPrint). The message is dispatched to the
default case _, which is delegated to the Cell process reacting
on the super channel (known as self within the Cell definition).
A second dispatch leads to the output of the slot value on ret
which is in fact rc. Thus, the answer goes directly back to the first
caller. This encoding is roughly of the same size if compared to

65

Process P, Q, ... =

(inert) 0

(sum) P+Q
(parallel) P|Q
(prefix) a.P
(restriction) (va)P
(match) [x=vy] P
(mismatch) [x #y] P
(replication) *P

Prefix «,... ==

(silent) T

(input) co(z1,...,Tn)
(output) (v, ..., Un)

Table 9. Syntax of the polyadic Pi-calculus

the pseudo object-oriented code above. For developers exercised to
name-passing programming, it is also almost as readable.

In table 7, we compare the active and reactive encodings for ex-
amples of object-oriented programs coming from (an old version)
of the computer language shootout [1]. We can see that applying
the reactive semantics on the objinst example does not accelerate
the computation in a noticeable way. The reason is that this ex-
ample performs many method calls on very few objects, which is
not a problem for the scheduler. The threads-flow example (also
called process in the shootout), on the contrary, uses many objects
and many threads, which gives a big acceleration in the case of re-
active semantics. The comparison with python, which we should
take very carefully, shows that the CubeVVM may be, at least at first
sight, a very fast interpreter for object-oriented interactions. More
experiments should be conducted to really state on that matter.

5. Encoding the polyadic Pi-calculus

In this section, we discuss the relationship between the Pi-calculus
and the applied variant we propose.

In table 9 we recapitulate the syntax of the polyadic Pi-calculus
as presented in [10]. Most of the constructs are similar if not identi-
cal to the cube-calculus ones. The replication operator is a notable
exception. In fact, it is well known that recursive definitions as im-
plemented by the cube-calculus may be encoded using replication
and communication. But the converse is also possible. Consider the
following Pi-calculus process:

(vgen,c) x (gen(out).(vid).out(id)) | gen(c).c(x).P

In this system, the process on the left is a generator of unique
identifier. The one on the right of the parallel operator (noted | in the
Pi-calculus) asks for such an identifier. In the Pi-calculus semantics,
this system is structurally equivalent to the following one:

= (vgen,c) * (gen(out).(vid)out(id))
| (uid)(gen(out).oyt(id)) _
| gen(c).c(x).P) with id fresh in P

The replication =P is structurally congruent to «P | P and the
scope of restrictions can be extruded. The system then reduces as
follows:

— (Vggn, c) * (gen(out).(vid)out(id))
| (vid) (¢(id) | c(x).P) o
— (uggn, c) * (ggn(out).(md)out(zd))
| (vid) (0 | P{id/z})

fo} =0

P +Q} = {r} +{Q}

fP1Q} = {P} | {Q}

fo.P} = fo}, {P}

{(va)P} = snew(a), { P}
{lx=y|P}2ifz=ythen{ P}
{lx#y| P} 2ifxc#£ythen { P}

{xP} 2 A.p(21,...,xs) Where {x;} are the free names of P

{7} £ #noop() : asilent primitive

fe(zr, ..., zn)} 2 1, ... 20)
{elzy,...,z)} 2 (21, ..., T0)
{0} 20

{P + QY = {PBeer; £QFaer
P | QFoer = {Pheer; {QFaer
{@.P}def = {P}def
f(va)Pha = { P

{lz = y] PYor = {P Yo

{lz # y] Phor = {P Yo
{xPYer = {PBaes;

def A.p(z1,... xa) | {P}

Table 10. Encoding of the polyadic Pi-calculus

7mn) = A*P(xl, -

Translated into the cube-calculus, we have to encode the replica-
tion as both a definition and a call to that definition in the translated
expression. For example we can write:

def UniqueName(gen) = gen?(out),snew(id),out!(id)
|| UniqueName(gen);

snew(gen,c),[UniqueName(gen) || gen!(c).c?(x).{P}]

More generally, the encoding of a Pi-calculus process P is di-
vided into a set of definitions associated to replicated processes,
written {P}er, and a cube-calculus process expression {PJ}.
These are defined inductively on the syntax of the Pi-calculus,
as shown in table 10. For completeness, we should then exhibit
the fact that the reductions in the Pi-calculus are matched by cor-
responding reductions in the cube-calculus translation and vice-
versa. But the only non-trivial part of the translation relates to
replication vs. recursion, which has been thoroughly investigated
in the literature (e.g. [17]). All the other Pi-calculus constructs are
translated in an almost literal way.

6. Related work

The CubeVM adopts a fully interpreted architecture. In compari-
son, most of the implementations for variants of the Pi-calculus em-
ploy more “traditional” compilation techniques. For instance, the
Pict [14] and Nomadic pict [19] implementations generate C code
via an abstract machine representation. The Jocaml language [6]
is designed as an extension of the Ocaml programming systems. It
supports both bytecode and native compilation. Other implementa-
tions (e.g. [9]) rely on the Java Virtual Machine. The extra complex-
ity of compiling to languages foreign to process algebras (stack, or
stack-register based machine languages) seem to be motivated by
the expectation of increased performance. We conduct a benchmark
experiment on-line [2] but it is yet too early to draw any conclusion
about the results we obtained so far. However, for most of the ex-
amples that we tried, most notably the ones involving fine-grained

66

concurrency and name-passing features, the CubeVM implementa-
tion turned out to be quite fast for an interpreter (except for general
and deeply recursive functions, as we expected). Of course, more
realistic experiments should be considered to confirm this obser-
vation. We see, though, two basic factors to explain the fact that
the Pi-calculus is particularly adapted for interpreted technologies.
First, it is a highly-concurrent language, which makes almost un-
avoidable the implementation of a dedicated scheduling algorithm.
Embedding the scheduler in a compiled program or in a generic
interpreter should not make much difference. The second reason is
that actual operating systems and hardware rely on machine lan-
guages that are alien to the Pi-calculus concepts and semantics. As
such, most of the high-level optimizations (such as the reactive se-
mantics we propose in this paper) must be found and applied on
the calculus itself at compile-time. In consequence, we think (and
envisage as a future work) that compilation to native code should
be performed just-in-time.

In term of expressivity at the language level, there is a difference
between the variant of the Pi-calculus that we implement compared
to most of the related work. For instance, the cube-calculus we pro-
pose is closer to the original Pi-calculus. It allows output prefix-
ing (which is disallowed in [6, 14, 19, 9]) and does not restrict the
passing of name capabilities. However, unlike its competitors, the
cube-calculus is a bytecode language and is as such quite low-level.

Most runtime systems for dynamic programming languages
support some form of garbage collection. Our requirement is to
support an efficient and highly concurrent GC. Tracing algorithms
(mark and sweep, semispace-copying and mark-and-compact) are
the most widely spread. To our knowledge, the first implementa-
tion to deal with cycles in a reference counting GC is Rob Pike’s
newsqueak [15]. The simple idea is to avoid cycles by enforc-
ing value-passing semantics. But it is also a source of inefficiency
because values must be copied each time they are updated. More
recent works show that reference counting collection with cycle de-
tection may also be implemented both concurrently and efficiently
in an object-oriented setting [4]. This algorithm still relies on the
buffering of potential roots and a somewhat non-trivial three-color
algorithm. Additionally, it deals only with objects, which are pas-
sive data structures. In this paper, we show that the GC algorithm
of the CubeVM is so simple that it can be fully characterized in
the structured operational semantics of the cube-calculus. It is then
easy to implement the GC and, even more importantly, reason about
it. Moreover, the CubeVVM GC reclaims processes and not just pas-
sive objects. A similar feature is proposed in the framework of actor
systems [20]. The problem with actors is that only the senders of
messages know the receivers. This means that actor references must
be inverted in order to detect deadlocks on the receivers’ side. As
explained in [20], the inversion of references consumes time and
resources. And then standard collection tracing schemes must be
employed, which rely on an explicit reachability graph. Compara-
tively, in the CubeVVM, channel references (and count) are known
by both the sender and receiver processes on these channels, so no
costly reference inversion or construction of reachability graphs are
necessary.

There are multiple ways to interpret the word “stackless”. In
Stackless python [18] and other common interpreters, it means that
the C (and thus processor) stack is not exploited so that stack frames
are explicitly constructed and manipulated. The specifications for
the Scheme programming languages enforce tail-call elimination
[11], which is another way to bypass the stack when possible.
The case for the CubeVM is different. As we show in this paper,
the cube-calculus has recursion but does not require any stack
support at all. When an explicit stack is absolutely needed, for
example in the case of non-primitive recursive functions, channels
and processes can be used to simulate the stack frames.

Many Pi-calculus encodings of functional, dataflow or object-
based systems do not need the fully concurrent and non-deterministic
nature of its operational semantics. In Jocaml [6], the syntax of the
language is restricted so that the receiver for a given channel is
known at compilation time. But the receiver capability may not be
sent, which somewhat cuts the Pi-calculus heritage in half. With
this limitation (that we find important) in mind, this allows to in-
crease the performance of the scheduling code because a sender
process does not have to “look for” a corresponding receiver. In
the CubeVM, we propose the reactive semantics for almost the
same purpose. The main difference is that they do not restric the
language in term of expressive power. In both active and reactive
semantics, the input capability may be passed between processes,
as in the pure Pi-calculus.

7. Conclusion and futurework

The CubeVM we describe in this paper is an interpreter for a
bytecode language that is very close to the Pi-calculus. The main
motivation behind this work is to study in practice the expressivity
and usefulness of programming languages inspired by the theories
of concurrency and mobility. The Pi-calculus and variants, that are
still being studied from a theoretical perspective, represent in our
opinion a whole new world to discover.

But beyond the experience, our objective is not to develop
yet another toy prototype, inefficient and/or buggy, which is in
fact rather easy to embed in an existing language (but few lan-
guages support the large number of threads needed by even sim-
ple Pi-calculus programs). Moreover, we show in this paper that
the resource management scheme involved in name passing cal-
culi is very different from more traditional bytecode languages for
stack- or stack/register-based virtual machines. New problems ap-
pear such as the need for dedicated and efficient scheduling algo-
rithms. The reactive part of the semantics shows that, under some
assumptions (namely the fact that the process definition is in chain-
reaction form), the scheduler may be bypassed. But old problems
also disappear, most notably the need to exploit and reason about
control stacks. This mainly comes from the fact that the local en-
vironment of processes is flat, and that all recursive calls are in tail
position. We think that most of the simplicity and efficiency of the
resource management scheme implemented by the CubeVM come
from this stackless architecture. Our vision is that the stack repre-
sents, in terms of control, what separates the most executions (or
running programs) from (non-running, static) programs. Our long-
term goal is that of ubiquitous mobility for which dealing with exe-
cutions and moveable execution environments are most significant,
if compared to manipulating (source-code or binary) programs.

At the language level, we discuss various process forms in this
paper: waiting or isolated processes, chain-reaction forms and so
on. A natural follow-up would be to investigate type systems to
detect these forms of processes, most notably chain-reactions, stat-
ically and automatically. For instance, the react prefix we present in
the paper, and which triggers the (fast) reactive semantics could be
inserted automatically at compile-time. We developed, separately,
an even stricter form to characterize fully deterministic (and not
just sequential) systems. These forms and their detection through
static typing could serve as a basis for an efficient JIT extension.

In a complementary work we develop an efficient implementa-
tion of the distributed extensions for the cube-calculus. These rely
on a semantic model called the Interaction Spaces that we discuss
precisely in [13].

67

References

[1] The computer language shootout. http://shootout.alioth.
debian.org/.

[2] The CubeVM project. http://www-poleia.lip6.fr/ pesch/
cube.

[3] The Python programming language. http://www.python.org.

[4] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in reference
counted systems. In ECOOP, volume 2072 of LNCS pages 207-235.
Springer, 2001.

[5] J. Bergstra, A. Ponse, and S. Smolka, editors. Handbook of process
algebra. Elsevier, 2001.

[6] L. M. Cédric Fournet, Cosimo Laneve and D. Rémy. Implicit typing
a la ML for the join-calculus. In Proc. of the 1997 8th International
Conference on Concurrency Theory. Springer-Verlag, 1997.

[7] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility.
|EEE Transactions on Software Engineering, 24(5):342-361, 1998.

[8] H. C. Lauer and R. M. Needham. On the duality of operating system
structures. SSGOPS Oper. Syst. Rev., 13(2):3-19, 1979.

[9] L. Lopes, F. Silva, and V. T. Vasconcelos. A virtual machine for the
TyCO process calculus. In PPDP’99, volume 1702 of LNCS pages
244-260. Springer-Verlag, Sept. 1999.

[10] R. Milner. Communicating and Mobile Systems: The w-Calculus.
Cambridge University Press, 1999.

[11] I. N. I. Adams, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.
Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,
D. Oxley, K. M. Pitman, G. J. Rozas, J. G. L. Steele, G. J. Sussman,
M. Wand, and H. Abelson. Revised5 report on the algorithmic
language scheme. SIGPLAN Not., 33(9):26-76, 1998.

[12] J. K. Ousterhout. Why threads are a bad idea (for most purposes).
Invited talk at the 1996 USENIX Technical Conference, 1996.

[13] F. Peschanski. Mobile agents in interaction spaces. In Foundations
of Coordination Languages and Software Architectures, ENTCS.
Elsevier, Aug. 2005.

[14] B. C. Pierce and D. N. Turner. Pict: A programming language based
on the pi-calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors,
Proof, Language and Interaction: Essaysin Honour of Robin Milner.
MIT Press, 2000.

[15] R. Pike. The implementation of newsqueak. Software - Practice and
Experience, 20(7):649-659, 1990.

[16] D. Rogerson. Inside COM. Microsoft Press, 1997.

[17] D. Sangiorgi and D. Walker. The w-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[18] C. Tismer. Continuations and stackless python or “how to change
a paradigm of an existing program”. In Proceedings of the 8th
International Python Conference, 2000.

[19] A. Unypoth and P. Sewell. Nomadic Pict: Correct communication
infrastructure for mobile computation. In POPL 2001. ACM Sigplan
Notices, volume 36, March 2001.

[20] A. Vardhan and G. Agha. Using passive object garbage collection
algorithms for garbage collection of active objects. In ISMM’02:
Proceedings of the 3rd international symposium on Memory
management, pages 106-113, New York, NY, USA, 2002. ACM
Press.

[21] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea
(for high-concurrency servers). In Proceedings of the 9th Workshop
on Hot Topicsin Operating Systems, May 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

